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Abstract 
X-Ray phase contrast imaging (XPCI) augments absorption 

radiography with additional information related to the refractive 
and scattering properties of a sample. Grating-based XPCI allows 
broadband laboratory x-ray sources to be used, increasing the 
technique’s accessibility. However, grating-based techniques 
require repeatedly moving a grating and capturing an image at each 
location. Additionally, the gratings themselves are absorptive, 
reducing x-ray flux. As a result, data acquisition times and radiation 
dosages present a hurdle to practical application of XPCI 
tomography. 

We present a plug-and-play (PnP) reconstruction method for 
XPCI dark field tomographic reconstruction with sparse views. 
Dark field XPCI radiographs contain information about a sample’s 
microstructure and scatter. The dark field reveals subpixel sample 
properties, including crystalline structure and material interfaces. 
This makes dark field images differently distributed from traditional 
absorption radiographs and natural imagery. PnP methods give 
greater control over reconstruction regularization compared to 
traditional iterative reconstruction techniques, which is especially 
useful given the dark field’s unique distribution. PnP allows us to 
collect dark field tomographic datasets with fewer projections, 
increasing XPCI’s practicality by reducing the amount of data 
needed for 3D reconstruction. 

Introduction 
X-Ray Phase Contrast Imaging (XPCI) in combination with 

computed tomography (CT) allows 3D reconstruction of an object’s 
absorptive, refractive and scattering properties. This additional 
information beyond traditional absorption x-ray CT aids in material 
identification by improving contrast in low density materials, 
highlighting material boundaries and providing insight into material 
microstructure. XPCI utilizing gratings in a Talbot-Lau 
interferometer allows this technique to be used with a broadband, 
large focal spot lab-based x-ray tube rather than requiring a highly 
coherent source such as a costly and scarce synchrotron. 

However, while the use of gratings makes XPCI more 
accessible via reduced source coherence requirements, it can 
significantly increase acquisition time of a radiographic or 
tomographic dataset. This is because gratings-based XPCI 
radiography requires stepping or translating one of the gratings and 
acquiring an image at each of those grating positions. It’s common 
for a single XPCI radiograph to require a minimum of four or 
potentially more than 20 images taken with different grating 
positions. Collecting full CT datasets with many views can take 
hours or days. 

Sparse view reconstruction could reduce this data requirement; 
however, most techniques depend upon specifying some 
regularizing assumptions about the distribution of reconstructed 
images. Under a Bayesian interpretation of this problem, those 
assumptions correspond to a prior model. As seen in Figure 1, the 
distribution of the scattering or dark field can be very different than 
traditional radiographs or natural imagery. Figure 1 appears almost 

edge detected, which is a stressing case for image assumption 
models like total variation. Sparse view dark field tomographic 
reconstruction therefore will benefit from incorporating an 
advanced prior model that can suppress reconstruction artifacts 
while retaining true sample signal. 

 
Figure 1: Example dark field image of wax paper cup filled with plastic 
spheres. The sample appears nearly edge detected, which is poor match for 
regularization techniques such as total variation. 

We demonstrate a method for dark field CT with sparse views 
utilizing the plug-and-play prior (PnP) framework. This framework 
enables us to utilize advanced image priors that produce good 
reconstructions even on data that is nearly edge detected. We show 
that this technique outperforms tomographic reconstruction in both 
the unregularized least squares and total variation regularized cases. 

Method 
Our reconstruction method is based upon the PnP framework 

[1, 2]. Briefly, PnP generalizes this optimization objective seen in 
many inverse problems. 

argmin
!

‖𝑦 − 𝐴𝑥‖" + 	𝜆𝑅(𝑥)  (1) 

Here 𝑥 is the desired reconstructed volume, 𝑦 is the measured 
projections at various angles around the sample and 𝐴 is the radon 
transform. The first term in the objective then drives the 
reconstruction toward matching the measured data and the imaging 
model. The second term 𝑅(𝑥) is a regularization function, which 
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under a Bayesian interpretation corresponds to a prior model on the 
distribution of a reconstructed image in a maximum a posteriori 
estimate. Regularization is needed to reduce reconstruction artifacts 
due to any combination of undersampling, noise in the 
measurements, modeling error and more. The parameter 𝜆 controls 
how much the optimization favors matching the data model versus 
the regularization model. 

PnP replaces that optimization objective with the concept of 
finding an equilibrium or fixed point between two or more models. 
The models are represented by some function or agent that pushes a 
given solution toward an assumption, such as data fidelity or 
regularity. Besides this convenient structure, PnP allows advanced 
regularization models in the form of image denoisers to be used. 
From a loose Bayesian perspective, these image denoisers can be 
thought of as containing an implicit prior model. The key to their 
utility is not that they specifically remove noise or imaging artifacts 
but that they remove data inconsistent with their implicit model of 
how images should be distributed. 

For the data model with 𝑥2 representing a current estimate of the 
3D volume, PnP requires solving this optimization problem: 

argmin
!

‖𝑦 − 𝐴𝑥‖" + 	𝜆‖𝑥 −	𝑥2‖" (2) 

We solve this utilizing LSMR [3] from Krylov.jl [4]. For the 
prior models, we show results utilizing total variation and block 
matching 3D (BM3D) [5]. 

Results 
We reconstructed a 3D slice of the volume corresponding to 

the sample in Figure 1 with 450 views and 90 views collected 
uniformly around 360 degrees of the sample. The projections are 
additionally negative log transformed to comply with Beer’s law for 

exponential signal extinction. Figure 2 shows reconstructions with 
450 views. 

Qualitatively, the results are similar because the dataset is well 
sampled. The BM3D regularization has some small reduction of 
noise and ring artifacts. 

Figure 2 shows reconstructions with several techniques with 90 
views. The filtered back projection and unregularized least squares 
reconstructions have significant radial aliasing artifacts and salt and 
pepper noise. Total variation has less noise and artifacts, but the 
regularization blurs the sample, resulting in less contrast. The 
BM3D regularized reconstruction has some artifacts but leaves the 
sample very sharp. 

 

 
Figure 3: Pixel values along the middle row of the 450 and 90 view BM3D 
reconstructions seen across Figure 2 and Figure 4. The 90 view case shows 
good correspondence to the 450 view case.  

Figure 2: Unregularized least squares (left) and BM3D regularized (right) reconstructions with 450 views. Even in this well sampled case, the BM3D regularization 
removes some noise and ring artifacts while leaving the sample signal intact. 

Filtered Back Projection PnP-BM3D 
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Due to the lack of ground truth, quantitative assessment is 
difficult. We treat 450 view BM3D as a pseudo ground truth. Figure 
4 shows the pixel values along the middle row of the 450 and 90 
view BM3D reconstructions. The 90 view case shows overall good 
correspondence to real image features in the 450 reconstruction, 
with some signal loss and reduced ring artifacts. 

 
Figure 5 shows pixel values along the same middle row for the 

unregularized least squares, BM3D and total variation 

reconstructions. Notably, the edges of the cup near pixels 75 and 
375, circled in the figure, are significantly blurred for both least 
squares and total variation reconstructions. This is not the case for 
reconstruction utilizing BM3D, also circled. Comparing Figure 4 
and Figure 5, it is clear that the sharp reconstruction at the cup edges 
is the same in the few and many view cases for BM3D, suggesting 
that the few view case is adding signal while reducing noise. Other 
regions along the row show similar behavior. 

Figure 4: Reconstructions with 90 views. Top left: filtered back projection, top right: unregularized least squares, bottom left BM3D regularized, bottom right total 
variation regularized. The BM3D reguarlized reconstruction shows superior artifact rejection and contrast. 

Filtered Back Projection Least Squares 

PnP-BM3D Total Variation 
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Figure 5: Pixel values along the middle row of the 90 view reconstructions 
utilizing unregularized least squares, BM3D and total variation as seen in 
Figure 4. The least squares and total variation cases show a loss of contrast 
throughout, such as the circled regions corresponding to the edge of the cup. 

Conclusion 
We demonstrate a sparse view dark field tomographic 

reconstruction algorithm based on plug-and-play priors and block 
matching 3D. The resulting algorithm showed improved signal 
reconstruction with greater noise and artifact suppression than 
competing traditional techniques like filtered back projection, 
unregularized least squares, and total variation regularized least 
squares. This is likely due to an increased capacity for BM3D to 
retain edge information even in the presence of noise. Data 
acquisition times present a key obstacle to adoption of XPCI 
tomography. Our method shows potential for reducing acquisition 
times by capturing fewer views while retaining essential elements 
of the reconstructed volume’s quality. 
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