hitps: / /doi.org/10.2352/E1.2023.35.11.HPCI-243
© 2023, Society for Imaging Science and Technology

Towards Real-time Formula Driven Dataset Feed for Large Scale

Deep Learning Training

Edgar Josafat Martinez-Noriega and Rio Yokota; National Institute of Advanced Industrial Science and Technology and Tokyo

Institute of Technology; Japan

Abstract

Recently, a new deep learning architecture, the Vision Trans-
former, has emerged as the new standard for classification
tasks, overtaking the conventional Convolutional Neural Network
(CNN) models. However, these state-of-the-art models require
large amounts of data, typically over 100 million images, to
achieve optimal performance through transfer learning. This re-
quirement is met by using proprietary datasets like JFT-300M or
3B, which are not publicly available. To overcome these chal-
lenges and address privacy concerns, Formula-Driven Supervised
Learning (FDSL) has been introduced. FDSL trains deep learn-
ing models using synthetic images generated from mathematical
Sformulas, such as Fractals and Radial Contour images. The main
objective of this approach is to reduce the Input/Output (I/0)
bottleneck that occurs during training with large datasets. Our
implementation of FDSL generates instances in real-time dur-
ing training, and uses a custom data loader based on EGL (Na-
tive Platform Graphics Interface) for fast rendering via shaders.
The evaluation of our custom data loader on the FractalDB-100k
dataset comprising 100 million images revealed a loading time
that is three times faster compared to the PyTorch Vision loader.

Introduction

The field of deep learning has witnessed a major break-
through in recent years with the emergence of the Vision Trans-
former as the new standard for tackling classification tasks. Un-
like its predecessor, the Convolutional Neural Network (CNN),
which relies on convolution operations, the Vision Transformer
places its focus on the self-attention mechanism. This innova-
tive approach has proven to be highly effective, as evidenced
by the success of natural language processing models such as
GPT [1] and BERT [2]. The training of Vision Transformer
models faces a major challenge, the requirement of a massive
amount of data. To achieve state-of-the-art performance using
transfer learning, these models typically need over 100 million
images [3, 4]. To fulfill this requirement, large datasets such as
JFT-300M or 3B are often utilized [5]. However, the issue with
these datasets is that they are typically proprietary and not ac-
cessible to the public. To address this issue, as well as concerns
about privacy, a new approach called Formula-Driven Supervised
Learning (FDSL) has been proposed [6]. Unlike traditional ap-
proaches, which rely on large proprietary datasets, this innova-
tive method utilizes synthetic images generated from mathemati-
cal formulas, such as fractals and radial contour images, to train
Vision Transformer models [7]. The performance of this method
has been compared to real image datasets and found to be effec-
tive, but these results are based on smaller datasets containing
only 10 million images [8]. To achieve state-of-the-art perfor-

IS&T Infernational Symposium on Electronic Imaging 2023
8,(0 202% 9

High Performance Computing for Imaging

mance using Vision Transformer models, a dataset of the scale
of JFT-300M is necessary. However, training on such a large
dataset with a high-performance computing system like the ABCI
supercomputer [9] presents several challenges, including efficient
management of high I/O traffic. To tackle the challenges of train-
ing large datasets, a widely-used technique is Data Distribution,
which employs multiple GPUs. This method involves each GPU
holding a copy of the model and training on a different subset
of the data over multiple iterations. Popular deep learning frame-
works like PyTorch Vision [11] offer a data loader that evenly dis-
tributes the data among all GPUs. The loader retrieves the raw im-
age files from the file system, however, when training on massive
datasets such as ImageNet-1k (1.2 million images) or ImageNet-
21k (14.19 million images), the heavy burden on the file system
can become problematic. To handle the increased load, hundreds
of nodes with multiple GPUs may be used in the data distribution
parallel approach. Moreover, GPUs were originally engineered
to accelerate the production of high-speed 3D graphics. Utilizing
native graphics APIs, such as OpenGL or DirectX, significantly
boosts the rendering process. The original FractalDB [6] was cre-
ated using Python routines, resulting in a rendering time that took
several hours to generate the entire dataset. By harnessing the
power of GPUs, we can streamline the process of generating the
entire dataset and reduce the load on the network, by utilizing the
GPU to render each image.

The goal of our work is to overcome Input/Output (I/O) bot-
tlenecks during training on large Formula-Driven datasets. To
achieve this, we propose a new approach that generates instances
dynamically during training, reducing the I/O burden. Each
worker or GPU has the necessary information to render individ-
ual instances of the dataset, eliminating the need to retrieve data
from disk. By generating instances on the fly, we can reduce the
amount of data loaded into memory at any given time, which im-
proves training efficiency.

Our proposed method of utilizing GPUs for searching and
generating Fractal images resulted in a much faster dataset cre-
ation process, up to 185 times faster than the previous CPU im-
plementation. This approach enabled us to create larger versions
of FractalDB, with over 300 million images, comparable in size
to JFT-300M. Additionally, our loader outperformed the PyTorch
loader by over 3 times in experiments involving full training on
large datasets.

Related Work

Large datasets have been proposed to train Vision Trans-
formers such as Instagram-3.5B [16], YFCC from Yahoo [17],
JFT-300M/3B from Google[S], and LION-5B[18]. However,
most of these datasets are close to those research groups and are

2431

not open to the public, only LION-5B is distributed under a per-
missive license. Nevertheless, the use of these large datasets are
not exempt from ethical concerns, such as societal biases, pri-
vacy issues, and copyright violations. These problems are of great
concern and can result in models trained on these datasets be-
ing unfair or violating privacy protection laws. The lack of cu-
ration in these datasets further exacerbates these ethical issues.
Thus, FDSL has been proposed to overcome these issues. Sev-
eral efforts have been made in FDSL field. For example, the
research conducted by Nakashima et al. [8] that pre-training a
Vision Transformer (ViT) model on FractalDB can lead to sim-
ilar accuracy results on downstream tasks as a ViT pre-trained
on ImageNet. Kataoka er al. [7] later expanded FractalDB to
ExFractalDB and RCDB, which focus more on contours than tex-
tures. These datasets were used to pre-train ViT on ImageNet-21k
and compare results with synthetic datasets ExFractalDB-21k and
RCDB-21k, which have the same number of categories and im-
ages. On another hand, there have been several proposals to alle-
viate the burden of I/O on training deep learning models in a clus-
ter environment. Dryden ef al. [19] introduced NoPFS, a machine
learning I/O middleware designed to solve the I/O bottleneck in
a scalable, flexible, and user-friendly way. NoPFS employs clair-
voyance, allowing it to accurately predict when and where a sam-
ple will be accessed based on the seed used to generate the ran-
dom access pattern for training with Stochastic Gradient Descent
(SGD). Nguyen et al. [20] suggested exploring the possibility
of partitioning the dataset among multiple workers in deep learn-
ing workloads and performing a limited exchange of samples in
each training epoch. They showed that, with proper adjustment,
the validation accuracy achieved through global shuffling can still
be maintained with partial distributed exchange. Aizman et al.
[21] introduced AlStore, a scalable and user-friendly storage so-
lution, and WebDataset, a storage format and library that ad-
heres to industry standards and enables efficient access to massive
datasets. Furthermore, Baradad ef al. demonstrated the possibil-
ity of learning visual representations from synthetic images using
the Deadleaves dataset. As well, they proposed training with a
dataset of 21,000 programs, each generating a variety of synthetic
images, where the programs are brief code snippets that can be
easily altered and quickly run using OpenGL [22].

Method

This section provides an overview of FDSL methods, fol-
lowed by a detailed description of the FractalDB dataset. We also
explain the original implementation of the IFS routine for Fractal
image creation and how we optimized it using a parallel approach
on the GPU.

Formule Driven Supervised Learning (FDSL)
FDSL, or Formula-Driven Synthetic Learning, is a cutting-
edge training methodology in the field of machine learning. In
this approach, synthetic images and their corresponding labels are
generated from mathematical formulas, offering a unique way to
generate large, diverse, and dynamic datasets for training. Adopt-
ing this strategy comes with several advantages, including the
elimination of ethical concerns. By training on synthetic datasets
generated from mathematical formulas, we can sidestep issues
such as societal biases and the handling of sensitive information,
such as copyrights and personal data [10, 12, 13]. This not only

2432

Class 0 Class 1 Class n

Figure 1. Intra-Class Fractal samples.

enhances the ethical standards of the technology being developed
but also provides a more secure and controlled environment for
training machine learning models.

The synthetic images generated come in a diverse range of
shapes and patterns, including polygons, geometric shapes, and
fractals [6, 7, 8, 14]. The complexity and intricacy of these shapes
can be fine-tuned through adjusting various parameters such as
smoothness, orientation, texture, fill rate, and other factors that
influence the final image. Labels can be assigned to these im-
ages based on a combination of any of these parameters, enabling
the creation of a labeled dataset of any size without the need for
manual annotation by human operators.

FractalDB

The original FractalDB is a collection of fractal images gen-
erated using the Iterated Function System (IFS) [15], consisting
of 1,000 to 10,000 image-label pairs. Fractal geometry was se-
lected as a method for generating the dataset because of its ability
to render complex patterns and shapes for each unique set of pa-

rameters. More formally, we can define a complete metric space
Z by

IFS:{<%;W15W25"'7WN;p17p25"'7pN}a (1)

where transformation functions are defined by w; : 2" — 27, p;
are probabilities, and the number of transformations is defined by
N. Thus, a fractal § = {x;};>, € 2" can be generated in the 2D
Euclidean space 2~ = R?. This assumption is made that each
transformation in practice is a type of affine transformation, char-
acterized by six parameters 6; = (a;,b;,c;, d;, e;, fi) for operations
such as shifting and rotation:

oy @ Db e;
Wl(x’el)_ |: i di:|x+ |:fl:| N (2)
The parameters (a;,b;,c;,d;,e;, fi, p;) are randomly selected at
first and adopted if the filling rate of the image pattern gener-
ated from the parameters surpasses a threshold, calculated as the
number of fractal dot pixels divided by the total number of image
pixels. The instances within each category are created extensively
using three methods that consider the category’s configurations to
preserve its shape: slight adjustments to parameters, rotation, and
patch drawing. A sample of the main shape for each class in Frac-
talDB is shown in Figure 1.

Accelerating FractalDB Creation through GPU
Rendering

The original FractalDB code is publicly available. This code
is written in Python and it provides the ability to search the pa-
rameters described in 2. A sample of the main routine is shown in
Listing 1. As we can observe, the IFS implementation loops over

IS&T Infernational Symposium on Electronic Imaging 2023
High Performance Computing for Imaging 2023

Listing 1. Original IFS Python routine to search and generate FractalDB. Listing 2. Paralle IFS CUDA implementation using shared memory.
def ifs(self ,iter): 1 __global__ void ifs(float2Z+ d_poss, int numPoints,
rand = np. random random (iter) mapping +d_mappings, int numMappings){
func = 916 func 2 int index = blockIdx.x # blockDim.x + threadIdx.x;
func =y _Ise{%nc x, self.p.y 3 int stride = blockDim.x * gridDim.x;
g(’r 1 in range(lter’—l) : g?}?ig%sfﬁget((qltliliel’ned long long) clock (), index, 0, &
for j in range(len(s_func)): : state): g g g o
if rand[i] <= s- ’runc[%']' " 6 extern __shared__ mapping maps[];
n.x = p-x * func] 1+ 7 if (threadldx .x == O)f)
« func[j]["D"] + Y ! r .
?uzc[”["e..i 8 for(int i = 0 i < numMappings; i++)
n.y = p-x x func[j]["c"] + 9 maps[i] = d_mappings[il;
y # func[7]["da"] + 1 ! Oy
?un”]”"] 11 __syncthreads () ;
eak 12 int target = index % numMappings;
self.xs. dppend(n x),self.ys.append(n_y) 13 float2 currentP, n_Poss;
p-Xx = n_x 14 currentP.x = maps[target].x;
p-y = n.y 15 currentP.y = maps[target].y;
16 for(int i = index; i < numPoints; i += stride){
. . . . 17 d_poss[i].x = currentP.x ;
many iterations (points) given the parameters for each fractal and 1s d_poss[i].y = currentP.y ;
. 19 float currentProb = curand. uniform(&state);
its probability, computing the next point based on the previous 2o float totalProb = 0.01:
one. The original settings contemplate a threshold set to 80%, 2 tor(ég:aljprzog)yri fnar}‘,l;?l\%appmgs i
and the number of points for the search to 100,000. After all the 2 if (Cgizgipf_o? < totalProb){
points are calculated, the rendering is performed using a basic per- 25 break ; ’
spective projection to a fixed image resolution. If the fixed rate is i;’
acceptable, the the parameters are save in csv files (descriptors for 28 n_Poss.x = maps[target].a * currentP.x +
. 29 maps|target].b * currentP.y +
each category). Thus, we can generate the fractal images for each 30 maps| target |.x;
e 31 n_Poss.y = maps[target].c % currentP.x +
class utilizing different patches or single points. Nevertheless, the 3 maps | target].d * currentP.y +
generation of these fractals are performed in a serial execution and 3, currentP = I;lfllgzgé?rget] v

the complete generation of FractalDB could take much time. For
example, to generate FractaDB-1k using this approach, including
1,000 instances per class, total 1 Million images takes 2 days (5.4
images/sec) to complete even using ABCI supercomputer system.

IFS CUDA implementation

We implemented the IFS routine for fractal search and gener-
ation using CUDA. A complete implementation is shown in List-
ing 2. We utilize as many threads as possible to iterate over many
points. From the original routine shown in Listing 1, we compute
the outer loop using the index variable which is an specific ID
for each thread in the kernel. We also transfer the fractal parame-
ters to shared memory. This provides faster access and computing
when each thread is calculating the next point. As well, we utilize
cuRAND library for efficient generation and high-quality pseudo-
random numbers. This is utilized when calculating the probability
for each point. Finally, we avoid the movement of the data back
to the CPU, more concretely we keep the position of each point
inside of the GPU memory that will be share later to OpenGL for
rendering purposes.

CUDA-OpenGL interoperability

To minimize the unnecessary communication overhead,
CUDA offers graphics interoperability to share memory resources
between CUDA and the rendering context such as OpenGL and
Direct3D. This approach eliminates the need to transfer data back
and forth between the CPU and GPU, resulting in improved per-
formance in both computation and rendering. However, ensuring
the congruence between CUDA and OpenGL memory space is
important for proper implementation of this feature.

Headless rendering

We employ high-speed 3D rendering APIs such as OpenGL
or Direct3D to enable quick and sophisticated computer graph-
ics processing by the GPU. Communication with these APIs from
and to the GPU involves an intermediate stage that is the window-
ing system. Different OSs have varying implementations of win-

IS&T Infernational Symposium on Electronic Imaging 2023
g 0 2028 9

High Performance Computing for Imaging

36

Render to Display

Render to File

28

EGL

Native Platform
Interface

Window Handler
Library

T
[CUDA]-——[OpenGL]
L) 1

T
[CUDA]-—-[OpenGL]
1 1

[GPU]

[GPU]

Normal Rendering

Headless Rendering

Figure 2. Normal and headless rendering layer overview.

dowing systems, for example, X11 or Wayland for Linux-based
systems, and Desktop Windows Manager (DWM) for Windows.
Therefore, we communicate via these windowing systems by us-
ing specialized libraries such as GLFW. Subsequently, we display
or project the rendered image onto a display or screen. Typically,
a physical display is linked to the GPU when employing standard
rendering methods. However, when performing server-side ren-
dering or when operating on high-performance clusters, headless
rendering without a display is preferred. EGL (Native Platform
Graphics Interface) is utilized to access OpenGL APIs in a head-
less manner. An illustration of both approaches is presented in
Figure 2.

Accessing Datasets on Distributed Training
Currently, deep neural network training is typically con-
ducted using widely-used frameworks like PyTorch, TensorFlow,
Keras, and ONNX. These frameworks provides various tools and
utilities to train deep learning models. One of the core functional-
ities on these frameworks is the data loading utility, which is used
to retrieve data efficiently. Specially PyTorch, which his package
for Vision includes a built-in utility with predefined datasets and
transforms for computer vision tasks. Moreover, PyTorch pro-

243-3

CPU GPU
Network Traffic,
SSD ~2TB
)
~100 PB Node 1
—

Network Traffic

Figure 3. Accesing datasets in a distributed environment.

vides another utility which enables efficient distributed training
of deep learning models called Data Distibuted Parallel (DDP).
Using the before mentioned PyTorch utilities, distributed training
can be performed across multiple nodes and GPUs in an envi-
ronment as illustrated in Figure 3. In a distributed environment,
training images are retrieved from an NFS system that allows for
storage of several hundred petabytes. Additionally, each node in
the system includes a solid-state drive with storage capacity in the
range of several terabytes. According to the study by Nguyen et
al. [20], several supercomputers listed on the TOP500 list utilize
this type of storage for deep learning training, mainly to cache
the entire dataset during training, thereby enabling faster access
to files and reducing training time. However, the capacity of these
storage units is insufficient to accommodate large datasets.

WebDatasets

Proposed by Aizman et al. [21] in conjuction with AlStore,
the WebDataset is a Python library that enables efficient handling
of large datasets in standard such as TAR. It uses the concept of
streaming the data, which means that the data is loaded in small
batches as it is needed for training, rather than being loaded all
at once. This allows for the efficient use of disk and memory
resources, especially when dealing with very large datasets. Ad-
ditionally, this module also includes a number of features to help
with data augmentation and processing, such as parallel process-
ing and applying random transforms to the data. While the library
is tailored for compatibility with PyTorch and TensorFlow, it also
works with any framework supporting Python’s Iterator protocol.
Despite being similar to distributed PyTorch utilities in terms of
file retrieval for training, the usage of WebDataset reduces the
number of queries per worker to the NFS system by housing the
entire dataset in small TAR containers.

Real-time feed loader trough GPU rendering

We have employed CUDA and OpenGL to accelerate the
creation of FractalDB by implementing a parallel version of the
IFS routine. Our approach can be used to generate larger Fractal
datasets, such as Fractal-100k (100 million images) or Fractal-
300k (300 million images), although using NFS system for host-
ing may not be optimal for training on multiple nodes. To address
this, we proposed real-time rendering of Fractal images during
training, using only the descriptors (csv files with the parameters)

2434

L N O

11
12
13
14

Listing 3. Custom loader pseudocode for real-time Fractal rendering.

from torch.utils.data import Dataset
.Class FractalRenderer(Dataset):

def __init__(self):

load_csv ()
construct_instances ()
__len__(self):

return len(total_instances)
render_instance (self ,index)
points = computeIFSCUDA (index)
image = render.EGL (points)
return image
_-getitem__(self ,idx): —> Tuple[Any, Any]:
sample = render.instance (idx)
return sample, target

def
def

def

for each Fractal to generate the corresponding image. FractalDB-
10k (10 million images) requires approximately 271 GB of stor-
age space, while the descriptors take up only 40MB. We devel-
oped a custom loader that includes all the necessary accelera-
tion routines for fast Fractal generation, including the IFS parallel
implementation, OpenGL rendering with CUDA interoperability,
and headless rendering. The proposed custom loader is based on
inheriting the PyTorch Dataset class to maintain consistency with
the PyTorch loader pipeline. The FractalRenderer class loads
Fractal descriptors during the object’s creation and defines the
number of instances per class to determine the dataset size. This
enables the creation of a dataset list used in the PyTorch pipeline
to retrieve samples and targets for training. The __getitem__ func-
tion can retrieve an image by providing an index or ID for each
Fractal, and the render_instance function can generate a Fractal
image using OpenGL and the fast IFS computation. This design
is optimized for the PyTorch pipeline, which uses __getitem__ to
batch multiple images from the loader. A pseudocode of this ap-
proach is provided in Listing 3.

Evaluation

In this section, we present the results of our experiments us-
ing various data loaders and the creation of multiple versions of
FractalDB. We provide a detailed description of our experimen-
tal environment and setup, as well as a comparison between the
original CPU implementation and our GPU approach for Fractal
image creation. Furthermore, we report the outcomes of an image
retrieval test and full training using large FractalDB.

Experimental Environment

During our development, experiments, and evaluation we
utilized the AI Bridging Cloud Infrastructure (ABCI) [9] super-
computer, which is specialized for Al. The supercomputer is com-
posed of two types of nodes: those hosting A100 GPUs and those
equipped with V100 GPUs. The Volta-equipped nodes, which
were more widely available in number, consist of 1,088 compute
nodes with 2 Intel Xeon Gold 6148 CPUs per node (total of 40
cores), 384 GiB of DRAM, 4 NVidia V100 GPUs, and InfiniBand
EDR NICs. Each node is also equipped with 1.6TB of local stor-
age and shares a 35PB Lustre parallel filesystem. The Ampere
type consist of 120 compute nodes with 2 Intel Xeon Platinum
8360Y Processor per node (total of 76 cores), 512 GiB of DRAM,
8 NVidia A100 GPUs, and InfiniBand HDR. Additionally, each
node has 2.0TB of local storage and shares a connection to the
Lustre NFS.

Creation of Large FractalDB by GPU Rendering
This section presents the performance evaluation of our fast
IFS and rendering method for creating FractalDB on ABCI su-

IS&T Infernational Symposium on Electronic Imaging 2023
High Performance Computing for Imaging 2023

Performance comparison on the creation of FractalDB-1k.

Images/sec Total Time
Python-CPU 5.4 2d Oh 30m
CUDA-GPU 1002.5 29m 1s
Large Fractal Datasets.
Type Total Images (millions) Size
FractalDB-1k 1 24GB
FractalDB-10k 10 271GB
FractalDB-21k 21 560GB
FractalDB-100k 100 2.70TB
FractalDB-300k 300 8.10TB

percomputer. We compared our GPU implementation against the
original Python CPU implementation and reported the results in
Table 1. Our GPU implementation achieved a 185x higher image
throughput compared to the CPU implementation due to parallel
computation of IFS on a large number of threads on the GPU.
With this high performance, we could create FractalDB-1k in just
29 minutes as opposed to 2 days in the original implementation.
Larger versions of FractalDB were also created as shown in Table
2. This approach allowed us to produce FractalDB-300k, which
contains 300 million images, similar in size to JFT-300M. This
will enable the study on large datasets on Vision Transformers
and newer architectures.

Large FractalDB Training using Real-time Feed
Loader

We evaluated loading images using different loaders, includ-
ing the standard PyTorch loader with NFS and SSD locations,
WebDatasets, and our GPU renderer. We generated several ver-
sions of the FractalDB, ranging from one thousand to one mil-
lion images. The experiments were conducted on A100 nodes on
ABCI, with 8 MPI jobs (for each GPU inside the node) and a
batch size of 64. We set the number of workers per MPI job to 8.
Figure 4 presents the time required to load all the images. The re-
sults show that the SSD provides the fastest image retrieval, even
for 1 million images which can be loaded in under 13 seconds due
to the high bandwidth and low latency. The NFS system loader
has good performance for small numbers of images but becomes
slow for over 100,000 images. The WebDatasets loader has lower
performance for small numbers of images compared to the other
approaches, but it surpasses the NFS system loader for larger im-
age sizes due to less bottleneck generated from loading TAR files
instead of individual image files. The GPU renderer loader pro-
vides comparable performance for retrieving small numbers of
images, and maintains similar performance to WebDatasets for
larger numbers of images. However, loading the whole dataset
from the SSD is the best strategy for training, providing almost
an order of magnitude faster retrieval. Nevertheless, the larger
FractalDB-100k or FractalDB-300k datasets do not fit in the SSD,
as shown in Table 2.

Next, we assess the impact of image loading on a real train-
ing scenario, using the relatively small DeiT-Tiny Vision Trans-
former architecture [24]. We employed 8 ABCI A100 nodes, to-
taling 64 GPUs, with a maximum batch size of 1,024 limited by
the GPU memory. The number of workers per job was maintained

IS&T Infernational Symposium on Electronic Imaging 2023
8,(0 202% 9

High Performance Computing for Imaging

1.00e+02 e

1.00e+01 / //'
e >

1.00e+00 |
WebDatasets —+—
* GPU A100 - Render —*—
/' SSD (PyTorch) —=—
1.00e-01 g File System‘(PyTorch) —o— 3

1k 10k 100K M
Number of Images

Seconds

Figure 4. Image retrieval test. The test is running on one A100 ABCI node.
We set up the BS = 64, and the number of workers to 8.

1.00e+04
m
o
[=4
(=}
g /
o 1.00e+03
= /
[53
o
Q
i)
o]
Q
_g 1.00e+02 !
[i=
GPU A100 - Render —+—
File System (PyTorch) —x—
WebDatasets —a—
1.00e+01 -
™M 10M 100M

Number of Images

Figure 5. Total time for one epoch on training uing DeiT-Tiny-224 architec-
ture on large versions of FractalDB. We use 64 GPUs, BS = 1024, and the
number of workers set to 8.

at 8. We exclude the SSD case, as the entire dataset can not fit in
the device. Figure 5 illustrates the results of this experiment. Our
GPU renderer loader exhibits the best performance for the 1 mil-
lion image case, in contrast to the WebDataset case which shows
lower performance. In the previous experiment, it was observed
that loading a large number of images was similarly efficient for
both the GPU renderer and WebDatasets loaders. However, dur-
ing full training, the GPU renderer outperformed WebDatasets.
This may be due to other operations, such as pre-processing rou-
tines, that occur during training prior to loading the data onto the
GPU. The bottleneck of accessing data from the NFS system was
observed for more than 10 million images, and the GPU renderer
and WebDatasets were found to have a shorter training time per
epoch. For the 100 million images case, WebDatasets had the best
performance, with a training time of 1 epoch in 42 minutes, fol-
lowed by the GPU renderer in 59 minutes, while using the NFS
file system took 3 hours. As we can observe, for the large dataset
case, using our GPU renderer provides more than 3x of loading
performance compared to the PyTorch loader.

Conclusion

This paper proposes a GPU-accelerated approach for effi-
cient creation and search of FractalDB, enabling the generation
of large-scale versions of the dataset. Our study shows that us-
ing the GPU renderer loader during the training of 100 million
images with multiple GPUs resulted in a 3x reduction in train-
ing time compared to the PyTorch loader. We compared our ap-

243-5

proach to WebDatasets, an alternative for loading large datasets in
a distributed environment using TAR containers. Our GPU ren-
derer showed lower performance when training on large datasets
compared to WebDatasets due to our simplistic rendering imple-
mentation at the EGL level. Future improvements such as asyn-
chronous memory transfers from the GPU to the CPU and im-
plementing the complete transformation pipeline on the GPU are
planned. We believe that our contribution to a quick rendering
and loading pipeline will be beneficial not only for FDSL but also
for any other method that employs computer-generated graphics
for synthetic data.

This paper is based on results obtained from a project,
JPNP20006, subsidized by the New Energy and Industrial Tech-
nology Development Organization (NEDO).

References

[1] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language Models are Unsupervised Multitask Learners. In Interna-
tional Conference on Machine Learning (ICML), 2018.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Lan- guage Understanding. In
North American Chapter of the Association for Computational Lin-
guistics (NAACL), 2019.

[3] Zhai. X, Kolesnikov. A, Houlsby. N, Beyer. L. Scaling vision trans-
formers. In Proceedings of the IEEE/CVF, Conference on Computer
Vision and Pattern Recognition 2022 (pp. 12104-12113).

[4] Kolesnikov. A, Beyer. L, Zhai. X, Puigcerver. J, Yung. J, Gelly. S,
Houlsby. N. Big transfer (bit): General visual representation learning.
InComputer Vision-ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part V 16 2020 (pp.
491-507). Springer International Publishing.

[S] Sun. C, Shrivastava. A, Singh. S, Gupta. A. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE
international conference on computer vision 2017 (pp. 843-852).

[6] Kataoka. H, Okayasu. K, Matsumoto. A, Yamagata. E, Yamada. R,
Inoue. N, Nakamura. A, Satoh. Y. Pre-training without natural im-
ages. In Proceedings of the Asian Conference on Computer Vision
2020.

[7] Kataoka. H, Hayamizu. R, Yamada. R, Nakashima. K, Takashima.
S, Zhang. X, Martinez-Noriega. EJ, Inoue. N, Yokota. R. Replacing
Labeled Real-image Datasets with Auto-generated Contours. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition 2022 (pp. 21232-21241).

[8] Nakashima. K, Kataoka. H, Matsumoto. A, Iwata. K, Inoue. N, Satoh.
Y. Can vision transformers learn without natural images?. In Proceed-
ings of the AAAI Conference on Artificial Intelligence 2022 Jun 28
(Vol. 36, No. 2, pp. 1990-1998).

[9] National Institute of Advanced Industrial Science and Technology,
ABCI Supercomputer, https://abci.ai, 2023, [January 2023].

[10] Asano. YM, Rupprecht. C, Zisserman. A, Vedaldi. A. Pass: An ima-
genet replacement for self-supervised pretraining without humans. In
NeurIPS Track on Datasets and Benchmarks, 2021.

[11] PyTorch Core Team, PyTorch Vision Docs,
https://pytorch.org/vision/stable/datasets.html, [January 2023].

[12] Yang. K, Qinami. K, Fei-Fei. L, Deng. J, Russakovsky. O. Towards
fairer datasets: Filtering and balancing the distribution of the people
subtree in the imagenet hierarchy. In Proceedings of the 2020 confer-
ence on fairness, accountability, and transparency 2020 Jan 27 (pp.
547-558).

2436

[13] Carlini. N, Hayes. J, Nasr. M, Jagielski. M, Sehwag. V, Tramer. F,
Balle. B, Ippolito. D, Wallace. E. Extracting Training Data from Dif-
fusion Models. arXiv preprint arXiv:2301.13188. 2023 Jan 30.

[14] Kataoka. H, Matsumoto. A, Yamada. R, Satoh. Y, Yamagata. E, In-
oue N. Formula-driven supervised learning with recursive tiling pat-
terns. In Proceedings of the IEEE/CVF International Conference on
Computer Vision 2021 (pp. 4098-4105).

[15] M. E. Barnsley. Fractals Everywhere. Academic Press. New York,
1988.

[16] Mahajan. D, Girshick. R, Ramanathan. V, He. K, Paluri. M, Li. Y,
Bharambe. A, Van Der Maaten. L. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European conference
on computer vision (ECCV) 2018 (pp. 181-196).

[17] Thomee. B, Shamma. DA, Friedland. G, Elizalde. B, Ni. K, Poland.
D, Borth. D, Li. LJ. YFCC100M: The new data in multimedia re-
search. Communications of the ACM. 2016 Jan 25;59(2):64-73.

[18] Schuhmann. C, Beaumont. R, Vencu. R, Gordon. CW, Wightman.
R, Cherti. M, Coombes. T, Katta. A, Mullis. C, Wortsman. M,
Schramowski. P. LAION-5B: An open large-scale dataset for train-
ing next generation image-text models. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks
Track.

[19] Dryden. N, Bohringer. R, Ben-Nun. T, Hoefler. T. Clairvoyant
prefetching for distributed machine learning I/0. In Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis 2021 Nov 14 (pp. 1-15).

[20] Nguyen. TT, Trahay. F, Domke. J, Drozd. A, Vatai. E, Liao. J, Wahib.
M, Gerofi. B. Why globally re-shuffle? Revisiting data shuffling in
large scale deep learning. In 2022 IEEE International Parallel and
Distributed Processing Symposium (IPDPS) 2022 May 30 (pp. 1085-
1096). IEEE.

[21] Aizman. A, Maltby. G, Breuel. T. High performance I/O for large
scale deep learning. In 2019 IEEE International Conference on Big
Data (Big Data) 2019 Dec 9 (pp. 5965-5967). IEEE.

[22] Baradad. M, Chen. CF, Wulff. J, Wang. T, Feris. R, Torralba. A,
Isola. P. Procedural Image Programs for Representation Learning. In
Advances in Neural Information Processing Systems 2022 Nov 26.

[23] TOP500, The List, https://www.top500.org/, 2023, [January. 2023]

[24] Touvron. H, Cord. M, Douze. M, Massa. F, Sablayrolles. A, Jégou.
H. Training data-efficient image transformers & distillation through
attention. In International conference on machine learning, 2021, (pp.
10347-10357). PMLR.

Author Biography

Edgar Josafat Martinez-Noriega obtained his Doctorate in Com-
puter Science from the University of Electro-Communications, Tokyo in
2022. Following this, he has been employed as a Post-Doctoral Re-
searcher at the National Institute of Advanced Industrial Science and
Technology (AIST), working on the application of synthetic datasets for
large-scale deep learning. His research focuses on parallel computing,
computer graphics, and deep learning.

Rio Yokota is a professor at the Global Scientific Information and
Computing Center, Tokyo Institute of Technology. His research focuses
on high performance computing, linear algebra, and machine learning.
He has developed several libraries, including ExaFMM for fast multipole
methods, and Hatrix for hierarchical low-rank algorithms. He has re-
ceived the Gordon Bell prize in 2009 using the first GPU supercomputer.
Rio is a member of ACM, IEEE, and SIAM.

IS&T Infernational Symposium on Electronic Imaging 2023
High Performance Computing for Imaging 2023

