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Abstract 

Using synthetic test patterns that are simple in geometry or 
mathematical description is common when assessing algorithms, 
models, and display systems. A more complex approach is the use of 
‘real-world’ content that is captured for example by a camera. For 
the application of display system assessments, an additional test 
pattern approach was recently proposed [1]. This approach uses 
test sequences following spatio-chromatic noise properties inspired 
by natural image statistics. Such sequences can offer complex image 
and video properties that are statistically more common with 
content captured by a camera while maintaining properties that can 
be more easily quantified as is typical with synthetic test pattern. In 
this paper we investigate additional applications for spatio-
chromatic noise sequences beyond the ones used with display 
assessment. In particular, the applications of image data 
compression and neural fields are discussed in detail. 

Introduction 
Developing algorithms, models and systems are a common task 

in many areas of research and engineering. One crucial component 
of this task is the evaluation of an algorithm or model’s 
performance. In the field of electronic imaging, this includes image 
and video compression, decompression, signal modification such as 
tone-mapping, as well as rendering and display. In addition, 
methods to visually characterize these systems are important for 
example to carry out psychophysical assessments.  

Over the past decades, various approaches on how to evaluate 
the various elements of an imaging pipeline have been developed. 
Many of them require test signals that can be processed, sampled, 
optically measured, and otherwise analyzed. 

With display characterization and psychophysics, there has 
been a long tradition of assessing performance via synthetic test 
patterns, which are generally simple in geometry or mathematical 
description. The use of such test signals is for example common 
when designing new display systems or characterizing them 
later [2]. Another common test material consists of ‘real world’ 
content captured with a camera, either as still image or as video 
sequence. Such ‘practical imagery’, that is, images or videos that 
will be encoded, decoded, and viewed on a display by non-expert 
consumers includes natural, civilization and entertainment imagery 
typically viewed for entertainment and educational purposes. 
Depending on the application it can also include x-ray, MRI, and 
histology for medical imaging or with satellite and radar imagery 
used in the geosciences. Such practical imagery is commonly used 
when assessing the performance of image and video encoders but 
has also found use in other areas such as display system 
assessment [3,4]. 

To obtain objectively quantifiable results, various types of 
image statistics are typically computed, which are then analyzed to 
deduct an algorithm or model’s performance. While image statistics 
computed and measured from synthetic evaluation content can be 
straight forward and give detailed information such as peak 

luminance or average picture level (APL) [2], the scope of these 
results is often low level and typically far from the typical use case 
of the elements in an imaging pipeline. Practical imagery is 
challenged by the opposite problem: Even through the content is 
typically closer to the actual use cases, there is a lack of consistently 
quantifiable parameters. There has been some effort to quantify such 
imagery e.g., by content color volume, noise level [4], and no-
reference metrics such as sharpness [5] or by carefully selecting 
practical test images [6,7]. Another approach was to replace test 
targets with a standardized test video that had luminance statistics 
matching 48 hours of broadcast content [3]. More recently, large 
data sets of images have been used to train various neural network 
models for tasks such as super resolution, bit rate compression, and 
dynamic range mapping [7]. However, images are not ergodic, and 
possibly not even wide-sense stationary (ergodicity describes a 
system that cannot be reduced into smaller components and requires 
the variance and other statistical properties to be constant, while 
wide-sense stationarity only requires the 1st and 2nd moments to be 
constant). 

Consulting image statistics that are based on averages or 
manufacturing deviation criteria (e.g., 3s) bears a risk as these 
averages might not cover or reflect the properties of corner cases. 
For example, a single movie may already contain several corner 
cases over its duration. Therefore, one key desire is to not only 
design and test for average content but also include imagery that 
challenges the algorithms, models, and technology. With that, 
algorithm development and testing for image and video processing 
has often been ad hoc, with a mixture of geometric test targets and 
hand selected test images, sometimes aiming to be corner cases, 
sometimes not. 

An option to bridge this gap of robustness quantification and 
stress testing practicality that lies between simple synthetic test 
targets and content captured with cameras has been proposed by 
Kunkel and Daly [1] for the context of display performance 
assessment. They proposed the use of spatio-temporal noise 
sequences based on 1/f a distributions following natural image 
statistics.  

In this work, we propose to extend the use of such imagery to 
compactly probe the wide variety of image possibilities for 
algorithmic development. While we don’t suggest replacing actual 
practical imagery, we believe such noise fields can augment image 
algorithm analysis.  

To address the problem of non-ergodicity, we allow the basic 
power term a in the natural image statistic model to vary over a large 
range in a video (see [1]), such that it includes the extremes of white 
noise and low frequency gradients, not only achromatically, but also 
by using color image statistics models that include decorrelated 
colors to generate the RGB video. We will present results for 
traditional adaptive data compression (with chromatic 
subsampling), as well as a more contemporary neural network 
approach using Neural Fields [8] as applied to upscaling and 
denoising. 
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Properties of Natural Image Statistics 
Stochastic noise and its quantifiable statistics, such as the noise 

power spectra, can provide a rigorous framework such as white 
noise analysis with its history in engineering and vision science [9]. 
Natural image statistics are well known to having spatial frequency 
power spectra that has a 1/f a behavior. The 1/f family of statistics 
exhibit a simple relationship between spectral density S(f) and 
frequency f [10] where the value of α affects the frequency 
distribution of the noise. The a values related to natural mage 
statistics are typically stated as being between 2 and 4. This indicates 
an invariance to scale. Further work has theorized how the visual 
system is tuned for such statistics in the visual cortex (V1) [11]. 
Color image statistics also show an invariance to scale. The 
luminance histogram is typically understood to be log normal with 
respect to luminance, although for HDR images, a subcomponent 
with skew toward much higher luminance levels is observed. Color 
statistics were initially described at the simplest level via the gray 
world hypothesis [12], but more details are available, even at the 
hyperspectral [13]. The power function for HDR was found to 
increase from the lower values of 2 to more typical values of 4 and 
5 [14].  

For temporal statistics, data tends to be measured primarily for 
media with a focus on the motion statistics via optical flow. Another 
example can be given by scene cut statistics also following a 1/f a 
distribution [15]. Statistics for purely natural and human made 
environments (e.g., buildings and the resulting perspective 
geometry) have been studied, having different orientation 
statistics [16]. 

For color aspects of statistics, there is work looking at 
histogram statistics, such as in cone space [17], hyperspectral [18], 
or the non-natural TV broadcast space [19]. For color spatial 
frequencies we only found one study using RGB analysis and one 
looking at opponent color. The findings of the RGB study [20] are 
shown in Figure 1a. We can see the slopes of the amplitude 
frequency spectra are similar and close (α = -1) across red, green, 
and blue channels. There is a slightly different slope for the blue 
channel, which may relate the chromatic aberration in the lens used 
to capture the scenes, or the blue-yellow vector of daylight 
illumination. 

 

 
Figure 1: a. Amplitude spectra averaged across 19 images (dots) for the red, 
green, and blue channel (after Burton [20]). b. Spatio-chromatic statistics in 
the achromatic and opponent color domain (after Parraga [21]). 

Another approach is to look at the spatio-chromatic frequencies 
across opponent colors, as motivated by the concept of physiology 
becoming tuned to the real-world spatio-chromatic statistics or 
motivated by common video signal formats that can take advantage 
of this information. The study of frequency statistics in the opponent 

color domain [21] is shown in Figure 1b., where achromatic 
properties are assessed from the luminance channel, and the red-
green and yellow-blue opponency vectors are calculated from LMS 
cone responses. The behavior in terms of slopes was similar across 
all three channels, similarly, having an approach of α = -1, but with 
some slope reduction at the highest frequencies. In one image they 
found the red-green channel to have a steeper slope, so this is a field 
where more data is certainly needed. A similarity of slopes is 
expected as the opponent color channel responses are linear matrix 
transforms of RGB but could be different if such matrices occur after 
nonlinearities. For our work, we will assume them having the same 
slope, and that they translate to the nonlinear opponent color space 
of CIELAB. 

Preparing the Test Imagery 
To replicate properties of natural image statistics, we computed 

noise sequences as described by Kunkel and Daly [1], including 
achromatic and chromatic noise fields. 

Figure 2 illustrates the high-level concept of generating 
individual 2D noise images from a random value seed φ (a.). Based 
on the selected a value (b.) the specific spatial frequency 
distribution can be computed (c.), which can be converted to a 2D 
image (e.) using an inverse Fourier transform (d.). 

 

 
Figure 2: High Level Concept to generate 2D noise images as described by 
Kunkel & Daly [1]. 

The temporal component of the noise sequence was generated 
with a new seed value φ for each frame. The final noise images were 
then computed using α values ranging from 0 (white noise) to 5 
(very low pass consisting of smooth gradients) followed by blending 
the frames together using a Gaussian temporal blend kernel to form 
a smooth continuous motion (see [1] for more details). For the 
chromatic noise fields, we computed three independent noise 
sequences and assigned them to the CIELAB opponent channels L*, 
a* and b* as shown in Figure 3.  

 

 
Figure 3: Generating opponent color noise sequences that after channel 
scaling are converted to RGB and provided to further applications. 

Based on referenced studies of chromatic natural image 
statistics, the ratio of achromatic to red-green and blue-yellow 
opponent channels were scaled in the ration of 1:0.66:0.2 followed 
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by a conversion to sRGB. In total, a sequence of 360 images was 
computed (15 sec. at 24 fps) with each image having a size of 
512x512px. This test image sequence can then be used by further 
applications. 

Key applications that benefit from this approach include 
Display assessment, psychophysics, compression analysis and 
Neural Networks. The application in the context of display 
assessment has been described in previous work [1,3]. In the context 
of psychophysics and psychovisual research, the noise images and 
sequences can offer several beneficial properties such as scale 
invariance and non-descript texture. With that, such images can 
serve as stimulus background, resting target and luminance anchor. 
Figure 4 shows an example setup using a 1/f a target as background 
for a visual stimulus. 

 

 
Figure 4: Example use of spatial noise targets for psychovisual research 

Further, image data compression and neural fields are 
beneficial applications for the noise sequences. In the following, 
these latter two areas are discussed in detail. 

Application to Image Data Compression 
Two key phenomena in image data compression are the 

diametrically opposed aspects of entropy and perceptual masking. 
For a fixed quantizer codec, increasing entropy increases the bitrate 
(i.e., bit total per image). However, increasing entropy also increases 
perceptual masking, which allows the signal to mask the distortions. 
This allows the quantization to be increased, which in general 
lowers the bitrate. It is currently unknown which of these two trends 
dominates. Of course, such an answer would be specific to the actual 
image, which may consist of low and high entropy regions. 
Remember, that we are treating these noise fields as surrogates of 
signals, so please do not get confused with the typical signal to noise 
ratio (SNR) terminology. 

Further, the spatial frequency spectra of the content will play a 
role in the perceptual masking because spectra with high alpha 
values result in low amplitudes for the higher spatial frequencies. 
Such lower amplitudes mean the signals are closer to threshold. 

Figure 5 examines perceptual masking further where the 
threshold for seeing the compression distortion is plotted on the 
vertical axis, and the signal causing the masking on the horizontal 
axis. We can see two key regions, a low noise asymptote and a high 
noise asymptote (using conventional psychophysical terminology; 
the noise being referred to on the asymptotes is the signal to be 
compressed, which is the noise field). The low noise asymptote 
indicates that there is no masking, and the threshold is unaffected. 
The high-noise asymptote (slope of 1 in a log-log plot) means the 
masking can be modeled as a simple SNR ratio. We can also see a 

transition region between the two asymptotes where the masking 
gradually reduces as the signal contrast reduces. 

 

 
Figure 5: Masking basics 

For the high spatial frequencies with higher values of a, the 
signal contrast is reduced compared to image with lower a. This 
means the masking is likely reduced for such frequencies as 
compared to the case with a lower a values. 

Masking Study 
Studying masking behavior using these noise fields can be 

instructive for quantifying such complex effects. We carried out two 
studies to investigate this further. The first study kept the 
quantization parameter constant in a JPEG still image compression 
scheme, while the second allowed the quantization parameter to 
increase as needed to keep a constant bitrate. These two cases are 
referred to as constant quantization or constant bit total (analogous 
to bit-rate if the frames occurred at a temporal rate). 

We found for achromatic noise fields, that in the constant 
quantization case the distortions were increasingly more visible as 
the alpha value increased, and less visible as the value of a 
decreased. In this case we conclude that masking is a stronger effect 
in improving image quality than entropy is in degrading quality. Of 
course, for the constant quantization case, the resulting bit totals 
steadily increased with decreasing a (& increasing entropy). In the 
case for constant bit totals, and thus variable quantization, we found 
the opposite trend. Quality was reduced as the a value decreased. 
The masking was not able to overcome the increasing distortions 
caused by the increasing entropy caused by the flatter spectra of 
lower a values. Even though the noise fields with lower high spatial 
frequency amplitudes (i.e., the higher a values) had some signals 
transitioning to the lower noise asymptote, and thus causing less 
masking, this reduced masking did not enable the distortions to 
become more visible. This is due to a significantly reduced entropy 
level enabling the entropy coder to easily encode. With that, the 
reduced entropy issue dominated over the reduced masking. This 
was generally expected, and therefore the results are not shown.  

However, for chromatic noise, the results were not as simple. 
Figure 6 shows the results for the chromatic noise for a series of a 
values using constant quantization, including a magnification of an 
image region for improved visibility of potential artifacts. The bit 
totals for each image are also indicated in the figure. The distortions 
were more visible for the images with high a values, and in the form 
of horizontal and vertical distortions due to partial blocking 
visibility, as in the achromatic case. However, there were also 
visible distortions for the case with the lowest a value of 0 (a.) but 
manifested in a different form. In this case, very high spatial color 
features that were present in the reference image were lost due to the 
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compression. We understand this to be due to the lower amplitude 
red-green and blue-yellow channel’s signal being quantized to zero.  

 

 
Figure 6: Results for constant quantization of spatio-chromatic noise fields of 
increasing alpha (decreasing entropy). The bit totals are for the full 512x512px 
images. The full-size images are intended to be viewed at 3280 pixels (~6H) 
so that the Nyquist is approximately 30 cycles/deg. 

With that, there appears to be a sweet spot of a values between 
0 and 5 that gave the best results in terms of visibility for fixed 
quantization compression, which does not occur for the achromatic 
versions. 

For the study using an adaptive quantizer set so that the bit 
totals were approximately constant, the results favored the higher a 
values shown in Figure 7 using the same reference images as in 
Figure 6. 

One can see in the image with the lowest a value that the high 
spatial frequency chromatic features (‘color dots’) are entirely 
missing, and the image looks completely achromatic, as was the case 
for the constant quantization criteria. In addition, structural patterns 
are visible within the noise (viewing with a dark surround may be 
required). With a = 2, a slight loss of detail is visible in comparison 
to the reference, while the highest a value of 5 consisting entirely of 
low frequency chromatic gradients shows no visible distortion and 
is in fact visually lossless at even closer viewing distances than 6H 
(6 picture heights viewing distance). 

For both studies, constant quantization, and constant bit total, 
we computed results for integer values of a ranging from 0 to 5, but 
due to space constraints only show the endpoints and the value of 
alpha most often cited for natural image statistics (a = 2). 

This preliminary study into the application to image data 
compression shows the value of spatiochromatic noise fields in 
understanding the most basic trends. For examples we can observe 
interactions of basic image features (the a parameter) with the 
perceptual issues of masking and CSF (i.e., visibility as a function 
of viewing distance). Instead of relying of the arbitrary regions of 
differing a values in optically captured real world imagery, we can 

isolate and draw conclusions specific to potential localized image 
statistics via the a parameter. 

 

 
Figure 7: Results for constant bit totals by using adaptive quantization of 
spatiochromatic noise fields of increasing alpha (decreasing entropy). The 
alpha values listed are for the achromatic channel. The opponent color red-
green and blue-yellow channels have the same alpha values but reduced 
amplitudes in the ratio of 1:0.66:0.2. The resulting bit totals for the full 
512x512 images are all approximately 70kb. The reference images and 
viewing conditions are the same as in Figure 6. 

Application to Neural Fields 
Another application can be found in neural fields. A neural 

field [8] is a type of coordinate based neural network that 
parameterizes physical properties of scenes or objects across space 
and time. It has applications in visual computing problems such as 
3D image reconstruction, image synthesis, etc. In neural field 
frameworks, field quantities are produced by sampling coordinates 
and feeding them to a neural network. For example, consider the 3D 
scene representation ‘Neural Radiance Field’ (NeRF). A typical 
NeRF takes an input from the spatial location (x, y, z) and the 
viewing direction (θ, ϕ) and outputs the volume density and view 
dependent emitted radiance of that coordinate. The output volume 
density and RGB color are followed by volume rendering to 
construct a 2D projected image. The ‘Local Implicit Image 
Function’ [22] is one of the recent applications using neural fields. 
An image is represented as set of latent code to predict the RGB 
value of a given pixel from the (x, y) coordinate and the 2D deep 
feature. 

Positional Encoding 
Neural fields are known to suffer from a loss of high frequency 

information during rendering. To mitigate that, one common 
approach is to apply positional encoding. For that, the inputs to the 
neural fields, which are typically pixel co-ordinates, are mapped to 
a higher dimensional space [23]. For neural scene representation, the 
performance of a neural network is significantly improved by 
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mapping the position coordinates p from R to 𝑅!" where L is the 
number of frequencies.  

A typical mapping 𝛾 [24] acting on a coordinate p can be 
represented as: 
 
        𝛾(𝑝) =
[	sin(2#!𝜋𝑝)		cos(2#!𝜋𝑝)		 sin(2#"𝜋𝑝)		cos(2#"𝜋𝑝)		 …			 
																																																		sin(2##$"𝜋𝑝)		cos(2##$"𝜋𝑝)	]        (1) 
 
where {𝑙$, 𝑙%, … , 𝑙"&%} are integers. In the typical setting, 𝑙' = 𝑘. 

Multiple Layer Perceptron Network (MLP) 
The core component of the neural field is the multi-layer 

perceptron (MLP). The basic building block of an MLP layer 
consists of one linear sub-layer followed by a ‘Rectified Linear 
Unit’ (ReLU) activation sub-layer. Each linear layer has different 
number of neurons. A deep MLP network can be constructed by 
stacking multiple building blocks sequentially. The details of each 
MLP layer are illustrated in Figure 8. 

 

 
Figure 8: Basic building block using weighted linear sub-layer and activation 
layer 

The MLP layer takes several inputs (blue circle) and multiplies 
each input with an associated weight and adds a bias (green circle). 
The parameters at kth layer weights (𝑾') and bias (𝒃'), need to be 
trained to optimize the loss function. The output will be adjusted by 
an activation function (rectangle), such as ReLU. The equation for 
ReLU activation function is given by: 
 
    𝑅𝑒𝐿𝑈(𝑥) = max	(0, 𝑥)               (2) 

 
Sometimes there is a requirement that the final network output 

needs to be in the range [0,1]. A sigmoid layer can then be added as 
the final layer of the MLP which normalizes every real number to 
between 0 and 1. The equation for the sigmoid is given by: 
 
            𝑆(𝑥) = %

%()$%
               (3) 

Experimental Setup  
In the following, we describe how the neural field can be 

applied to model a spatio-chromatic noise image sequence. We are 
using the same three-channel color sequences as in the previous 
section. This means that there are three color values for every pixel 
and an additional dimension for time t (since the source is an image 
sequence), making the field effectively 4 dimensional. The neural 
field takes the co-ordinate pixel position as input and predicts the 
color values per pixel for every frame in the sequence. With the 2D 
coordinate (x, y) and time (dt), the neural field problem can be 
represented as follows: 

      (𝑅B, 𝐺B, 𝐵B) = 𝑀𝐿𝑃*(𝛾(𝑥), 𝛾(𝑦), 𝑑𝑡)            (4) 
where 𝛾 is the positional encoding function applied on every pixel 
of the image and 𝑅B, 𝐺B, 𝐵B  are the red, green and blue values of every 
pixel.  
 

The optimal MLP parameters is formulated as 
 
     𝛷∗ = 𝑎𝑟𝑔min

*
𝐷( OP𝑅B, 𝐺B, 𝐵BQR, {𝑅,-, 𝐺,-, 𝐵,-})         (5) 

 
where 𝑅,-, 𝐺,-, 𝐵,-	are the red, green, and blue values of the 
reference image of the sequence.  

The loss function is the overall normalized root mean squared 
error from all three color channels of all pixels for the entire image 
sequence. 

Network architecture and implementation details 
For our experiments, we use a MLP with 5 hidden layers. The 

structure of the MLP is shown in Table 1. 

Table 1: Network architecture of MLP 

Layer Input 
Channels 

Output 
Channels 

Input 

Layer 1 41 256 𝛾(𝐼) 
Layer 2 256 128 Layer 1 
Layer 3 128 64 Layer 2 
Layer 4 64 32 Layer 3 
Layer 5 32 16 Layer 4 
Layer 6 16 3 Layer 5 

 
The input to the first layer is denoted as 𝛾(𝐼). Here, I is the 

input image and 𝛾 is the positional encoding applied to the input 
pixels. We use Equation 1 as the mapping function for 𝛾 using a 
value of L = 10 (resulting in 40 dimensions) and an additional value 
of time (t = 1) resulting in 1 additional dimension. The final layer 
has a sigmoid function and outputs the color value (Red, Green and 
Blue) for every pixel of every frame of the sequence. 

We implement the framework in PyTorch [25] and use the 
Adam optimizer [26] with a learning rate of 0.001. The other Adam 
hyper-parameters are left at default values The optimization for a 
single sequence takes 3500 epochs to converge on a single NVIDIA 
A100 GPU. 

Results 
For efficient/faster training to demonstrate the application, 

instead of creating a neural field using the entire sequence consisting 
of 360 frames, we create a neural field to model 11 frames from the 
spatio-chromatic temporal noise sequence. Starting from frame 0, 
we pick every 20th frame up to frame 200. The MLP takes the 
coordinates and the time interval as an input and predicts the output 
frame. Visual results of the reconstruction for alpha values of 0.8, 
2.6 and 4.3 based on frames 10, 80 and 120, respectively, are shown 
in Figure 9. 

The image quality differences are the strongest for Figure 9a. 
showing the output of a low a value input as neural fields are not 
the best in modelling high special frequencies. The higher a values 
of Figure 9b. and c. show a loss of detail suggesting localized 
blurring although the general appearance resembles the reference. 
Larger neural fields can potentially further improve the performance 
especially for the higher a values. For the lower a values, we might 
need a better positional encoding mapping.  
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Figure 9: Visual results of modeling spatio-chromatic noise using neural fields 
along with the corresponding PSNR values. The top row corresponds to the 
frames from the reference image sequence and the bottom row corresponds 
to the reconstruction using the neural field. 

The PSNR results for the sequence frames are shown in Figure 
10.  

 

 
Figure 10: PSNR results of the reconstruction. Visual results for frames 20, 80 
and 120 are shown in Figure 9. The results after frame 200 are extrapolated 
and were not computed by the neural field. As reference, the alpha values 
used to compute the reference image sequence are shown as well. 

As can be seen in Figure 9 and Figure 10, the objective 
measure, PSNR is high (> 30dB) for the frames with higher a 
values. However, for the frames with lower a values, the PSNR is 
not very high. There seems to be a strong correlation between the a 
values and the reconstruction using the neural field. This shows that 
although the neural fields can be used to model the spatio-chromatic 
temporal noise sequence, there still seems to be some scope of 
improvement, especially for the lower a values. 

Summary 
We have shown that spatiochromatic noise fields are useful 

beyond display assessment tasks, both as static images and as image 
sequences. In particular, the changes of spatial frequency 
distribution facilitated by adjusting the alpha value provide 
interesting opportunities to assess models and systems that are part 
of an imaging pipeline. This work represents initial investigations of 
using these sequences in combination with image compression and 
neural field applications. Nevertheless, further studies are needed to 
extend our understanding of how spatiochromatic noise sequences 
can be of use. 
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