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Abstract 

 The COVID-19 epidemic has been a significant healthcare 

challenge across the world. COVID-19 is transmitted 

predominately by respiratory droplets generated when people 

breathe, talk, cough, or sneeze. Wearing a mask is the primary, 

effective, and convenient method of blocking 80% of respiratory 

infections. Therefore, many face mask detection systems have been 

developed to supervise hospitals, airports, publication 

transportation, sports venues, and retail locations. However, the 

current commercial solutions are typically bundled with software 

or hardware, impeding public accessibility. In this paper, we 

propose an in-browser serverless edge-computing-based face mask 

detection solution, called Web-based efficient AI recognition of 

masks (WearMask), which can be deployed on common devices 

(e.g., cell phones, tablets, computers) with internet connections 

using web browsers. The serverless edge-computing design 

minimizes hardware costs (e.g., specific devices or cloud 

computing servers). It provides a holistic edge-computing 

framework for integrating (1) deep learning models (YOLO), (2) 

high-performance neural network inference computing framework 

(NCNN), and (3) a stack-based virtual machine (WebAssembly). 

For end-users, our solution has the advantages of (1) serverless 

edge-computing design with minimal device limitation and privacy 

risk, (2) installation-free deployment, (3) low computing 

requirements, and (4) high detection speed. Our application has 

been launched with public access at facemask-detection.com. 

Introduction  
 Since November 2019, the COVID-19 epidemic had been a 

major social and healthcare issue in the United States. Only during 

Thanksgiving week in 2020, there were 1,147,489 new confirmed 

cases and 10,279 new deaths from COVID-19 [1]. It is necessary 

to wear masks in public places [2]. Even with the successful 

development of many vaccines, wearing a mask is still one of the 

most effective and affordable ways to block 80% of all respiratory 

infections and cut off the route of transmission [3]. Even though 

many states have enforced people to wear masks in public places, 

there are still a considerable number of people who forget or refuse 

to wear masks, or wear masks improperly. Such facts would 

increase the infection rate and eventually bring a heavier load to 

the public health care system. Therefore, many face mask 

monitoring systems have been developed to provide effective 

supervision for hospitals, airports, publication transportation 

systems, sports venues, and retail locations.  

However, the current commercial face mask detection 

systems are typically bundled with specific software or hardware, 

impeding public accessibility. Herein, it would be appealing to 

design a lightweight device-agnostic solution to enable fast and 

convenient face mask detection deployment. In this paper, we 

propose a serverless edge-computing based in-browser face mask 

detection solution, called Web-based efficient AI recognition of 

masks (WearMask), which can be deployed on any common 

devices (e.g., cell phones, tablets, computers) that have an internet 

connection and a web browser. 

 Serverless edge-computing is a recent infrastructural 

evolution of edge-computing, in which computing resources are 

directly used by end-users.  The features of existing computing 

strategies are listed in Tab. 1. As opposed to canonical edge 

computing, serverless edge-computing does not require extra 

hardware between a web server and end-users.  Web browsers 

(e.g., Chrome and Firefox) are used as the interfaces since they are 

the most widely accessible interface for users to access the 

internet, which is device and operating system (OS) agnostic. Most 

internet users are familiar with web browsers, which introduce 

almost no extra learning burdens for deploying our WearMask. We 

aggregate a holistic solution by combining serverless edge-

computing and deep learning-based object detection, without 

advanced GPU. 

The technical contribution of the proposed method is to 

provide a holistic serverless edge-computing framework with (1) 

deep learning models (YOLO [4]), (2) high-performance neural 

network inference computing framework (NCNN [5]), and (3) a 

format running on the stack-based virtual machine (WebAssembly 

[6]). For end-users, the advantages of the proposed web-based 

solution are (1) minimal device limitation, (2)  installation-free  

design,  (3)  low  computing  requirements, and (4) high detection 

speed. Our WearMask application has been launched with public 

access as a website(facemask-detection.com) (Fig. 1). 

 
Figure 1. the connection between the web server and edge devices 

Due to the lightweight device-agnostic design, the proposed 

method would be a cost-efficient solution for public facilities and 

small businesses. For example, setting up a commercial mask 
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detection solution, on average costs $1,000-$4,000, leading to an 

extra burden for small businesses, especially considering the 

financial challenges during the pandemic. As the United States has 

more than 30.2 million small businesses [7] and many public 

facilities, it is essential to find an affordable alternative. 

Table 1. Solution comparison 

Solution Across 
hardware 

No 
installation 

Cross 
platform 

Local 
computing 

Amazon 

Recognition 
PPE detection 

✓ × ✓ × 

Mask detector 
(Android APP) 

✓ × × ✓ 

MaskDetection 

(Kogniz.ai) 
× ✓ ✓ × 

Physical 
detection 
machine 

× ✓ × ✓ 

WearMask 

(Our solution) 
✓ ✓ ✓ ✓ 

 

The remainder of the paper is organized as follows. First, we 

review recent works in face mask detection. Then, we discuss the 

data curation, model selection, and the training process (Yolo-

Fastest [8]). Next, we describe the specific deployment process of 

the model (NCNN, WebAssembly). Finally, we discuss this 

scheme’s existing strengths and weaknesses and other deployment 

schemes’ advantages and disadvantages. 

Background  

Face Mask Detection 
Historically, most of the papers focused on performing face 

recognition while wearing a mask or with other obstructions, while 

few previous studies have been conducted to determine if a subject 

is wearing a mask. Since the COVID-19 pandemic, however, more 

efforts have been devoted to face mask detection due to the 

emergence of the need for reducing COVID-19 transmission. 

To detect occluded faces, Shiming Ge et al. established the 

MAsked FAces (MAFA) dataset, which contains 30,811 images 

and established the LLE-CNNs model, obtaining an Average 

Precision (AP) of 76.4% [9]. A. Nieto-Rodr´ıguez and others 

developed an alarm system for the wearing of masks in the 

operating room, combining the face detector with the mask 

detector, and optimized for low False Positive rate and high Recall, 

and obtained 95% True Positive rate [10]. But its direction is 

limited to the surgical mask in the operating room. Bosheng Qin et 

al. established SRCNet and classified the mask-wearing situation 

into three categories: no facemask-wearing, incorrect facemask-

wearing, and correct facemask-wearing, to classify images and 

obtain 98.70% accuracy [11]. However, it needs to crop the face 

area before face mask detection and concentrate on the face. 

Mohamed Loey et al. used ResNet-50 and SVM to obtain 99.49% 

accuracy on Real-World Masked Face Dataset (RMFD) [12]. Later, 

they used YOLO-V2 based on ResNet-50 for object detection in 

another publication and achieved 81% Average Precision (AP) on 

the Medical Masks Dataset (MMD) and Face Mask Dataset (FMD) 

[13]. G. Jignesh Chowdary et al. achieved 99.9% accuracy on 

Simulated Masked Face Dataset (SMFD) with an InceptionV3 

based model [14]. Nevertheless, since SMFD is a small dataset 

generated using mask images. Results are more difficult to be 

generalized in complicated scenarios. 

As opposed to these studies, whose goals were to develop a 

more precise face mask detection algorithm. To the best of our 

knowledge, no previous publications have investigated the 

serverless edge-computing based in-browser solution of face mask 

detection by aggregating deep learning models, serverless edge-

computing frameworks, and stack-based virtual machines. 

In-browser Serverless Edge Computing 
The typical way of designing an in-browser deep learning 

model is to use TensorFlow.js [15] or ONNX.js [16]. These 

methods use a specialized JavaScript library to read the model file 

and complete the inference by calling computing operations 

written in JavaScript. However, JavaScript is not a typical 

programming language in the deep learning field, with less 

community support. 

ONNX.js 
To use ONNX.js, we first need to convert the existing 

PyTorch [17] model into an ONNX (Open Neural Network 

Exchange) [18] model. ONNX defines various standard operators 

in machine learning and deep learning as an open format to 

facilitate developers to use ONNX as a relay to convert models 

from one framework to another. Now ONNX has supported 

PyTorch, TensorFlow [19], Caffe2, NCNN, and other common 

deep learning frameworks. ONNX.js is a JavaScript library that 

can directly read the ONNX model in the JavaScript environment 

for inference. However, there are limitations to completing in-

browser deployments using ONNX.js: (1) It does not support 

INT64 format variables in the model. Since ONNX.js runs in the 

JavaScript environment and JavaScript does not support INT64 

format variables. The ONNX model, directly exported by PyTorch, 

contains many variables in the INT64 format. Nevertheless, even 

after replacing all variables with INT32 format, the ONNX model 

still does not work correctly. Some native ONNX operators only 

support INT64 as input to the node, such as ConstantOfShape. The 

official ONNX model interpreter no longer supports the modified 

operator. (2) Many operators are not supported. ONNX.js needs to 

read the model and call its built-in JavaScript operations based on 

the model content. Because ONNX.js is a new niche, its supporting 

operators are relatively few. For example, the Resize operation is 

not supported. Considering the rapid emergence of new models 

and ideas nowadays, this is a significant limitation for model 

deployment. 

TensorFlow.js 
Compared to ONNX.js, TensorFlow.js is more widely used 

and supports a richer set of operators. To use TensorFlow.js, we 

first convert the model to a TensorFlow SavedModel format. Since 

there is no official way to convert a PyTorch model to TensorFlow, 

we adapt it to an ONNX model and then convert it into a 

TensorFlow SavedModel. Next, we convert the SavedModel to a 

particular readable web format model that can be read by 

TensorFlow.js in a JavaScript environment. Complex conversion 

chains mean lower reliability and more limitations. For example, in 

our attempt, this process introduces the operator called 
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TensorScatterUpdate, which is not supported by this readable web 

format model. 

Method 

Data Collection 
The data used to train the WearMask model consists of two 

types: (1) faces with masks, and (2) faces without masks. The 

normal face data (without masks) were collected from the WIDER 

FACE dataset [20]. The existing mask datasets were divided into 

two categories, including real faces with real masks (MAFA, 

RMFD [21], MMD) and real faces with generated masks (SMFD). 

Considering that the generated mask images influence model 

generalization ability, we used real images only. Briefly, the 

MAFA is composed of face pictures with various faces with 

heterogeneous masks, backgrounds, and annotation information. 

The RMFD only contains faces without background. Considering 

that the pictures taken by the camera would have a background in 

the real-world scenario, and the background images without faces 

would help the model improve precision, the MAFA dataset was 

finally selected as training data. However, the face in MAFA only 

contains the regions below the eyebrows, while the WIDER FACE 

dataset marks the whole face’s position. To reconcile the 

differences between the annotation protocols of the two datasets, 

the partial annotations in WIDER FACE were extended to whole 

faces, following the protocol that the marked bounding box range 

was from below the hairline to above the lower edge of the chin, 

and the left and right borders do not include the ears. Moreover, we 

also collected some samples of incorrectly wearing masks and 

some edge conditions.  

In the data annotation, we used the CDC mask guidance as a 

criterion to distinguish whether the mask was worn properly or not. 

The guidance requirements include: (1) must cover the nose, (2) 

must cover the mouth, (3) must fit under the chin. (4) must be snug 

on the face. 

As a result, the final training dataset contained 4065 images 

from MAFA, 3894 images from WIDER FACE, and 1138 

additional images from the internet. In general, a total of 9,097 

images with 17,532 labeled boxes were divided into 80% training 

and validation, and 20% testing. 

Modeling 
To deploy deep learning models on edge devices without 

advanced GPUs, the efficiency and size of such models are 

essential. In general, the smaller the model is, the fewer 

computational resource is needed on edge devices. The YOLO-

Fastest model is employed as the detection method in the 

WearMask solution, as a lightweight version of the You only look 

once (YOLO) [4] object detection model. YOLO is one of the most 

widely used fast object detection algorithms. As opposed to the 

traditional anchor-based detection algorithms (e.g., Faster-RCNN 

[22]), YOLO divides the image into predefined grids to match the 

target objects. The grid definition alleviates repetitive anchor 

computation, thus improving the computational efficiency 

dramatically. To further improve the computational speed, YOLO-

Fastest was proposed as an open-source object detection model. In 

the YOLO-Fastest implementation, the EfficientNet-lite [23] is 

employed as the encoder. The total model size is only 1.3 MB 

(MegaByte), compatible with low computing power scenarios such 

as edge devices. 

To further speed up the convergence of the training process, 

the COCO dataset (Microsoft Common Objects in Context, 80 

categories) [23] was employed to pre-train the detection backbone. 

The model was then further trained by the face mask datasets as a 

transfer learning practice [24], by adjusting the network to suit new 

object definitions. 

Serverless Edge-Computing 
Moreover, as opposed to current cloud-computing based 

implementations, we implemented the WearMask as a serverless 

edge-computing framework. For face mask detection, the cloud 

computing solution is limited by the availability of enough internet 

bandwidth for real-time camera video streams, with high costs for 

cloud services. By contrast, our serverless edge-computing design 

minimizes hardware costs by utilizing users’ existing devices. 

Beyond the lower hardware costs, the edge-computing design has 

another critical advantage of low privacy risk. In the WearMask 

framework, the video data are processed locally without uploading 

processes (e.g., upload to cloud servers), which is essential as a 

healthcare-related method. 

In-browser Deployment 
We further implement the edge-computing strategy as an in-

browser deployment by aggregating NCNN and WebAssembly 

(WASM) architectures (Fig. 2). NCNN is an open-source 

optimized inference framework for mobile platforms developed by 

Tencent. It is implemented in pure C++ without third-party library 

dependencies. Herein, the size of the compiled model will be 

minimized, with decent computing efficiency on edge devices, 

especially on devices with ARM architecture chips. It supports 

custom layers, which means it works when there are custom 

operators in the model. Moreover, it has provided tools to convert 

from various frameworks to NCNN. WASM is a low-level 

language that runs in the browser. It is in binary form, which is 

faster than JavaScript programs. Moreover, prevalent web 

browsers, such as Chrome, Edge, Firefox, and WebKit (Safari), 

have already supported WASM with minimal generalizability 

barriers. 

 
Figure 2. the overall workflow of training and deploying of the proposed 
WearMask framework 

Using the NCNN library, we first converted the PyTorch 

model into an NCNN model with a model size of 581 KB. Then 

we created a new C++ program to streamline the detection process 

from image preprocessing to finally output the category, 

confidence, and box position, using the NCNN library for 

inference. After compiling this C++ program into WASM format, 

the entire framework was executed as a function in JavaScript. To 

visualize the detection results, we used HTML and CSS to render 

the detected bounding boxes with original face images. 

Results 

Experimental Setting 
The training was performed on Google Colab (Tesla V100-

SXM2-16GB). The PyTorch Version was 1.7.0 + cu 101. The 
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training code was modified from the public code for YOLO-V3 

[25] from Ultralytics [26]. 

Results 
The qualitative results of our proposed WearMask framework 

are presented in (Fig. 3). It can correctly identify the cases when a 

subject is not wearing the mask properly, such as when the nostrils 

or mouth are exposed. It also has a higher probability of 

recognizing that it is not a mask even if the object uses the hands, 

elbows, or other things such as cell phones to cover the face. The 

model is able to work on multiple faces within the same frame. 

 
Figure 3. the different detection results. a) and b) show the cases with wear 

masks properly, c) and d) are the examples that wear mask improperly, and 
e), f), g) and h) are the cases of not wearing the mask. 

From quantitative results, the trained YOLO-Fastest model 

achieved mean of Average Precision when IoU is 0.5 (mAP@0.5) 

of 0.89 after 120 epochs with batch size 16(Fig. 4). The detection 

FPS on representative edge devices is presented in Fig. 4. 

 
Figure 4. The left figure shows the testing mAP @ 0.5 of different training 
epochs. The right figure shows the different Frames Per Second (FPS) using 
different edge devices. 

After converting the PyTorch model to an NCNN model with 

WASM, we established a website and published it at facemask-

detection.com, to demo the in-browser deployment. 

Comparison with Previous Studies 
Previous related works used various datasets with different 

tasks and evaluation strategies. For instance, some of the methods 

evaluated the performance of detection and classification using 

detection metrics, while other works only evaluated detection or 

classification, respectively. Therefore, most of the previous 

evaluation results cannot be directly compared with the results 

obtained in this paper. In this study, we compared our performance 

with the most similar settings among previous works, which (1) 

used real mask pictures instead of simulated mask pictures, and (2) 

performed simultaneous object detection and classification. 

Among them, the LLE-CNNs model used by Shiming Ge et 

al. obtained an AP of 76.4% [9]. Mohamed Loey et al. used 

YOLOV2 with ResNet-50 and obtained an AP of 81% [13]. Our 

model achieved an AP of 89% (Fig. 4). It shows that the 

performance of this model is at a comparable level with prior arts. 

Moreover, this study aims to build a lightweight edge computing 

framework for face mask detection rather than to achieve the best 

detection accuracy. More testing examples are presented in (Fig. 

5). 

Discussion 
Current mask detection solutions typically require specialized 

equipment or dedicated environments for deployments, which are 

often unscalable, high-cost, or not flexible. To address such issues, 

we proposed a new edge-computing based face mask detection 

method, called WearMask, with the following features:  

1. Serverless edge-computing design. The proposed framework 

can be deployed conveniently with minimal costs and high 

flexibility. The deep learning model size is minimized for 

edge devices. 

2. Easy deployments. The framework is device-agnostic (e.g., 

across computers, laptops, cell phones, or tablets) and 

compatible with major operating systems (e.g., Windows, 

macOS, Linux, Android, and iOS). 

3. Installation free. No installation process and environmental 

settings are required to use the application. Users only need to 

visit our web page and enable camera permissions to trigger 

the software. 

4. Low privacy risk. Since the program is run locally without 

exchanging data, there was no need to save any content or 

upload any data to the server. For privacy purposes, the model 

and data can be disconnected from the Internet after they are 

loaded. 

The proposed mask detection solution also had several 

limitations. Since most common devices do not support infrared 

detection, the program cannot detect human body temperature as 

professional equipment. As a reminder-only device, it cannot force 

a person to wear a mask if they insist on not wearing it.  

The potential future improvements of this mask detection 

scheme will be as follows: (1) The existing dataset divides the no 

mask and the wearing masks incorrectly into one category, which 

causes some misunderstanding in detection. Fine-grain 

classification would be helpful with more training data. (2) For a 

subject that does not wear the mask properly, the current scheme 

can recognize this case. However, it cannot remind the subject of 

the specific incorrect location, such as revealing the nostril or 

mouth. In the future, we can add an attention map [27] to specify 

the location where the mask is not worn properly. (3) Due to the 

system limitation in iOS, only Safari supports WebAssembly-

related functions, and it does not support parallel computing 

features such as SIMD (Single instruction, multiple data). 

Therefore, when running on iOS, the Frames Per Second (FPS) is 

significantly lower than the performance of the same CPU level on 

other system devices. From our experiments, when SIMD-related 

features were enabled, the FPS was twice faster. 

Conclusion 
In this paper, we proposed a system agnostic no-installation 

face mask detection solution to remind people who are not wearing 

a mask or wearing a mask improperly. As a serverless edge-

computing design, it can be run locally on various edge devices, 

with a low risk of privacy, low required network bandwidth, and 

low response time. The deployment scheme tackled insufficient 

support of deep learning from the JavaScript community, by 

aggregating NCNN and WASM. Our WearMask solution is a 

general framework where the detection algorithm can be replaced 
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with other lightweight deep learning models. During the COVID-

19 epidemic, our WearMask solution can monitor and remind 

people to Wear masks, alleviating respiratory infections. 

Figure 5. More testing examples using the proposed WearMask tool masks. 
The results follow the CDC mask guide criteria. 
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