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Abstract
In this paper, we propose a multimodal unsupervised video

learning algorithm designed to incorporate information from any
number of modalities present in the data. We cooperatively train
a network corresponding to each modality: at each stage of train-
ing, one of these networks is selected to be trained using the out-
put of the other networks. To verify our algorithm, we train a
model using RGB, optical flow, and audio. We then evaluate the
effectiveness of our unsupervised learning model by performing
action classification and nearest neighbor retrieval on a super-
vised dataset. We compare this triple modality model to con-
trastive learning models using one or two modalities, and find us-
ing all three modalities in tandem provides a 1.5% improvement in
UCF101 classification accuracy, a 1.4% improvement in R@1 re-
trieval recall, a 3.5% improvement in R@5 retrieval recall, and a
2.4% improvement in R@10 retrieval recall as compared to using
only RGB and optical flow, demonstrating the merit of utilizing as
many modalities as possible in a cooperative learning model.

Introduction
The large amount of video data available in the modern in-

ternet has led to an increased emphasis on fast and effective ways
to classify and learn from repositories of video data. However,
training traditional supervised machine learning models on data
requires the presence of labels, which are not easily available in
most cases. This leads to the task of unsupervised representation
learning: training a model that takes an unlabeled data sample as
input and yields a vector that represents a sample’s useful features
as accurately and succinctly as possible. When a supervised task
is provided, this pre-trained model can be used as the backbone
to speed up training for the supervised task. The unsupervised
model can be used as weight initialization for a supervised model,
improving the accuracy of supervised learning models without the
need for additional labelled data. Alternatively, the unsupervised
model can work as an encoder, extracting the relevant features of
video to train a fully connected layer on the supervised task.

This paper explores ways to leverage the different modalities
available in video data to make a more effective unsupervised pre-
training method. Similar to InfoNCE [1], our approach uses con-
trastive learning to create ”pseudo-labels” to train the model with.
In contrastive learning, a model is trained on unlabeled data to
yield distinct outputs for samples, such as images or video clips,
that are found to be dissimilar. In our case, we classify a pair of
sample video clips as being similar or dissimilar using the other
modalities in the sample. In one of our steps, we train an unsu-
pervised model on RGB frame data by finding pairs of video clips
that are similar in optical flow or audio space. This is effective
because while two samples may differ in RGB feature space, they
might prove similar in either the flow or audio space. InfoNCE

[1] uses only RGB data in a contrastive learning scheme and Co-
CLR [2] extends it to use RGB and optical flow. In this report, we
extend CoCLR [2] to incorporate audio.

Figure 1. The overall training scheme. The green blocks represent net-

works that are being trained in a given stage, and the red blocks are the

networks that are acting as the ”oracle”. These latter networks have their

weights frozen, and are used to generate aggregated representations that

can then be used to train the green network. After each modality network is

trained respective to the others, the cycle repeats.

Related Work
Contrastive learning

The field of unsupervised learning is active, and the cur-
rent state-of-the-art is contrastive learning, in which models are
trained by learning to similarly represent augmentations of the
same instance, or instances that are known to be similar, and vice
versa [1][2][3][4][5][6]. InfoNCE [1] follows this formula, cre-
ating a positive pseudo-class by augmenting a sample multiple
times, and a negative pseudo-class by augmenting other samples.
The model is then trained to similarly represent pairs of samples
both from the positive pseudo-class and distinctly represent other
pairs. Momentum contrast, or MoCo [3] provides a sampling al-
gorithm to run InfoNCE efficiently; negative examples are main-
tained in a queue in order to prevent having to read them from disk
and augment them on every step. SimCLR [5] provides another
sampling algorithm, in which each sample in a batch is augmented
to produce N positive pairs, and then each positive pair is con-
trasted with the other 2(N − 1) augmented samples in the batch.
DenseCL [4] uses momentum contrast, but rather than training
based on a single global representation vector of each sample, it
computes a representation vector of each feature of each sample,
creating a dense representation to be contrasted. All of the above
approaches focus on using contrastive learning for image data. In
this paper, we build upon MoCo [3] for its speed and simplicity,
both crucial when dealing with much larger video data.

Contrastive Video Learning
Much research has been done on adapting contrastive learn-

ing to the specific properties of video data [7][8][9][10][11].
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CVRL [8] performs both spatial augmentations, consisting of
standard image augmentations, and temporal augmentations,
which involves selecting different timestamps of the same video.
It then trains its model using the InfoNCE [1] loss. VideoMoCo
[9] extends momentum contrast specifically for videos, by atten-
uating past samples in the queue to prefer those more recently
added.

We train our model to yield similar representations invariant
to temporal transformations; that is, we expect the same represen-
tation from two clips cut from the same video. Recent approaches
such as Jenni et al. [10], instead train their model to specifically
recognize temporal information. Behrmann et al. [11] use In-
foNCE to train a model to recognize whether one clip takes place
after another or vice versa, and use this specific temporal infor-
mation to yield a representation learner. RSPNet [7] augments
samples by playing them at different speeds, and trains a model to
similarly represent samples from different videos that play at the
same speed. None of these papers take into account other modal-
ities represented in the data, and instead represent new ways of
working with only RGB frame data.

Multimodal Video Learning
There are existing approaches that work with

different modalities present in unlabeled video data
[12][13][14][15][16][17]. One approach is to devise spe-
cific cross-modality tasks that can be used to construct a loss
function. Arandjelović et al. [12] train a model to detect audio
and video clips that correspond to the same time stamp. Korbar
et al. [13] use this idea to train a representation learner to use in
downstream supervised tasks. Piergiovanni et al. [14] construct
many such cross-modality tasks, and incorporate the modalities
into the formulation of the loss. Another approach, taken by
XDC [15] and Asano et al. [16] is to use the different modalities
to construct an effective clustering model and use the resulting
clusters as pseudo-classes. GDT [17] treats the extraction of
a modality from a video as an augmentation and incorporates
augmentations into the loss function itself, thus learning to
recognize samples from the same video even if the samples are of
different modalities.

Our proposed approach is similar to that of CoCLR [2],
which trains a neural network for each modality cooperatively,
alternating the selected network to train using the other networks
as an oracle. CoCLR [2] extracts RGB and dense optical flow, and
uses a modified version of the InfoNCE [1] loss to train an RGB
net and a flow net against one another. To train the RGB net, pos-
itive pairs for some given sample are extracted by getting the top
k clips with the representation closest to that sample according
to the optical flow network. CMA, or Cross-Modal Agreement,
[6] uses RGB and audio instead, and rather than alternating one
of the networks as the oracle, uses both the RGB and the audio
representations of a sample to find similar samples. In this paper,
we extend the alternating-oracle pattern of CoCLR [2] to three
modalities: RGB, optical flow, and audio, thus increasing the in-
formation available to the models.

Approach
Our approach involves two stages: pre-training and training.

In the pre-training step, we train three encoders using InfoNCE
[1] with momentum contrast [3] for each one of our three modali-

ties: RGB, optical flow, and audio. In the training step, we use the
pre-trained encoders in a cooperative contrastive learning scheme
similar to CoCLR [2].

Pre-Training
Our algorithm, as illustrated in Figure 1, involves alternat-

ing selection of one of the modalities on which to train a encoder
net, while freezing the encoders corresponding to other modal-
ities. This is similar to the way CoCLR [2] alternates between
RGB and optical flow, extended to three modalities. The frozen
encoders act as an ”oracle”, determining which other samples in
the dataset are most similar to a given sample. In order for those
frozen encoders to serve as reasonable ”oracles” to train the other
encoders with, we need to first make sure they are trained to rep-
resent their respective modalities accurately. This is done using
the InfoNCE [1] loss, which makes the encoder learn to recog-
nize different random augmentations from the same video as be-
ing similar, leading it to encode only important features of the
given clip. We use MoCo [3] to prevent having to fetch clips re-
compute augmentations for each time step.

Training
Once the encoders corresponding to each modality are

trained we begin the cooperative training part of the algorithm,
which is an extension of InfoNCE [1] and CoCLR [2] and the
main contribution of this report. Our overall training scheme is
shown in Figure 1: Given M pre-trained encoders corresponding
to M modalities we select one encoder f for each stage of train-
ing, and use the other M − 1 encoders as oracles to train f . In
this paper we use M = 3, with the modalities RGB, optical flow,
and audio. With M = 2, this algorithm reduces to CoCLR [2],
and with M = 1, this algorithm reduces further to InfoNCE [1].
Our proposed scheme outlined in Figure 1 has three stages corre-
sponding to the three modalities; we summarize a single stage of
training in Figure 2.

Similar to InfoNCE [1], our loss uses cross-entropy to train
an encoder that encodes positive pairs similarly and all other pairs
differently. The main difference between the single-modality pre-
training algorithm and our multimodal algorithm is the way we
select positive pairs. Rather than providing only a single positive
pair (a1, a2), we select k more positive matches for a1 to form the
positive set P = {a2,ap1 ,ap2 , ...,apk}, as in CoCLR [2]. We use
the other M−1 encoders, which we refer to as samplers, to select
these k positive samples. We freeze the weights of these samplers,
colored red in Figure 2; they are only there to mine positive pairs
for the encoder being trained, colored green in Figure 2. The out-
puts of these samplers is concatenated to form the oracle output.

Since running video clips through these sampler encoders to
create positive and negative sets on each timestep is computation-
ally expensive, we use momentum contrast [3]. This consists of
two queues, in yellow in Figure 2, which are Queue B, consist-
ing of past outputs of the encoder corresponding to the modality
being trained, and Queue O, corresponding to past oracle outputs.
The k most similar entries in Queue O corresponding to the cur-
rent encoder output are matched to their corresponding entries in
Queue B (colored dark green in Figure 2), and those entries are
used to populate the positive set P . The negative set N consists
of all of the remaining entries in P. Using this method greatly re-
duces the time spent in I/O, since no disk accesses are necessary
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to compute the positive and negative sets for a given clip.

Figure 2. A single timestep of our entire multimodal contrastive learning

algorithm for a single stage. We use Momentum Contrast [3] along with the

CoCLR loss [2]. In our paper, M = 3, so there are two other modalities z1

and z2, and two corresponding encoders fs1 and fs2. The entire algorithm is

computed in batches in order to speed up computation.

After the completion of one stage, a different modality is
selected and the next stage begins. The recently trained encoder
becomes one of the frozen samplers to make up the next oracle,
and one of the frozen encoders from the previous oracle is selected
to be trained next.

Experimental Setup
Modality Extraction

For unsupervised learning, we use the Kinetics-400 action
classification dataset [18]. After downloading the data from
YouTube, we extract the three modalities RGB, optical flow and
audio. 300 RGB frames are extracted from each video and re-
sized to 128 by 128. Optical flow is computed using Zach et al.’s
TVL1 dense optical flow algorithm [19]. For each frame, flow in
the x and y-directions is placed into the first and second channels
of a 3-channel 128 by 128 image. Audio is processed into a mel-
scaled spectrogram, saved as greyscale images. This allows us to
use an out-of-the-box image classification backbone for our audio
data.

Data Preparation
All of the data is packed into the Lightning Memory-Mapped

Database (lmdb) format [20]: a serialized binary format designed
to improve access speed for very large datasets. By using lmdb
[20] we are able to greatly speed up the I/O portion of computa-
tion, allowing us to train our model on the full cleaned dataset of
more than 200,000 video clips.

Figure 3. The augmentation types used on the three modalities in each

sample: RGB frames, optical flow frames, and an audio spectrogram

Data Augmentations
In contrastive unsupervised representation learning algo-

rithms such as InfoNCE [1] and SimCLR [5], the choice of data
augmentation is crucial. Unlike in supervised tasks where data
augmentation is an add-on to make models more robust, in con-
trastive learning, augmentations are an essential part of the learn-
ing process. In the absence of labels, the model is trained to rec-
ognize two inputs as different augmentations of the same clip.
Without augmentations that accurately simulate the transforma-
tions and noise present in real data, the model will not be able to
learn the essential features of its training data effectively.

We first perform temporal augmentation. At each iteration
of the dataloader, we load the three pre-computed modalities of
a video: RGB frames, optical flow, and audio. However, instead
of simply sampling, augmenting, and returning a one-second clip
from the video, it randomly samples two one-second clips, each
from different parts of the same ten second video. The second of
these clips is effectively a temporal augmentation of the first; it is
a shift in time to a different part of the original video. Training the
encoder to produce the same output invariant of this augmentation
means different parts of the same video should yield the same
representation.

After selecting two clips, spatial transformations are per-
formed as shown in Figure 3. We use the same spatial aug-
mentations for RGB and optical flow as CoCLR [2]. Every clip
is randomly cropped, and then has a random chance of being
horizontally flipped, color-jittered, Gaussian-blurred, and turned
greyscale.

The spectrogram created from the audio portion of the two
clips returned from temporal augmentation is randomly perturbed
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in the time axis using a dense image warp. Then, time and fre-
quency masking are applied, corresponding to a vertical and a
horizontal band of the spectrogram being randomly replaced with
the mean value of the spectrogram.

In the end, our dataset output at each step consists of six ele-
ments: three modalities from each of the two clips sampled from
each video. The RGB and flow each are tensors of dimensions
batch size× 30× 3× 128× 128, and the audio batch size× 1×
128× 128. This scheme helps maximize the amount of informa-
tion provided to the model from each video clip.

Network Architectures
The model is set up in PyTorch, making use of the

torch.distributed module to train data across multiple GPUs. For
the RGB and Flow networks, we use the S3D network architec-
ture [21] as the backbone. This was chosen because S3D is noted
to be specifically well-suited to both RGB and Optical Flow in-
puts; likely because of this versatility, CoCLR [2] gets its best
results using S3D. For the audio network, we use Resnet-18 [22],
because it remains a simple, fast, and effective network architec-
ture for image-based tasks. Ultimately, the choice of backbone is
not the focus of this paper, since contrastive learning algorithms
are agnostic of the backbone used. Both the 3D and 2D backbones
can be easily swapped out as more effective network architectures
emerge.

Training Implementation
We first pre-train three single-modality for 200 epochs un-

supervised models using InfoNCE [1]: one on RGB data, one on
audio data, and one on optical flow data. In order to evaluate the
effectiveness of our multimodal training scheme, we then train a
contrastive learning model using all three of these modalities. We
train this model for two cycles of 3 stages each, with each stage
being 200 epochs - every modality encoder was trained using the
other encoders as the oracle for a total of 400 epochs. We set
k = 5; that is, the oracle selects the top 5 most similar samples
from its queue of past outputs.

This model was trained using an Azure compute instance
with a Tesla V100 GPU, 110GB of RAM, an Intel Xeon E5-2690
CPU and a 1TB disk. The limiting factor in this was disk usage,
as the data preparation process constantly ran into the 1TB limit.
For our three-modality model, one training iteration took roughly
3 days, each 3-iteration stage took around 9 days, and the full two
stages took around 3 weeks to train.

Results
We evaluate our unsupervised training method by testing our

trained model on two supervised tasks. The first is action clas-
sification, in which our model is further trained on the UCF101
action classification dataset [23], and then evaluated against the
UCF101 test set. The second is clip retrieval, in which the model
retrieves the top N clips with the most similar encoder output to
a given test clip; we evaluate whether any of the retrieved clips
share the same class as the test clip. Though all three modalities
are used in the training process, the effectiveness of our approach
is evaluated using only the encoder dedicated to RGB. Through
our cooperative learning method, our RGB encoder is able to in-
fer information about audio and optical flow despite only being
supplied RGB data during supervised evaluation.

Evaluation on Action Classification
We evaluate our model in the same way as past work on

this topic [2] [6]: we fine-tune and evaluate our RGB encoder on
the supervised action classification task UCF101 [23]. UCF101
consists of around 13,000 clips labelled in 101 different action
classes, and is mostly a visual-only dataset; the lack of consistent
audio present in most of its clips is the main reason we chose to
perform our unsupervised training on Kinetics.

We train our supervised classification models in two ways:

1. Full training: no weights are frozen, and our encoder is
trained end-to-end.

2. Linear probe: The entire encoder’s weights are frozen ex-
cept for a final fully connected layer.

In both evaluations, we compare against approaches trained
on Kinetics 400 for a more fair comparison with our model, since
training using larger datasets will naturally result in improved
classification accuracy. For instance, Elo [14], which is trained
with YouTube8M, reaches a 93.8% accuracy, outperforming our
model by 4.4%.

Table 1: UCF101 test accuracy after unsupervised training on Kinetics 400
and finetuning on UCF101

Modality

Model Date RGB Flow Audio Top-1 Test Acc

InfoNCE [1] 2018 ✓ 79.5

CBT [24] 2019 ✓ 79.5

SpeedNet [25] 2020 ✓ 81.1

XDC [15] 2020 ✓ ✓ 84.2

CMA [6] 2021 ✓ ✓ 87.5

CoCLR [2] 2021 ✓ ✓ 87.9

TCLR [26] 2022 ✓ ✓ 88.2

STS [27] 2021 ✓ 89.0

GDT [28] 2021 ✓ ✓ 89.3

RSPNet [7] 2021 ✓ 93.7

Ours 2022 ✓ ✓ ✓ 89.4

In the first evaluation, our unsupervised algorithm on Ki-
netics serves to initialize weights for our supervised training on
UCF101. Since the entire model can be trained end-to-end us-
ing the supervised data, this provides the highest classification
accuracy. Our model is compared against the state-of-the-art in
Table 1, where we see that in full training, our model outperforms
InfoNCE [1], which uses only RGB, by 9.9%, and CoCLR [2],
which uses RGB and optical flow, by 1.5%. Our model also out-
performs the models using only RGB and audio, XDC [15] and
CMA [6], by 5.2% and 1.9% respectively, although neither of
them use the alternating-oracle method used by our model and
CoCLR.

Table 2: UCF101 test accuracy after unsupervised training on Kinetics 400
and linear probe on UCF101

Modality

Model Date RGB Flow Audio Top-1 Test Acc

CBT [24] 2019 ✓ 54.0

MemDPC [29] 2020 ✓ 54.1

CoCLR [2] 2021 ✓ ✓ 74.5

Ours 2022 ✓ ✓ ✓ 76.5
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In Table 2, using the linear probe, our RGB encoder is truly
acting as an encoder: our frozen RGB encoder encodes UCF101
clips as feature vectors and these feature vectors are used to train
a single linear layer. This method of evaluation is less common,
but provides better insight on the state of the unsupervised model
before the introduction of labelled data. In Table 2, using the lin-
ear probe, our model outperforms CoCLR [2] by 2%. Thus, our
improvement over CoCLR’s results shows that audio information
can be incorporated successfully into a contrastive learning frame-
work.

Evaluation on Retrieval
Quantitative Retrieval Results

We also evaluate unsupervised representation learners on the
task of video retrieval. In this task, no supervised fine-tuning is
done; the model being tested is trained purely using unsupervised
data. Similar to classification, only the RGB encoder is used;
the other encoders only serve to train the RGB encoder. First,
for every sample in both the train and test splits of UCF101, we
use the RGB encoder being evaluated to extract a feature vector
representation of that sample. Then, for each feature vector from
the test set, we look for the k vectors from the training set with the
highest cosine similarity. We evaluate this retrieval by computing
the recall R@k: the fraction of clips in the test set for which at
least one of the k clips retrieved by our model is of the same action
class as the test clip.

Table 3: UCF101 nearest-neighbors retrieval recall after unsupervised
training on Kinetics-400

Modality

Model Date RGB Flow Audio R@1 R@5 R@10

SpeedNet [25] 2020 ✓ 13.0 28.1 37.5

MemDPC [29] 2020 ✓ 20.2 40.4 52.4

STS [27] 2021 ✓ 38.3 59.9 68.9

CoCLR [2] 2021 ✓ ✓ 44.5 60.6 68.4

Ours 2022 ✓ ✓ ✓ 45.9 64.1 70.8

In Table 3, we find that our model outperforms the state-of-
the-art models. As expected, incorporating audio into our con-
trastive learning framework shows a 1.4% improvement in R@1
retrieval, a 3.5% improvement in R@5 retrieval, and a 2.4% im-
provement in R@10 retrieval performance over CoCLR[2].

Qualitative Retrieval Results
In Figure 4, we show two examples of how our RGB aug-

mentations result in successful retrieval on UCF101 video clips.
Though the clips in the both rows are oriented differently and are
different colors, the random flips and color jitter applied as data
augmentations enables the RGB encoder to recognize the videos
as the same activity. In Figure 5, we show two examples of how
incorporating optical flow affects retrieval results. In the top row,
we can see that the model has learned to identify biking and horse
riding as similar activities due to the similar motion in the videos,
despite the differing backgrounds. Likewise, the clips in the bot-
tom row all share a swinging motion despite the variety of activ-
ities. Both our model and CoCLR [2] yield similar results, since
both models use RGB and optical flow in their approaches.

In Figure 6, we show two examples of how incorporating au-
dio information improves retrieval results, which is the main con-

tribution of this report. In the top row, videos containing music are
linked with one another, even if the scene and the motions within
them are completely different. Music is easily identifiable on a
spectrogram: notes and their harmonics show up as sharp, reg-
ularly spaced horizontal lines. In the second row, clips of drums
and punches are retrieved together because of their similar percus-
sive sounds. Since, unlike our model, CoCLR is never supplied
audio data, it has not learned to associate clips containing music
or percussive sounds with one another, and so it returns classes
that are unrelated to the test clip.

Figure 4. Qualitative effects of incorporating RGB information on UCF101

retrieval results. Our triple modality model is compared against CoCLR [2],

both pre-trained on Kinetics-400.

Figure 5. Qualitative effects of incorporating optical flow information on

UCF101 retrieval results. Our triple modality model is compared against Co-

CLR [2], both pre-trained on Kinetics-400.

Figure 6. Qualitative effects of incorporating audio information on UCF101

retrieval results. Our triple modality model is compared against CoCLR [2],

both pre-trained on Kinetics-400.
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Conclusions and Future Work
Our approach extends the existing idea of cooperative con-

trastive video learning from unlabelled video data [2] to incor-
porate three modalities. We train a model using RGB, optical
flow, and audio, and evaluate its performance against existing con-
trastive learning frameworks with fewer modalities to determine
whether incorporating additional modalities using our scheme is
effective. We train these models on Kinetics-400 and evaluate
them on UCF101, using the tasks of action classification and
nearest-neighbors retrieval. We found that in both tasks, our
triple-modality model outperformed the contrastive learning mod-
els with fewer modalities and compared favorably to the state-of-
the-art. Further improvements could be found in simply running
our training scheme for more cycles, or by trying out other re-
cent backbone architectures such as SlowFast [30]. Our training
scheme can be easily extended to other modalities such as text:
one could add a fourth encoder with an NLP backbone if subtitles
or narration were available for video clips.
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