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Abstract
A novel iterative linear classification algorithm is developed

from a maximum likelihood (ML) linear classifier. The main con-
tribution of this paper is the discovery that a well-known maxi-
mum likelihood linear classifier with regularization is the solution
to a contraction mapping for an acceptable range of values of the
regularization parameter. Hence, a novel iterative scheme is pro-
posed that converges to a fixed point, the globally optimum solu-
tion. To the best of our knowledge, this formulation has not been
discovered before. Furthermore, the proposed iterative solution
converges to a fixed point at a rate faster than the traditional gra-
dient descent technique. The performance of the proposed itera-
tive solution is compared to conventional gradient descent meth-
ods on linear and non-linearly separable data in terms of both
convergence speed and overall classification performance.

Index terms - Maximum Likelihood Classifier, Contraction
Mapping

1. Introduction
In data analytics and machine learning, it is often desirable

to classify data into their corresponding classes using a particu-
lar cost function. Examples of popular classifiers include sup-
port vector machines (SVMs) [1], conditional maximum entropy
[2], logistical regression [3], maximum likelihood (ML) classi-
fier [4], naive Bayes classifier [5], and artificial neural networks
[6]. These classifiers are helpful in a wide range of applications,
including spam filtering, medical diagnosis, fraud detection, sen-
timent analysis, image classification, etc., to name a few.

In maximum likelihood linear classification, the goal is to
find the values of the model parameters (such as the weights and
biases in a linear classifier) that maximize the likelihood of the
model given the training data. This is done by minimizing the
negative log likelihood of the model, which is equivalent to max-
imizing the likelihood itself.

In the case of a linear classifier, the model assigns a label
(e.g., “positive” or “negative”) to an input sample based on the
value of a linear combination of the input features and the model
parameters. For example, in the case of binary classification, the
model might assign a label of +1 (class 1) to a sample if the linear
combination of the input features and the model parameters is
greater than some threshold and a label of−1 (class 2), otherwise.

To train a maximum likelihood linear classifier, we need to
specify a loss function that measures how well the model is able to
predict the labels of the training data given the model parameters.
One common loss function for this purpose is the logarithmic loss.
This loss function is minimized during training in order to find

the values of the model parameters that maximize the likelihood
of the model given the training data.

This optimization problem can be solved using a variety of
optimization algorithms, such as gradient descent [7] or a quasi-
newton method [8]. However, these optimization algorithms in-
volve finding the gradient, which is a computationally expen-
sive and slowly converging solution which has the risk of get-
ting trapped in a local extremum instead of converging to the cost
function’s globally optimum solution.

This paper proves that a maximum likelihood linear classi-
fier with regularization [4] can be formulated as the solution to a
contraction mapping operator. Hence an iterative algorithm can
be constructed to converge to its fixed point where convergence to
the globally optimum solution is guaranteed, and the convergence
speed is faster than the traditional gradient-based techniques. The
main contributions of this research can be summarized as follows:

It is mathematically proven that the ML classifier in [4]
is the solution to a contraction mapping, and a novel iterative
approach is presented to find its fixed point. The performance
and convergence speed improvement of the proposed solution is
shown via simulations on synthetic data and digit images.

2. Proposed Classification Method
Consider a two-class set of labeled data {xxxi,yi}N

i=1, where
xxxi ∈ Rd is the ith d-dimensional input vector and the scalar yi ∈
{1,−1} denotes its corresponding label. This data may or may
not be linearly separable. Consider a linear transformation on the
input given by,

zi = θθθ
T xxxi +b. (1)

Here θθθ is the vector of model parameters representing a nor-
mal vector to the separating hyperplane, and b is the bias. The data
is assigned to class 1 if zi ≥ 0, and to class 2, otherwise. The lin-
ear classifier aims to determine the model parameter vector θθθ and
bias b to maximize the probability of accurate predictions. In [4],
this is accomplished by minimizing the negative log likelihood
loss function. This loss function is formulated as the negative log
of sigmoid operation on (y zi) and forms the log likelihood loss
function as,

L(YYY |XXX ,θθθ ,b) =
N

∑
i=1
− ln

(
1

1+ exp(−yi(θθθ
T xxxi +b)

)

=
N

∑
i=1

ln(1+ exp(−yi(θθθ
T xxxi +b))). (2)
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The ML solution is found in [4] by minimizing a loss func-
tion that weighs the log likelihood function against a regulariza-
tion term:

J(YYY |XXX ,θθθ ,b) = L(YYY |XXX ,θθθ ,b)+λ ||θθθ ||2

=
N

∑
i=1

ln(1+ exp(−yi(θθθ
T xxxi +b)))+λ ||θθθ ||2. (3)

Where λ is the regularization parameter, ||θθθ ||2 is the squared
L2 norm of the model parameters, and the summation is over all
the training data samples. The regularization parameter is added
to the objective function to help prevent overfitting. By adding the
regularization term, the model is less likely to fit to noise in the
training data and thus is more likely to generalize well to unseen
data. The goal is to find the values of the model parameters θθθ that
minimize the loss function in Equation 3 given the training data.
The optimal solution for the model parameters θθθ is then given by,

θθθ
∗ = argmin

θθθ

J(YYY |XXX ,θθθ ,b),

θθθ
∗ = argmin

θθθ

[ N

∑
i=1

ln(1+ exp(−yi(θθθ
T xxxi +b)))+λ ||θθθ ||2

]
.

The gradients of J with respect to θθθ and b are derived as,

∂J
∂θθθ

= 2λθθθ −
N

∑
i=1

yixxxi exp(−yi(θθθ
T xxxi +b))

1+ exp(−yi(θθθ
T xxxi +b))

, (4)

∂J
∂b

=−
N

∑
i=1

yi exp(−yi(θθθ
T xxxi +b))

1+ exp(−yi(θθθ
T xxxi +b))

. (5)

Setting the gradient of J with respect to θθθ given in Equation
4 equal to zero ( ∂J

∂θθθ
= 0) yields the following nonlinear vector

equation for optimal θθθ :

θθθ =
1

2λ

N

∑
i=1

yixxxi exp(−yi(θθθ
T xxxi +b))

1+ exp(−yi(θθθ
T xxxi +b))

= f (θθθ). (6)

The parameter vector θθθ of the hyperplane is found in [4] by
formulating a gradient search technique to minimize the objective
function in Equation 3 that is typically slow and can potentially
get trapped in a local minimum.

A novel contribution of this paper is to prove that the ex-
pression in Equation 6 becomes a contraction mapping for certain
choices of the regularization parameter λ , and hence has a unique
solution that can be found using an iterative algorithm with an
arbitrary initial condition θθθ(0).

From proof in Section 3, f (θθθ) is a contraction mapping if
λ >∑

N
i=1 ||xxxi||2/8. The iterative algorithm to solve for θθθ

∗ is given
by,

θθθ(n+1) =
1

2λ

N

∑
i=1

yixxxi exp(−yi(θθθ
T (n)xxxi +b))

1+ exp(−yi(θθθ
T (n)xxxi +b))

, (7)

b =
1
N

N

∑
i=1

(yi−θθθ
T (n)xxxi). (8)

The parameter b in Equation 8 is updated every K iterations,
where K is typically a small integer in the range of 3 to 5. This is
based on the fact that the solution to the fixed point of the contrac-
tion mapping converges after a small number of iterations. The
pseudo-code for the proposed iterative algorithm is given in Al-
gorithm 1.

Algorithm 1 Proposed Iterative Solution to the Linear Maximum
Likelihood Classifier.
Input: B batch size, NE number of iterations.
Initialize n = 0, K = 3, parameter vector θθθ(0) by a small random
value, λ = ∑

N
i=1 ||xxxi||2/8+ ε.

while n < NE do
Sample a mini-batch data {xxxi}B

i=1 and its corresponding la-
bels {yi}B

i=1 and set k = 0.
while k < K−1 do

θθθ(n)← f (θθθ(n))
k = k + 1

end
θθθ(n+1)← f (θθθ(n))
b = 1

B ∑
B
i=1(yi−θθθ

T (n)xxxi)
n = n + 1

end

3. Contraction Mapping Proof

f (θθθ) is contraction mapping if it satisfies the property
|| f (θθθ 2)− f (θθθ 1)|| ≤ ρ||θθθ 2− θθθ 1|| and 0 < ρ < 1, which means
that the distance between any two points under the function is
strictly less than the distance between the two points themselves.
The value ρ is called the contraction factor. It must be strictly less
than 1 in order for the function to be a contraction mapping.

If f (θθθ) is a contraction mapping, then the iterative solution
θθθ(n+1) = f (θθθ(n)) always converges to the fixed point solution.
Using Equation 6 we can write || f (θθθ 2)− f (θθθ 1)|| as,

|| f (θθθ 2)− f (θθθ 1)||=
1

2λ

∥∥∥∥ N

∑
i=1

yixxxi exp(−yi(θθθ
T
2 xxxi +b))

1+ exp(−yi(θθθ
T
2 xxxi +b))

−
N

∑
i=1

yixxxi exp(−yi(θθθ
T
1 xxxi +b))

1+ exp(−yi(θθθ
T
1 xxxi +b))

∥∥∥∥.

Denoting hi = −yi(θθθ
T
2 xxxi + b) and wi = −yi(θθθ

T
1 xxxi + b), and

noting that |yi|= 1, the above can be written as,

|| f (θθθ 2)− f (θθθ 1)||

=
1

2λ

∥∥∥∥ N

∑
i=1

yixxxi exp(hi)

1+ exp(hi)
−

N

∑
i=1

yixxxi exp(wi)

1+ exp(wi)

∥∥∥∥
≤ 1

2λ

N

∑
i=1

∥∥∥∥yixxxi exp(hi)

1+ exp(hi)
− yixxxi exp(wi)

1+ exp(wi)

∥∥∥∥
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|| f (θθθ 2)− f (θθθ 1)|| ≤
1

2λ

N

∑
i=1

∥∥∥∥ yixxxi(exp(hi)− exp(wi))

(1+ exp(hi))(1+ exp(wi))

∥∥∥∥
=

1
2λ

N

∑
i=1
|yi| ||xxxi||

∣∣∣∣ exp(hi)− exp(wi)

(1+ exp(hi))(1+ exp(wi))

∣∣∣∣
=

1
2λ

N

∑
i=1
||xxxi|| |hi−wi|

∣∣∣∣ ehi − ewi

(hi−wi)(1+ ehi)(1+ ewi)

∣∣∣∣
=

1
2λ

N

∑
i=1
||xxxi||2 ||θθθ 2−θθθ 1||

∣∣∣∣ ehi − ewi

(hi−wi)(1+ ehi)(1+ ewi)

∣∣∣∣.

(9)

Because,

|hi−wi|= |− yi(θθθ
T
2 xxxi +b)− (−yi(θθθ

T
1 xxxi +b))|

= |yi(−θθθ
T
2 xxxi−b+θθθ

T
1 xxxi +b)|

= |yi| ||xxxi|| ||θθθ 2−θθθ 1||.
(10)

If g(u,v) =
∣∣∣∣ eu−ev

(u−v)(1+eu)(1+ev)

∣∣∣∣, then it can be shown that 0≤

g(u,v)≤ 1/4 as follows:
Since the function g is symmetric across u and v, that is,

g(u,v) = g(v,u), the maximum occurs at u = v = u∗.

g(u,u) = lim
v→u

∣∣∣∣eu− ev

u− v

∣∣∣∣× ∣∣∣∣ 1
(1− eu)(1− ev)

∣∣∣∣.
Apply l’Hôpital’s rule,

g(u,u) =
∣∣∣∣ ∂ (eu−ev)

∂v
∂ (u−v)

∂v

∣∣∣∣× ∣∣∣∣ 1
(1− eu)2

∣∣∣∣
=

∣∣∣∣0− ev

0−1

∣∣∣∣× ∣∣∣∣ 1
(1+ eu)2

∣∣∣∣
g(u) =

∣∣∣∣ eu

(1+ eu)2

∣∣∣∣.
Now we can find the maximum of g(u) by solving for u us-

ing dg(u)
du = 0. The maximum is found at u = 0 and g(0) = 1/4.

Therefore, 0≤ g(u,v)≤ 1/4. Substituting g(u,v) = 1/4 in Equa-
tion 9 we get,

|| f (θθθ 2)− f (θθθ 1)|| ≤
1

8λ

N

∑
i=1
||xxxi||2||θθθ 2−θθθ 1||. (11)

Here the contraction factor ρ = 1
8λ

∑
N
i=1 ||xxxi||2 and f (θθθ) is a

contraction mapping if ρ < 1.
Therefore, 1

8λ
∑

N
i=1 ||xxxi||2 < 1, or, alternatively,

λ > ∑
N
i=1 ||xxxi||2/8.

4. Results
Classification results: Figure 1a shows the results of using

the ML linear classifier formulated in [4] but obtained from our
proposed contraction mapping fixed point solution. The synthetic
two-class data has been generated by taking 1,000 data points for
each class from a 2-D joint Gaussian distribution with a correla-
tion coefficient of 0.5. Figure 1b shows the classification results
on non-linearly separable data, which illustrates the robustness of
the proposed iterative solution.

(a) Classification results for linearly separable data.

(b) Classification results on non-linearly separable data.

Figure 1. Classification results.

Similar to other binary classifiers, the proposed classifier
can be extended to multiclass classification using approaches
such as the one-vs-all method.

Contraction mapping solution vs. gradient descent: The
proposed iterative solution’s merit is that it converges significantly
faster than the steepest descent methods. The Adam optimizer [9]
is the most popular method used in the machine learning literature
and is a relevant comparison choice. Both these methods are used
to classify images of digits zero and one from the MINIST [10]
data set. MNIST dataset consists of ten classes of handwritten
digits from 0 to 9 with a training set of 60,000 images, a test set
of 10,000, and an image size of 28×28. Now the dimension of the
data is 28× 28 = 784, which is significantly larger compared to
the previous two-dimensional Gaussian example. Figure 2 shows
sample images of ones and zeros.
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Figure 2. Sample images of zeros and ones from MNIST dataset.

The convergence speed of the iterative solution versus the
gradient descent method on the binary image classification of ze-
ros and ones is shown in Figure 3. The figure shows that the pro-
posed iterative algorithm converges significantly faster than the
Adam optimizer for a wide range of learning rates η .

Figure 3. Convergence speed of the contraction mapping solution versus

gradient descent.

5. Conclusion
This research presents a new method for training a maxi-

mum likelihood (ML) linear classifier with regularization. It is
first shown that the ML classifier can be cast in the framework of
a contraction mapping, and a novel iterative technique is proposed
to find its fixed point. This approach is shown to have faster con-
vergence to the globally optimal solution compared to traditional
gradient-based techniques. The main contribution of this research
is the discovery that the ML linear classifier is the solution to a
contraction mapping, which has not been previously reported.
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