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Abstract
A lightweight learning-based exposure bracketing strategy

is proposed in this paper for high dynamic range (HDR) imaging
with no access to camera RAW. Some low-cost, power-efficient
cameras, such as webcams, video surveillance cameras, sport
cameras, mid-tier cellphone cameras, and navigation cameras
on robots, can only provide access to 8-bit low dynamic range
(LDR) images. Exposure bracketing is a classical approach to
capture HDR scenes by fusing images taken with different expo-
sures into an 8-bit tone-mapped HDR image. A key question is
what the optimal set of exposure settings should be to cover the
scene dynamic range and achieve a desirable tone. The proposed
lightweight neural network predicts the exposure values for a 3-
shot exposure bracketing, given the input irradiance information
from 1) the histograms of an auto-exposure LDR preview image,
and 2) the maximum and minimum levels of the scene irradiance.
Without the processing of the preview image streams, and the cir-
cuitous route of first estimating the scene HDR irradiance and
then tone-mapping to 8-bit images, the proposed method gives
a more practical HDR enhancement for real-time and on-device
applications. Experiments on a number of challenging images
reveal the advantages of our method in comparison with other
state-of-the-art methods qualitatively and quantitatively.

Introduction
HDR imaging is an essential feature for capturing photos of

the real world, given the typical dynamic range of a scene is larger
than 120 dB while the dynamic range of a camera is around 60 dB.
With multiple images taken with different exposure settings, it is
relatively easy to compose HDR in camera RAW domain [1, 2],
where images are describing the scene irradiance without gamma
correction, demosaicing, white balance, etc., but there are many
cameras that have no access to camera RAW, such as mid-tier
cellphone cameras, webcams, sport cameras, surveillance cam-
eras and navigation cameras. Although one can perform radio-
metric calibration to recover camera response curves [3, 4, 5], it
introduces extra errors and processing time. Additionally, RAW
file size is typically 2–6 times larger than JPEG file size, so apply-
ing HDR enhancement with RAW images consumes more power
resources and DRAM transaction bandwidth. It is thus desirable
to directly fuse multiple 8-bit LDR images into one 8-bit tone-
mapped HDR image for real-time and on-device applications.

For exposure bracketing strategies, a key question is what
the optimal set of exposure settings are. Often the optimal set
is scene dependent, and it is a trade-off between dynamic range,
SNR, tone and motion artifacts. In addition to the existing expo-
sure bracketing strategies for generating the noise-optimal HDR
irradiance map in camera RAW domain [3, 6, 7, 8, 9], there are

a few methods that focus on tone-optimal exposure strategy for
direct fusion [10, 11, 12, 13].

In [12,13], the exposure strategy is generated on local statis-
tics of a single auto-exposed (AE) image, where irradiance in-
formation beyond its limited dynamic range is not observed or
estimated, and as a result fail to avoid saturation. In [10], a neural
network (NN) is applied to the exposure bracketing strategy for
the first time, leveraging not only the local statistics but also the
semantic information to solve the saturation problem. However,
this model contains more than 60 million parameters, and needs
to be trained separately for day and night scenes. In this paper,
we propose a lightweight exposure bracketing strategy network,
which can produce images with great details and pleasing tone for
different scenes. The comparison of processing time and perfor-
mance among the state-of-the-art methods is shown in Figure 1.
With the selected exposure bracketing, final 8-bit HDR images are
fused by a widely used fusion method [14]. The performance is
evaluated based on the peak signal-to-noise ratio (PSNR) against
the ground truth images, which are generated by fusing 10 dif-
ferently exposed images for each scene. Such large and tightly
packed bracketing can effectively avoid contrast decrease due to
saturation or color distortion and halo artifact caused by large ex-
posure gaps.

Figure 1: Comparison between state-of-the art methods. The
proposed method achieves the highest PSNR against the ground

truth and costs the minimum processing time (including the
preprocessing of AE images and the prediction of exposure

settings).

Instead of a heavy semantic branch [10], the proposed sys-
tem takes the maximum and minimum scene irradiance along with
the AE image as inputs to select the exposure settings covering
the dynamic range. An image signal processor (ISP) normally
changes the exposure time and measures the irradiance at some
parts of the scene for auto-exposure (AE) and auto-focus (AF), so
it could be capable to produce the minimum and maximum scene
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irradiance without generating preview image streams or HDR his-
tograms, which is time consuming but required in some other ex-
posure strategy methods [6, 7, 8]. With an HDR RAW dataset
simulating the scene irradiance, an image formation model and
the exposure fusion algorithm [14] can be applied to generate the
8-bit HDR images. The model is trained to minimize the sum
of square differences between the ground truth and final images.
Weighed loss is introduced for imbalanced learning with empha-
sis on the tone of portraits and billboards. Experiments show that
the proposed system can be generalized well to different scenes
and takes about 1 ms for computation using a TESLA V100 GPU.

In summary, the main contributions are listed as follows:

• A lightweight network is developed for exposure strategy
driven by the optimization of the tone of the fused results.
The experiment validates that the system can generate fused
images with desirable details and tone in HDR scenes.

• The model has only around 300K parameters and takes
about 1 ms for computation using one TESLA V100 GPU,
which is efficient for deployment in practical applications.

Related Work
Exposure Bracketing Strategy

The selection of exposure bracketing is made to cover and
optimally sample the irradiance of a scene. Some existing meth-
ods are driven by the noise-optimal reconstruction of HDR irra-
diance map [3, 6, 15]. Because of the non-linearity of the cam-
eras, brought by the optical characteristics of particular sensors
and ISP, these methods depend on the access to RAW images or
the estimation of camera response curve [3, 4, 5]. The full irradi-
ance distribution of the scene, can be generated by combining a
sequence of LDR data [2, 6, 8], and then the average SNR or the
worst-case SNR can be minimized [1, 2, 6, 7, 8]. The estimated
scene HDR irradiance then has to be tone mapped [16, 17, 18, 19]
to 8-bit for display.

To avoid this circuitous route of first estimating the scene
HDR irradiance and then tone-mapping the results, some other
work focuses on selecting the exposure bracketing that has the
optimal tone after direct fusion [10, 11, 12, 13]. These methods
analyze scene information from an AE preview image, so that the
processing of preview streams is not required. In [12], the AE
image is segmented into dark, normal and bright regions, then
correspondingly exposure settings for a 3-image stack are deter-
mined to match the mean luminance of each region to an optimal
level (around 255/2) according to some typical camera response
curves. Without the estimation of the dynamic range, the method
gives sub-optimal results with loss of details in saturation. Wang
et al. [10] claim that the semantic information can be useful to
infer the irradiance information beyond the preview image. For
example, a billboard recognized in the images indicates larger
maximum irradiance level and thus lower exposure is needed to
capture its content. Based on this intuition, an exposure brack-
eting selection network (EBSNet) is developed with a histogram
branch and a semantic branch, and allows better recovery of very
dark/bright regions. However, this network contains more than
60M parameters and hard to be generalized to different scenarios,
which might prevent the network from real-time applications.

Neural Network for HDR Imaging

Convolutional neural networks (CNN) are widely used for
the generation and enhancement of HDR images. Some meth-
ods are developed to learn an HDR image from a single LDR im-
age [20,21]. However, these algorithms can do well only when the
captured LDR image contains sufficient information. So for im-
age acquisition, learning based exposure strategies are designed.
Onzon et al. [22] propose a network for auto-exposure control
driven by object detection in HDR scenes. The network extracts
the multi-scale histogram and semantic features from the previ-
ous frame, and is trained jointly, end-to-end with an object detec-
tor and an ISP pipeline. Wang et al. [10] apply CNNs to expo-
sure bracketing selection (EBSNet). Similarly, the EBSNet has a
histogram branch and a semantic branch based on AlexNet [23].
The EBSNet is trained by reinforcement learning to select the op-
timal exposure bracketing from 36 predefined candidates, which
is limited and difficult for generalization. In the experiments, two
models are trained with different candidate sets for night scenes
and day scenes. We propose a lightweight exposure bracketing
strategy network that contains only around 300K parameters and
can predict exposure values for a 3-image stack under different
scenarios.

CNNs are also introduced for multi-exposure fusion to im-
prove the quality of fused images in challenging setups, such as
extreme exposure image pairs [24] or images with ghosting arti-
facts [25,26]. These networks can be integrated into the proposed
system, and trained jointly to adapt for different tone-mapped im-
ages as in the future work.

Proposed System
The system framework is illustrated in Figure 2. The net-

work takes the AE preview LDR image, the minimum and maxi-
mum scene irradiance as inputs. A low-end ISP can easily pro-
duce the minimum and maximum scene irradiance during the
AE/AF process, without generating preview image streams or
HDR histograms. The network predicts the exposure values EV ,
as the product of the exposure time t and the camera gain g, for a
3-shot bracketing, that optimizes the tone of the fused image. For
photo capturing, the exposure time is set to be the same as the AE
settings, so the gain g = EV/t. In extreme cases, the computed
gain is not practical and the exposure time will be adjusted.

Features

The exposure values are predicted based on the irradiance
distribution learned from 1) the histogram statistics of an AE pre-
view image and 2) the minimum and maximum levels of the scene
irradiance. In order to use the irradiance information locally and
globally, histograms at three different scales are computed. For
the coarsest scale, a 128-bin histogram is computed on the whole
image based on the luma channel. Similarly, at the intermediate
scale and the finest scale, the image is divided respectively into 3
by 3 and 7 by 7 non-overlapped sub-images and the histograms
are computed from every sub-image. The minimum and maxi-
mum irradiance levels are repeated and concatenated to each bins
of the histogram stack, which gives an input to the neural network
with shape [128, 61].
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Figure 2: System overview.

Exposure Values Prediction
The feature is then sent to a neural network that consists

three 1D convolutional layers with kernel size 4 and stride 4 and
three fully connected layers, which predicts the exposure values,
EEEVVV = {EV+,EVn,EV−}, relative to the AE settings for a 3-shot
exposure bracketing. Similar to the work [22], the last layer is
followed by a function that computes the final exposure value by

EEEVVV = exp{2 · [sigmoid(xxx)−0.5] · log(Mev)} (1)

where x is the output of last layer. The exposure change is
bounded by Mev = 27 as EV ∈ [M−1

ev ,Mev].

Loss Function
With HDR RAW images providing scene irradiance, the net-

work is trained end-to-end with a differentiable image formation
model simulating single-shot LDR image capturing without noise
and an exposure fusion module generating final fused images. The
pipeline for loss calculation is shown in Figure 3.

Under certain scene irradiance φφφ , φφφ t electrons are collected
over an exposure time of t seconds, and converted to a voltage.
The voltage is amplified by camera gain g, and converted to a
digital number as a pixel value. For a camera recording 12-bit
RAW images, the pixels with intensity larger than Imax = 212 −1
are clipped due to saturation. The process can be described by the
following equation.

IIIRAW = min{⌊gφφφ t⌋, Imax}, (2)

where ⌊·⌋ represents quantization.
The LDR RAW images are then fed into the software ISP,

processed by demosaicing algorithm and gamma correction, to
generate the 8-bit LDR images. The exposure value, as the output
of the network, is the product of exposure time t and camera gain
g. In practice, t is set to be the same as the AE settings, so the
gain g = EV/t.

According to the process described above, different expo-
sure settings result in different saturated regions and brightness in
the LDR images. The 3-shot exposure bracketing is then fused
directly in an 8-bit image by [14], where images are weighted
according to their saturation, contrast, well-exposedness, and
blended using pyramidal image decomposition. The loss is the
sum of weighted squared error between the fused image and the

ground truth, where the ground truth is generated by fusing a large
LDR stack (e.g. 10 images) with geometric exposure variation.

L = ∑
p∈P

wp(Ip − Îp(ggg, ttt))2. (3)

For each pixel p, its weight wp is given for the learning of im-
balanced data where some small portions of the images are more
important for perception, such as faces and billboards. Minimiz-
ing the loss ensures that the details are captured without saturation
and with good quantization intervals.

Experiments
Dataset

We conduct experiments on two datasets: MIT-Adobe FiveK
[27] and our night sight dataset. The MIT-Adobe FiveK dataset
contains 5000 images in RAW format, but mostly for day scenes.
We introduce a night sight dataset, including 300 HDR RAW im-
ages. The dataset contains a set of 24-bit Linear HDR images.
Each of the HDR image is generated by fusing 8 LDR RAW
images, which are processed by denoising and deghosting algo-
rithms to remove potential noise and ghost artifacts. The two
datasets cover different scenarios, including but not limited to
scenes with and without people as well as indoor and outdoor.

From the HDR data, synthetic LDR images can be gen-
erated with different exposure settings according to Equation
4. The ground truth are created by fusing 10 differently ex-
posed images [14]. With the exposure value of the AE pre-
view image denoted as EVa, the ten images are exposed by
[23,22,2,1,2−1,2−2,2−3,2−4,2−5,2−6] ·EVa.

In order to get the data distributed evenly for night and day
scenes, 400 images of day scenes and 100 images of night scenes
are selected randomly from MIT-Adobe FiveK dataset [27], and
combined with the 300 night sight data to form the dataset for the
experiments. The dataset is then split into 600 images for training,
100 images for evaluation and 100 images for testing.

Experiment Setups
For training, the HDR RAW images in the dataset are used

to simulate the real-world irradiance. As the network inputs, the
resolution of the AE preview images is 384× 510, and the min-
imum and maximum scene irradiance are estimated respectively
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Figure 3: Diagram for loss calculation in training: HDR RAW image in dataset provides the simulated scene irradiance. The 3-shot
bracketing can be generated by the image formation model, and fused by Exposure fusion.

by 1% and 99% percentile of the sorted HDR pixels. Exposure
values EEEVVV for a 3-shot exposure bracketing are predicted, and the
ISO gains are set as ggg = EEEVVV/tttAE . With the HDR images, losses
in Section are calculated and used to train the network parame-
ters with learning rate as 10−5 and batch size as 8 by Adam [28].
Note that, the HDR images, simulating the real-world irradiance,
are only used in training and testing, but not needed in inference
stage.

To better simulate the real-world scenario, noise is added in
testing. With the noise model, RAW image formulation in Equa-
tion 2 is modified as

IIIRAW = min{⌊g(φφφ t +nnnpre)+nnnpost⌋, Imax}, (4)

where nnnpre is the noise introduced before amplification, including
the noise from photon arrivals and from sensor readout. nnnpost is
the noise after amplification, mainly from analog-to-digital con-
version (ADC). The captured exposure bracketing is then fused
by the Exposure Fusion algorithm [14]. The performance is eval-
uated by PSNR between the fused images and the ground truth.

Comparison with State-of-the-art Methods
To validate the effectiveness of the proposed method, com-

parison is conducted against the state-of-the-art approaches pro-
posed by Pourreza-Shahri et al [12], and Wang et al [10]. Similar
to the proposed method, these approaches determine the exposure
bracketing based on an AE preview image and without the depen-
dency of RAW images or accurate camera response functions.

For fair comparison, all the selected bracketing from the
above methods is composed of three images and fused directly
by the same fusion algorithm [14]. In [10], a fusion module is
needed to provide reward for the training of the exposure bracket-
ing selection network (EBSNet). The fusion module can be either
the proposed multi-exposure fusion network (MEFNet) or the Ex-
posure Fusion algorithm [14] as shown in their experiments. We
train two EBSNets individually with these different fusion mod-
ules on our dataset, and the results show that [14] can do better
than the MEFNet. Although this is not consistent with the results
in the paper [10], but comparable performance is achieved by the
retrained model.

The quantitative results can be found in Table 1. The whole
test dataset includes 50 day scenes and 50 night scenes. The ex-
posure bracketing selected by the proposed method results in the
most similar fused images as the ground truth. Some qualitative
examples can be found in Figure 4. As shown by the AE images
in Column (2), with one LDR image, the contrast decrease due to
saturation is inevitable in high dynamic range scenes, as shown by
the poor tone in tunnel (a) and the detail loss in billboards (d). [12]

Method PSNR

All
Pourreza-Shahri [12] 25.05

EBSNet [10] 29.36
Proposed 333222...555333

Day
Pourreza-Shahri [12] 22.53

EBSNet [10] 29.04
Proposed 333333...444111

Night
Pourreza-Shahri [12] 27.56

EBSNet [10] 29.67
Proposed 333111...666555

Table 1: Comparison of the state-of-the-art exposure strategy
methods.

predicts the exposure values based only on the local statistics of
the AE image, and thus cannot capture details in saturated regions
as shown in Column (3). The large variance of PSNR across the
dataset also indicates that it has difficulty to generalize to scenes
with different irradiance ranges. The EBSNet [10] achieves less
information loss in very bright/dark regions, which benefits from
the semantic features extracted by the heavy network. However,
the fused images suffer from low contrast as shown in the Column
(4). The proposed network gives the best results. For example in
Figure 4(d), the proposed method gives a better recovery in the
billboard areas and a more visually-pleasing tone of the backlit
portrait.

The processing time, on a TESLA V100 GPU, is reported in
Table 2. [12] optimizes the exposure values by an iterative algo-
rithm, which consumes longer time. For the EBSNet [10] and the
proposed method, the processing time includes the extraction of
multi-scale histogram from a low-resolution image and the run-
ning time of the CNN networks. Since the EBSNet contains more
than 60 million parameters, while the proposed lightweight net-
work has around 300K parameters, the proposed system can be
a more efficient and practical solution on low-cost devices and
real-time application.

time (s)

EBSNet [10] 0.484
Pourreza-Shahri [12] 1.078

Proposed 000...000000111

Table 2: Comparison of the state-of-the-art exposure strategy
methods in terms of processing time.
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Figure 4: Resulting images of the state-of-the-art exposure bracketing strategy methods, with PSNR against the ground truth in captions.
Column (1): ground truth with zoomed-in regions (red boxes); Column (2): AE images; Column (3): results of Pourreza-Shahri [12];

Column (4): results of EBSNet [10]; Column (5): results of the proposed method; Column (6): zoomed-in ground truth.

Ablation Study
Day and Night Scenes

The scene dynamic range varies from day to night, which
challenges the generalization of exposure bracketing strategies.
As for the system in [10], two models need to be trained separately
for day and night scenes with different sets of exposure bracket-
ing candidates. To validate the generalization of the proposed sys-
tem, three models are trained and evaluated on different dataset,
i.e. day scenes, night scenes and the combination. Model NNday
and NNnight are trained respectively on dataset of 200 day images
and 200 night images, while model NNall are trained on the joint
dataset. The quantitative result is shown in Table 3. The perfor-
mance of three networks, tested in their corresponding dataset,
is similar, which indicates that NNall can be generalized well to
scenes with various irradiance distribution.

Conclusion
In this paper, a lightweight network for exposure bracketing

strategy is proposed for HDR imaging with no access to camera
RAW. A neural network is developed to learn irradiance informa-

NNday NNnight NNall

Day 34.13 26.08 33.41
Night 16.29 31.94 31.65

Table 3: Performance of models trained with day and night
dataset, separately and jointly, in terms of PSNR against the

ground truth images.

tion and predict the exposure values of a 3-shot bracketing driven
by the optimization of the fused tone. The network takes multi-
scale histograms of an LDR preview image and the maximum and
minimum scene irradiance as inputs, which can be easily accessed
by camera APIs. The result shows that the proposed system out-
performs state-of-the-art methods in terms of fused tone as well
as time efficiency. Without depending on the RAW images, the
proposed system can provide a promising solution for low-cost,
power-efficient cameras and real-time application. The proposed
method assumes that the multiple LDR images are aligned, and
noise is not considered. It can be a future work to include mo-
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tion, noise and tone into one framework for exposure bracketing
strategy design.
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