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Abstract
Phase retrieval (PR) concerns the recovery of complex

phases from complex magnitudes. We identify the connection be-
tween the difficulty level and the number and variety of symme-
tries in PR problems. We focus on the most difficult far-field PR
(FFPR), and propose a novel method using double deep image
priors. In realistic evaluation, our method outperforms all com-
peting methods by large margins. As a single-instance method,
our method requires no training data and minimal hyperparame-
ter tuning, and hence enjoys good practicality. Our paper is also
available at: https: // arxiv. org/ abs/ 2211. 00799 .

Introduction
In scientific imaging, observable physical quantities about

the object of interest are often complex-valued, e.g., when diffrac-
tion happens (1). However, practical detectors can only record
complex magnitudes, but not phases, resulting in phaseless ob-
servations. Phase retrieval (PR), broadly defined, is the nonlinear
inverse problem (NIP) of estimating the object of interest from the
phaseless observations. PR is central to coherent diffraction imag-
ing ((B)CDI) (2; 3), image-based wavefront sensing (4), radar and
sonar sensing (5); see the recent survey (6).

Which phase retrieval (PR)? Without loss of generality, con-
sider a 2D object of interest XXX ∈ Cm×n, and a physical ob-
servation model A that leads to an ideal complex-valued ob-
servation A (XXX) ∈ Cm′×n′1. However, the detector can only
record YYY = |A (XXX)|2, where |·|2 denotes the elementwise squared
magnitudes—corresponding to the photon flux the detector is able
to capture. In far-field (Fraunhofer) PR (FFPR) that stems
from far-field propagation and is also the focus of this paper,
A is the oversampled 2D Fourier transform F with m′ ≥ 2m−1,
and n′ ≥ 2n − 1 to ensure recoverability. For notational sim-
plicity, we assume m,n are odd numbers, and XXX is centered
at (0,0) so that index ranges are [−(m − 1)/2,(m − 1)/2] and
[−(n− 1)/2,(n− 1)/2], respectively. Numerous other A ’s have
been studied in the literature, notable ones including:

• Generalized PR (GPR): A (XXX) = {⟨AAAi,XXX⟩}k
i=1 where AAAi’s are

iid Gaussian or randomly-masked Fourier basis matrices (7;
8). These elegant mathematical models do not correspond to
physically feasible imaging systems so far;

• Near-Field (Fresnel) PR (NFPR): A (XXX) = F (XXX ⊙
[eiπβ(ℓ2+κ2)]ℓ,κ ) (9; 10), where the constant β > 0 depends on
the sampling intervals, wavelength, and imaging distance (11),

13D phase retrieval problems can be formalized similarly.

comes from near-field propagation. Note that FFPR corre-
sponds to β → 0, and PR problems solved in image-based
wavefront sensing for astronomical applications correspond
to multi-plane near-field propagation with sequential optical
aberrations (12);

• Holographical PR (HPR): A (XXX) = F ([XXX ,RRR]), where RRR is a
known reference that is placed side-by-side with the object of
interest XXX (13); depending on the propagation distance, near-
field versions are also possible (1, Chapter 11);

• Ptychography (PTY): XXX is raster-scanned by a sharp illumi-
nation pattern WWW that is focused over a local patch of XXX each
time. Now YYY is the set of magnitude measurements YYY i =
|F (WWW ⊙XXX(pppi))|

2, where pppi indexes the raster grid (14; 15).

Figure 1. Illustration of the three intrinsic symmetries in FFPR on simulated

complex-valued crystal data (see Experiments Results for details). Any com-

position of 2D conjugate flipping, translation, and global phase, when applied

to XXX , leads to the same set of magnitudes YYY .

Symmetry matters Identifiability in PR is often up to intrinsic
symmetries. For example, any global phase factor eiθ added to XXX
leaves YYY unchanged for FFPR, NFPR, GPR, and PTY, i.e., global
phase symmetry. While this is the only symmetry for NFPR,
GPR, and PTY, FFPR has two other symmetries: translation and
2D conjugate flipping, as demonstrated in Fig. 1 (16). A crucial
empirical observation is the difficulty level of a PR problem is
proportional to the number of its symmetries. To see the point,
consider a natural least-squares (LS) formulation of PR2

min
ZZZ∈Cm×n

1
m′n′

∥
√

YYY −|A (ZZZ)|∥2
F , (0.1)

with the groundtruth complex-valued 2D crystal sample in Fig. 1
as the target XXX . On GPR with Gaussian, NFPR, and FFPR,
we run subgradient descent with 100 random starts, respectively,
and record their final convergent losses. As is evident from Ta-
ble 1, while we can consistently find numerically satisfactory so-
lutions for GPR and NFPR, we always find bad local solutions

2We consider this inner-unsquared version as it has better noise stabil-
ity than the inner-squared one in practice (17).
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Table 1: Comparison of GPR, NFPR, and FFPR in terms of their symmetries and numerical solvability with the least-squares
formulation in Eq. (0.1) combined with gradient descent.

PR model GPR NFPR FFPR

Symmetry global phase global phase
global phase, translation, 2D
conjugate flipping

Final loss of
solving LS in
Eq. (0.1) us-
ing gradient
descent from
100 random
initializations

for FFPR—which has three symmetries. Similarly, for FFPR, the

Figure 2. HIO to solve FFPR with vs without precise support. We plot the

final least-squares losses defined in Eq. (0.1) over 100 random starts. XXX is

the groundtruth in Fig. 1.

gold-standard hybrid input-output (HIO) algorithm can typically
solve the problem when provided with tight support specifica-
tion3—translation symmetry is killed, but it fails when the support
is loose—translation symmetry remains; see Fig. 2. Moreover,
our prior works (18; 19; 20; 21) also show the learning difficulties
caused by these symmetries when developing data-driven meth-
ods for solving FFPR. See FFPR: Formulation and Prior Arts for
details of HIO and related algorithms.

Our focus on practical FFPR methods We have stressed that
symmetries largely determine the difficulty level of PR. However,
in previous research, there are often simplifications to FFPR, in-
cluding (1) randomized model A that only keeps the global
phase symmetry, (2) evaluation on natural images that removes
the translation symmetry and simplifies the global phase sym-
metry into sign symmetry (8; 22; 23). These simplifications in-
variably lead to FFPR methods that do not work on practical
data. The goal of this paper is to develop practical methods
for FFPR that involve all three symmetries. In particular, we
propose a novel FFPR method based on double deep image pri-
ors (see Our method: FFPR using double DIPs), and validate its
superiority over state-of-the-art (SOTA) on realistic datasets (see
Experiments Results).

FFPR: Formulation and Prior Arts
FFPR model The object of interest is XXX ∈ Cm×n, and YYY =
|F (XXX)|2 ∈Rm′×n′

+ , where F is the oversampled 2D Fourier trans-

3Specifically, we mean that the tightest rectangular bounding box of
the support is provided.

form:

F (XXX) = FFFm′

[
XXX 000
000 000

]
FFF⊺

n′ , (0.2)

where FFFm′ and FFFn′ are normalized discrete Fourier matrices. We
always assume that m′ ≥ 2m−1 and n′ ≥ 2n−1, which is neces-
sary to ensure recoverability.

Prior arts on FFPR Since we focus on practical FFPR, here
we only discuss methods that have been tested on FFPR with at
least partial success.

• Classical iterative methods: Due to the failure of the LS in
Eq. (0.1), most (if not all) classical methods tackle the over-
parameterized feasibility reformulation:

find ZZZ ∈ Cm′×n′ s. t. |F (ZZZ)|2 = YYY ,L (ZZZ) = 000, (0.3)

where L restricts ZZZ to the zero-padding locations defined by
the oversampling in Eq. (0.2). More refined support infor-
mation, if available, can be naturally incorporated into
the support constraint L (ZZZ) = 000. Most of these classical
methods are based on generalized alternating projection for
solving Eq. (0.3), represented by error-reduction (ER), hybrid
input-output (HIO) (24), reflection average alternating reflec-
tors (RAAR) (25), difference map (DM) (26), and oversam-
pling smoothness (OSS) (27). They are empirically observed
to find good solutions for FFPR, provided that the support
specification for ZZZ is tight and hyperparameters are properly
tuned. Alternative formulations solved by second-order meth-
ods (28; 29) are less sensitive to hyperparameters. However,
all these methods require tight support specification to avoid
translation symmetry—failing so leads to spurious solutions
that look like the superposition of translated copies; see Fig. 3.
The tight-support difficulty is partially addressed by the popu-

Figure 3. Two failure examples when solving FFPR using classical iterative

methods without precise support specification and without shrinkwrap.
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lar shrinkwrap trick (30) in practice, which refines the support
by smoothing-and-thresholding over iterations.

• Data-driven methods: The first family represents the in-
verse mapping from YYY to XXX by a deep neural network (DNN)
gθθθ , which is trained over either an extensive training set
{(YYY i,XXX i)}i or unpaired {YYY i}i and {XXX i}i only following the
cycle-consistency constraint: |F (gθθθ (YYY ))|2 ≈ YYY (31; 32; 33;
34; 35; 36; 18; 19; 20; 21; 37; 38). But, as discussed in
our prior work (18; 19; 20; 21), symmetries in the problem
cause substantial learning difficulties, as any YYY maps to a set
of equivalent XXX’s. The second family (39; 40; 41) is tied to
specific iterative methods for solving FFPR and replaces cer-
tain components of these methods with trainable DNNs. A
typical limitation of this line is the reliance on good initializa-
tion that is obtained from classical iterative methods. There-
fore, this family can be viewed as a final refinement of the re-
sults obtained from classical methods and does not address the
essential difficulty of solving FFPR. Both families suffer in
generalization when the training data are not sufficiently rep-
resentative.

Our method overcomes the limitations of both classical and data-
driven methods and features (1) no training set: it works with a
single problem instance each time, with zero extra training data;
(2) no shrinkwrap: we can specify the size of XXX directly as
⌊m′/2⌋ × ⌊n′/2⌋, i.e. the information-theoretic recovery limit,
without worrying about translation symmetry; (3) minimal tun-
ing: mostly we only need to tune 2 learning rates as hyperpa-
rameters, vs. the 5 or 6 hyperparameters used in HIO + ER +
shrinkwrap (HES) commonly used in practice (42).

Our method: FFPR using double DIPs
Deep image prior (DIP) for visual inverse problems DIP and
variants (43) parameterize visual objects as outputs of DNNs—
typically structured convolutional networks to favor spatially
smooth structures, i.e., xxx = Gθθθ (zzz), where zzz is normally a ran-
dom but fixed seed, and Gθθθ is a trainable DNN paramaterized by
θθθ . For a visual inverse problem of the form yyy ≈ f (xxx) where yyy
is the observation and f is the observation model, the classical
regularized data-fitting formulation

min
xxx

ℓ(yyy, f (xxx))+λΩ(xxx) (0.4)

can now be empowered by DIP and turned into

min
θθθ

ℓ(yyy, f ◦Gθθθ (zzz))+λΩ◦Gθθθ (zzz). (0.5)

This simple idea has recently claimed numerous successes in
computer vision and computational imaging; see, e.g., the recent
survey (44), and our recent work addressing practicality issues
around DIP (45; 46; 47). A salient feature of DIP is the strong
structured prior it imposes through DNNs, with zero extra
data! Although the theoretical understanding of DIP is still far
from complete, current theories attribute its success to two as-
pects: (1) structured priors imposed by convolutional and up-
sampling operations, and (2) global optimization due to signifi-
cant overparameterization and first-order methods (48; 49).

Applying DIP to FFPR As shown in Table 1, solving the
LS formulation in Eq. (0.1) using gradient descent always gets

trapped in bad local minimizers. It is then tempting to try DIP, as
(1) the objects we try to recover in scientific imaging are visual
objects and probably can be blessed by the structured priors en-
forced by DIP, and (2) more importantly, the issue we encounter in
solving the LS is exactly about global optimization, which could
be eliminated by overparameterization in DIP4. In fact, we have
tried the single-DIP version in our preliminary work (50):

min
θθθ

∥
√

YYY −|F ◦Gθθθ (zzz)|∥2
F , Gθθθ (zzz) ∈ Cm×n. (0.6)

Systematic evaluation in Figs. 4 and 5 shows that it is already
competitive compared to the gold-standard HES, although it
struggles to reconstruct complicated complex phases.

Double DIPs boost the performance For FFPR applications
such as CDI, XXX as a complex-valued object can often be natu-
rally split into two parts with disparate complexity levels. For
example, in Bragg CDI on crystals, the magnitude part on the
support is known to have uniform values, but the phase part can
have complex spatial patterns due to strains (51; 52; 53); in CDI
on live cells, the nonnegative real part contains useful informa-
tion, and the imaginary part acts like small-magnitude noise (54).
In these cases, due to the apparent asymmetry in complexity, it
makes sense to parameterize XXX as two separate DIPs (55; 47) in-
stead of one:

XXX = G1
θθθ 1

(zzz1)e
iG2

θθθ2
(zzz2), or XXX = G1

θθθ 1
(zzz1)+ iG2

θθθ 2
(zzz2) . (0.7)

This can be justified as balancing the learning paces: with a single
DIP, “simple” part is learned much faster than the “complex” part;
with double DIPs, we can balance the learning paces by making
the learning rate for the “simple” part relatively small compared to
that for the “complex” part. We observe a substantial performance
boost in Figs. 4 and 5 due to the double-DIP parametrization.

Experiments Results
Evaluation on 2D simulated Bragg CDI crystal data We
first compare our Double-DIP method with multiple SOTA meth-
ods for FFPR, including Naive (37), CGAN (56), Passive (33),
prDeep (39), HIO+ER, HIO+ER+Shrinkwrap (HES), and (single-
)DIP on simulated 2D data for Bragg CDI on crystals. The final
form of our learning objective for this task is:

min
θθθ 1,θθθ 2

∥
√

YYY −|F ◦G1
θθθ 1

(zzz1)eiG2
θθθ2
(zzz2)|∥2

F ,

G1
θθθ 1

(zzz1) ∈ Rm×n
+ , G2

θθθ 2
(zzz2) ∈ [0,2π]m×n. (0.8)

To ensure that the evaluation data reflect real-world complexity,
we simulate 2D complex-valued crystal data in Bragg CDI
applications (3). The dataset is generated by first creating
2D convex and nonconvex shapes based on random scattering
points in a 110 × 110 grid on a 128 × 128 background. The
complex magnitudes are uniformly 1, and the complex phases are
determined by projecting simulated 2D displacement fields (due
to crystal defects) onto the corresponding momentum transfer
vectors. To maximize the diversity, the dataset contains diverse
shapes and different numbers and densities of crystal defects that

4Interestingly, the feasibility reformulation in Eq. (0.3) solved by clas-
sical methods can also be understood as performing overparameterization.
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Figure 4. Visual comparison of reconstruction results by different methods on 2D simulated crystal data

Figure 5. Quantitative comparison of reconstruction results by different

methods on 2D simulated crystal data by symmetry-adjusted MSE

dictate the complexity of the phases. Although our double-DIP
method is a single-instance method that requires no training
data, the dataset is large enough to support data-driven meth-
ods, such as Passive and prDeep. For methods that require a
training set, we provide 8000 samples. All methods are tested on
50 randomly selected samples not from the 8000 training samples.

From both visual (Fig. 4) and quantitative (Fig. 5) results,
it is evident that: (1) all data-driven methods, including Naive,
CGAN, Passive, prDeep, perform poorly. We believe that
this is due to either the learning difficulty caused by the three
symmetries (18; 19; 20; 21) or the bad initialization given by
HIO (i.e., for prDeep); (2) HES, DIP, and our double-DIP are
the top three methods. HES deals with translation symmetry
by iteratively refining the support, whereas DIP and ours do
not need tight support estimation at all, substantially reducing
parameter tuning; (3) Our method wins HES and DIP by a large
margin. Although the latter two perform reasonably well in
magnitude estimation, their phase estimations are typically off
for complicated instances.

Figure 6. Visual comparison of reconstruction results by HIO+ER with

Shrinkwrap and our method on a 3D simulated crystal instance

Evaluation on 3D simulated Bragg CDI crystal data We will
exclude data-driven methods, due to their clear performance defi-
ciency on 2D data and the considerable cost to obtain sufficiently
representative training sets for 3D. We only compare HES, which
is the gold-standard used in Bragg CDI practice, with our double-
DIP method. Since both methods can work with single instances
and need no training data, here we quickly compare their perfor-
mance qualitatively on a single 3D simulated crystal instance (the
simulation process is similar to the 2D case), as shown in Fig. 6.
It is obvious that even with Shrinkwrap iteratively refining sup-
port, HES still struggles to get the support right. By contrast, our
double-DIP method obtains a sharp support recovery and good
phase estimation.
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