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Abstract
Coherent anti-Stokes Raman scattering (CARS) microspec-

troscopy is a powerful tool for label-free cell imaging thanks to
its ability to acquire a rich amount of information. An important
family of operations applied to such data is multivariate curve
resolution (MCR). It aims to find main components of a dataset
and compute their spectra and concentrations in each pixel. Re-
cently, autoencoders began to be studied to accomplish MCR with
dense and convolutional models. However, many questions, like
the results variability or the reconstruction metric, remain open
and applications are limited to hyperspectral imaging. In this
article, we present a nonlinear convolutional encoder combined
with a linear decoder to apply MCR to CARS microspectroscopy.
We conclude with a study of the results variability induced by the
encoder initialization.

INTRODUCTION AND RELATED WORKS
Label-free cell imaging is the acquisition of cell images

without the use of any staining, using for example fluorescent-
based reagents, to locate the cell or its components of inter-
est. One technique to acheive these acquisitions is coherent
anti-Stokes Raman scattering (CARS), a vibrational spectro-
scopic method [1] based on a third-order non-linear optical phe-
nomenum. Thanks to it, one can use specific frequencies to con-
struct an image or acquire complete spectra [2, 3] allowing spec-
tral analysis in addition to image analysis. A CARS signal in-
tensity is composed of a resonant part and a non-resonant one.
Thus, spectra are commonly processed by methods aiming to re-
move the non-resonant information but this can lead to introduce
numerical errors. For this reason, we adress the problem of raw
CARS spectra analysis.

A frequent interrogation when images composed of spectra
are acquired is what are the main components in the image and
what are their spectral signatures. This problem has been adressed
in both chemometrics and hyperspectral imaging (HSI) communi-
ties. In chemometrics, this operation is called multivariate curve
resolution (MCR) while in HSI, it is known as unmixing. As our
application is CARS microspectroscopy, we use the chemomet-
rics terminology in the remainder of this article. MCR aims to
find, from a data matrix D ∈ RM×N with M acquisitions and N
spectral channels, the K main components by computing their
spectra S ∈ RN×K and concentrations C ∈ RM×K . The problem
is formulated in a linear form as follows:

D =CST +E, (1)

with E ∈RM×N the error matrix that contains noise and irrevelant
data. MCR can be used for the analysis of microspectroscopy by
unfolding the spatial dimension.

As Eq. 1 has many solutions, it is usual to apply constraints
to C and S to fit to physical properties. The two most common
constraints are the non-negativity and the sum-to-one ones. The
first one ensures to have only positive values while the last one
ensures all elements along a dimension to sum to one.

In the last years, deep learning and more particulary autoen-
coders (AE) became an active research field to accomplish unmix-
ing for HSI. The flexibility of neural networks in the architecture
allows a wide range of models adapted to specific of data. Hence,
autoencoders cascade [4] and noise injection [5] have been used
for denoising and stacked autoencoders for outliers detection [6].
Also, convolutional autoencoders [7] and multilayer decoder [8]
have been used to reformulate the linear unmixing problem in a
nonlinear formulation. Although several architectures have been
implemented, the problem is still open. Especially since, at our
knowledge, AE abilities for unmixing have never been tested in
microspectroscopy.

In addition to the model structure, the choice of the loss func-
tion is a major matter as a wrong loss function will lead to in-
correct components spectra. Another element to consider is the
variability of the results. Indeed, as AE can have a complex struc-
ture, it is usual to initialize weights with random values. However,
this can lead the training to fall in different local minima between
different trainings. Moreover, this effect can be amplified by the
non-resonant part of raw spectra. Therefore, studying the results
variability is essential.

In this article, we introduce the use of AE for MCR in
the context of CARS microspectroscopy, applied to raw CARS
spectra of a cell, and we study the components spectra and
concentrations variabilities along multiple trainings. First, we
present the implemeted model, the training process and the hy-
perparametrization. Second, we introduce the dataset that will be
used to evaluate our models. Third, we show the results, compare
to the state of the art method and finish with studying the results
variability.

OUR METHOD
Spectral-spatial autoencoder

Fig. 1 shows our MCR process workflow based on a spectral-
spatial autoencoder (MCR-SSAE). The first block in Fig. 1 is
the encoder made of several convolutional layers with nonlinear
activation functions. This structure allows to compute the latent
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Figure 1. Our MCR-SSAE process.

space, i.e. the concentrations C with nonlinear operations and
to use the spatial information in the dataset by applying spatial
convolutions to every spectral channel. The second block is the
decoder, a single dense layer without activation function. Hence,
the decoder weights correspond to the spectra matrix S as stated
in Eq. 1. We apply batch normalization (BN) between each con-
volution and activation function in the encoding block to smooth
loss function and avoid some local minima [9], behavior that have
been noticed on our data when we does not apply batch normal-
ization. Batch normalization parameters are computed with data
used for the training.

We present the implemented MCR-SSAE in Tab. 1. The
encoding block is made of three layers with different kernel sizes
and use replication padding. The two first layers use ReLU as
activation functions and the last layer uses Softmax to implement
sum-to-one and non-negativity constraints. Indeed, it is usual to
apply constraints on C and S matrices to ensure results consistent
with their physical or numerical properties. Softmax ensures to
have positive concentrations that sums to one to obtain a ratio
of each component for every pixel. As both input spectra and
concentrations are positive and the decoder is only a dense layer,
S will also be positive.

Use spatial information requires a sufficient amount of pix-
els to learn spatial features but CARS acquisition are often small
images. To solve this issue and increase the dataset size, we com-
pute overlaping small patches that will be used for the training
while the complete dataset is used for the inference.

Block Layer Outputs BN Activation

Encoder
Conv5@5 16 ✓ ReLU
Conv3@3 8 ✓ ReLU
Conv1@1 5 ✓ Softmax

Decoder Dense N × ×
Summary of the implemented MCR-SSAE. N is the number of
spectral channels in the dataset.

(a) (b) (c)

(d) (e)

Figure 2. Spectra obtained by the MCR-ALS. Red bands correspond to

lipids, green ones to proteins and blue to water.

Hyperparametrization
We train our model with the spectral angle distance (SAD):

SAD(d, d̂) = acos

(
d · d̂

∥d∥2∥d̂∥2

)
. (2)

SAD computes similarity between spectra by computing the angle
between them. We choose this function for its ability to measure
the difference between the shapes of two spectra and as it already
shown its efficiency in the HSI context [5]. We compute SAD
between each output spectrum and its corresponding input and
average it along both patches with M pixels and batches of size L
:

argmin
D̂

L

∑
i=1

M

∑
j=1

SAD(di, j, d̂i, j)

L×M
. (3)

To minimize Eq. 3, we use the Adam algorithm with the initial
learning rate α = 1× 10−3 and train for 50 epochs. These pa-
rameters have been chosen after several tests of different learning
rates and number of epochs. As SAD is not magnitude sensitive,
input spectra are normalized to sum to one to keep spectra with
the same order of magnitude.

Decoder initialization
Finding a first guess for the component spectra is a com-

plex operation. This first estimation can be made using spectra
in the dataset that are the most subject to be composed of only
one component [8, 10, 11]. In chemometrics, the simple-to-use
self-modeling analysis (SIMPLISMA) method [12] is commonly
used to initialize S [10]. It defines the “purity” pi of a spectrum as
pi = µi/σi. The first component spectrum is the spectrum with the
highest pi. The determinant of the correlation around the origin
matrix is then used to correct the purity and find next spectra.

RESULTS
To study the ability of autoencoders to process MCR on com-

plex dataset, we apply MCR-SSAE on coherent anti-Stokes Ra-
man scattering (CARS) data obtained with a human embryonic
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Figure 3. Components spectra obtained by the MCR-SSAE after 50 epochs

and 50 trainings. Best epoch is kept for each training. The curve is the

mean and the area around the curve is the standard deviation. Red bands

correspond to lipids, green ones to proteins and blue to water.

CARS peaks (cm−1) Assignment Compound
2844 CH2 s. stretch. Lipids
2920 CH3 s. stretch. Proteins
3007 =C-H stretch. Lipids
3056 aroma. C-H stretch. Proteins
3165 O-H s. stretch. Water

Known vibrational bands and their associated molecular com-
pound. s. stands for symmetrical, stretch. for stretching and
aroma. for aromatic.

kidney 293 cell (HEK293). Results are then compared to the state
of the art method in chemometrics: multivariate curve analysis -
alternating least squares (MCR-ALS) [10] that uses least squares
regression to compute C and S. Both methods use SIMPLISMA
to initialize S matrix.

To study the variability of the results, we repeat 50 train-
ings. As we cannot be sure about the order of the found compo-
nents, SAD is used to categorize found components spectra be-
tween trainings before computing any statistic.

Our implementation (available at https://gitlab.xlim.fr/
boildieu1/mcr-ssae) is made in Python using PyTorch [13], MCR-
ALS is implemented using pyMCR package [14].

Dataset
As explained above, the dataset is the cartography of a fixed

HEK-293 cell in interphase [3] with 85×80 pixels and 916 spec-
tral samples from 2500 to 3200 cm−1 acquired with a multiplex
CARS (M-CARS) setup [15]. M-CARS being a method to ac-
quire a complete spectrum in a short time. The lateral and axial
resolutions are ∼300 nm and 2 µm and the spectral resolution is
0.8 cm−1.

In the range 2500-3200 cm−1, several vibrational bands are
known in Raman spectroscopy and can be associated to molec-
ular compounds [16] and, taking into account the spectral shift
between Raman and CARS spectroscopy [15], can be used for
CARS spectroscopy. These vibrational bands are listed in Tab. 2.

We use patches of size 30× 30 pixels with a pixel overlap-
ping of 15 pixels on both rows and columns. This size of patch
allows to keep spatial details and the overlapping increase the

(a) (b) (c)

(d) (e) (f)

Figure 4. Concentrations obtained by the MCR-ALS. Figure (f) corresponds

to the transmitted light image of the cell and the DAPI fluorescence in blue.

(a) (b) (c)

(d) (e) (f)

Figure 5. Average concentrations obtained by the MCR-SSAE after 50

epochs and 50 trainings. Best epoch is kept for each training. Figure (f) cor-

responds to the transmitted light image of the cell and the DAPI fluorescence

in blue.

amount of patches from 4 to 16. We chose a minibatch approach
with batches of size 3. According to our tests, the batch size is
not a sensitive parameter as long as it remains low compared to
the dataset size.

To select the number of components K, a pre-study based on
the application of the MCR-ALS has been done. K = 5 was found
to be appropriate.

Extracted Spectra
Fig. 2 and 3 show the components spectra found by MCR-

ALS and MCR-SSAE respectively. An essential information to
keep in mind when we analyze CARS spectra is that the vibra-
tional information is not directly the peak but the slope of the
peak, so the focus of the analysis has to be on it.

The first remark about the results is the presence of a base-
line. As it is present in the input spectra and no preprocessing step
is applied, it remains on the components. If we compare MCR-
SSAE results to MCR-ALS ones, spectra (a) and (c) from Fig. 3
can be associated to spectrum (a) from Fig. 2 and spectrum (b)
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to (d). Spectra (d) and (e) extracted by MCR-SSAE correspond
to spectrum (a) from MCR-ALS. Spectrum (c) in Fig. 2 does not
have its equivalent in Fig. 3. Spectra (a), (b) and (c) share vi-
brational information at 3007 cm−1 and 2844 cm−1 highlighting
lipids. Spectrum (b) differs from the other two in having no slope
at 2920 cm−1 and spectrum (c) has a much weaker signal than
spectra (a) and (b) at 3008 cm−1. Spectra (d) and (e) highlight
informations at 3056 cm−1 and have far more signifiant slopes at
2920 and 2844 cm−1 than spectra (a), (b) and (c).

Regarding the components spectra variability, we can see
that the standard deviation is high and relatively constant along
spectra. This high variation indicates that spectra highly differ
along trainings.

Concentrations
In Fig. 5, we show the average concentrations obtained with

the MCR-SSAE. Correspondences with the MCR-ALS results
shown in Fig. 4 are not as clear as those for spectra. MCR-
SSAE results are blurrier than MCR-ALS ones. As for spectra,
components (a), (b) and (c) share similarities while components
(d) and (e) share others. We can see components (a), (b) and (c)
show th extracellular environment but gradually include elements
inside the cell until component (c) that is stronger inside the cell
but does not include elements inside the nucleus. Components (d)
and (e) show the cell content but component (d) includes the inter-
face while component (e) is stronger in the nucleus. An important
element to note is that component (d) shows slightly parts of the
cytoplasm that diffuse in the environment. This information can-
not be seen in the MCR-ALS results and shows the potential of
convolutional encoders to extract new informations from CARS
images.

Regarding the variability, MCR-SSAE has a standard devia-
tion that can reach 0.28, i.e. 28% of the maximum intensity. De-
pending of the components, this variability can be seen in the en-
vironment or the nucleus. These results indicate that found com-
ponents can be more specific to a region in many trainings. This
problem of variability can be attributed to 2 problems: a lack of
constraint on the AE weights and a lack of spatial information to
learn suitable filters.

CONCLUSION
To summarize our observations, AE are a promising tool to

apply MCR on CARS spectra, allowing to extract revelant in-
formation. However, a study of results variability exhibits their
present limit to deal with complex data as multiple trainings often
fall into different results.
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