

 WearMask: Fast In-browser Face Mask Detection with

Serverless Edge Computing for COVID-19

Zekun Wang, Data Science Institute, Vanderbilt University, Nashville, TN

Pengwei Wang, Department of Information Science and Engineering, Shandong University, Qingdao, China (Corresponding author)

Peter C. Louis, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN

Lee E. Wheless, Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN

Yuankai Huo, Department of Computer Science, Vanderbilt University, Nashville, TN

Abstract

 The COVID-19 epidemic has been a significant healthcare

challenge across the world. COVID-19 is transmitted

predominately by respiratory droplets generated when people

breathe, talk, cough, or sneeze. Wearing a mask is the primary,

effective, and convenient method of blocking 80% of respiratory

infections. Therefore, many face mask detection systems have been

developed to supervise hospitals, airports, publication

transportation, sports venues, and retail locations. However, the

current commercial solutions are typically bundled with software

or hardware, impeding public accessibility. In this paper, we

propose an in-browser serverless edge-computing-based face mask

detection solution, called Web-based efficient AI recognition of

masks (WearMask), which can be deployed on common devices

(e.g., cell phones, tablets, computers) with internet connections

using web browsers. The serverless edge-computing design

minimizes hardware costs (e.g., specific devices or cloud

computing servers). It provides a holistic edge-computing

framework for integrating (1) deep learning models (YOLO), (2)

high-performance neural network inference computing framework

(NCNN), and (3) a stack-based virtual machine (WebAssembly).

For end-users, our solution has the advantages of (1) serverless

edge-computing design with minimal device limitation and privacy

risk, (2) installation-free deployment, (3) low computing

requirements, and (4) high detection speed. Our application has

been launched with public access at facemask-detection.com.

Introduction
 Since November 2019, the COVID-19 epidemic had been a

major social and healthcare issue in the United States. Only during

Thanksgiving week in 2020, there were 1,147,489 new confirmed

cases and 10,279 new deaths from COVID-19 [1]. It is necessary

to wear masks in public places [2]. Even with the successful

development of many vaccines, wearing a mask is still one of the

most effective and affordable ways to block 80% of all respiratory

infections and cut off the route of transmission [3]. Even though

many states have enforced people to wear masks in public places,

there are still a considerable number of people who forget or refuse

to wear masks, or wear masks improperly. Such facts would

increase the infection rate and eventually bring a heavier load to

the public health care system. Therefore, many face mask

monitoring systems have been developed to provide effective

supervision for hospitals, airports, publication transportation

systems, sports venues, and retail locations.

However, the current commercial face mask detection

systems are typically bundled with specific software or hardware,

impeding public accessibility. Herein, it would be appealing to

design a lightweight device-agnostic solution to enable fast and

convenient face mask detection deployment. In this paper, we

propose a serverless edge-computing based in-browser face mask

detection solution, called Web-based efficient AI recognition of

masks (WearMask), which can be deployed on any common

devices (e.g., cell phones, tablets, computers) that have an internet

connection and a web browser.

 Serverless edge-computing is a recent infrastructural

evolution of edge-computing, in which computing resources are

directly used by end-users. The features of existing computing

strategies are listed in Tab. 1. As opposed to canonical edge

computing, serverless edge-computing does not require extra

hardware between a web server and end-users. Web browsers

(e.g., Chrome and Firefox) are used as the interfaces since they are

the most widely accessible interface for users to access the

internet, which is device and operating system (OS) agnostic. Most

internet users are familiar with web browsers, which introduce

almost no extra learning burdens for deploying our WearMask. We

aggregate a holistic solution by combining serverless edge-

computing and deep learning-based object detection, without

advanced GPU.

The technical contribution of the proposed method is to

provide a holistic serverless edge-computing framework with (1)

deep learning models (YOLO [4]), (2) high-performance neural

network inference computing framework (NCNN [5]), and (3) a

format running on the stack-based virtual machine (WebAssembly

[6]). For end-users, the advantages of the proposed web-based

solution are (1) minimal device limitation, (2) installation-free

design, (3) low computing requirements, and (4) high detection

speed. Our WearMask application has been launched with public

access as a website(facemask-detection.com) (Fig. 1).

Figure 1. the connection between the web server and edge devices

Due to the lightweight device-agnostic design, the proposed

method would be a cost-efficient solution for public facilities and

small businesses. For example, setting up a commercial mask

IS&T International Symposium on Electronic Imaging 2023
High Performance Computing for Imaging 2023 229-1

https://doi.org/10.2352/EI.2023.35.11.HPCI-229
© 2023, Society for Imaging Science and Technology

http://facemask-detection.com/
http://facemask-detection.com/

detection solution, on average costs $1,000-$4,000, leading to an

extra burden for small businesses, especially considering the

financial challenges during the pandemic. As the United States has

more than 30.2 million small businesses [7] and many public

facilities, it is essential to find an affordable alternative.

Table 1. Solution comparison

Solution Across
hardware

No
installation

Cross
platform

Local
computing

Amazon

Recognition
PPE detection

✓ × ✓ ×

Mask detector
(Android APP)

✓ × × ✓

MaskDetection

(Kogniz.ai)
× ✓ ✓ ×

Physical
detection
machine

× ✓ × ✓

WearMask

(Our solution)
✓ ✓ ✓ ✓

The remainder of the paper is organized as follows. First, we

review recent works in face mask detection. Then, we discuss the

data curation, model selection, and the training process (Yolo-

Fastest [8]). Next, we describe the specific deployment process of

the model (NCNN, WebAssembly). Finally, we discuss this

scheme’s existing strengths and weaknesses and other deployment

schemes’ advantages and disadvantages.

Background

Face Mask Detection
Historically, most of the papers focused on performing face

recognition while wearing a mask or with other obstructions, while

few previous studies have been conducted to determine if a subject

is wearing a mask. Since the COVID-19 pandemic, however, more

efforts have been devoted to face mask detection due to the

emergence of the need for reducing COVID-19 transmission.

To detect occluded faces, Shiming Ge et al. established the

MAsked FAces (MAFA) dataset, which contains 30,811 images

and established the LLE-CNNs model, obtaining an Average

Precision (AP) of 76.4% [9]. A. Nieto-Rodr´ıguez and others

developed an alarm system for the wearing of masks in the

operating room, combining the face detector with the mask

detector, and optimized for low False Positive rate and high Recall,

and obtained 95% True Positive rate [10]. But its direction is

limited to the surgical mask in the operating room. Bosheng Qin et

al. established SRCNet and classified the mask-wearing situation

into three categories: no facemask-wearing, incorrect facemask-

wearing, and correct facemask-wearing, to classify images and

obtain 98.70% accuracy [11]. However, it needs to crop the face

area before face mask detection and concentrate on the face.

Mohamed Loey et al. used ResNet-50 and SVM to obtain 99.49%

accuracy on Real-World Masked Face Dataset (RMFD) [12]. Later,

they used YOLO-V2 based on ResNet-50 for object detection in

another publication and achieved 81% Average Precision (AP) on

the Medical Masks Dataset (MMD) and Face Mask Dataset (FMD)

[13]. G. Jignesh Chowdary et al. achieved 99.9% accuracy on

Simulated Masked Face Dataset (SMFD) with an InceptionV3

based model [14]. Nevertheless, since SMFD is a small dataset

generated using mask images. Results are more difficult to be

generalized in complicated scenarios.

As opposed to these studies, whose goals were to develop a

more precise face mask detection algorithm. To the best of our

knowledge, no previous publications have investigated the

serverless edge-computing based in-browser solution of face mask

detection by aggregating deep learning models, serverless edge-

computing frameworks, and stack-based virtual machines.

In-browser Serverless Edge Computing
The typical way of designing an in-browser deep learning

model is to use TensorFlow.js [15] or ONNX.js [16]. These

methods use a specialized JavaScript library to read the model file

and complete the inference by calling computing operations

written in JavaScript. However, JavaScript is not a typical

programming language in the deep learning field, with less

community support.

ONNX.js
To use ONNX.js, we first need to convert the existing

PyTorch [17] model into an ONNX (Open Neural Network

Exchange) [18] model. ONNX defines various standard operators

in machine learning and deep learning as an open format to

facilitate developers to use ONNX as a relay to convert models

from one framework to another. Now ONNX has supported

PyTorch, TensorFlow [19], Caffe2, NCNN, and other common

deep learning frameworks. ONNX.js is a JavaScript library that

can directly read the ONNX model in the JavaScript environment

for inference. However, there are limitations to completing in-

browser deployments using ONNX.js: (1) It does not support

INT64 format variables in the model. Since ONNX.js runs in the

JavaScript environment and JavaScript does not support INT64

format variables. The ONNX model, directly exported by PyTorch,

contains many variables in the INT64 format. Nevertheless, even

after replacing all variables with INT32 format, the ONNX model

still does not work correctly. Some native ONNX operators only

support INT64 as input to the node, such as ConstantOfShape. The

official ONNX model interpreter no longer supports the modified

operator. (2) Many operators are not supported. ONNX.js needs to

read the model and call its built-in JavaScript operations based on

the model content. Because ONNX.js is a new niche, its supporting

operators are relatively few. For example, the Resize operation is

not supported. Considering the rapid emergence of new models

and ideas nowadays, this is a significant limitation for model

deployment.

TensorFlow.js
Compared to ONNX.js, TensorFlow.js is more widely used

and supports a richer set of operators. To use TensorFlow.js, we

first convert the model to a TensorFlow SavedModel format. Since

there is no official way to convert a PyTorch model to TensorFlow,

we adapt it to an ONNX model and then convert it into a

TensorFlow SavedModel. Next, we convert the SavedModel to a

particular readable web format model that can be read by

TensorFlow.js in a JavaScript environment. Complex conversion

chains mean lower reliability and more limitations. For example, in

our attempt, this process introduces the operator called

229-2
IS&T International Symposium on Electronic Imaging 2023

High Performance Computing for Imaging 2023

TensorScatterUpdate, which is not supported by this readable web

format model.

Method

Data Collection
The data used to train the WearMask model consists of two

types: (1) faces with masks, and (2) faces without masks. The

normal face data (without masks) were collected from the WIDER

FACE dataset [20]. The existing mask datasets were divided into

two categories, including real faces with real masks (MAFA,

RMFD [21], MMD) and real faces with generated masks (SMFD).

Considering that the generated mask images influence model

generalization ability, we used real images only. Briefly, the

MAFA is composed of face pictures with various faces with

heterogeneous masks, backgrounds, and annotation information.

The RMFD only contains faces without background. Considering

that the pictures taken by the camera would have a background in

the real-world scenario, and the background images without faces

would help the model improve precision, the MAFA dataset was

finally selected as training data. However, the face in MAFA only

contains the regions below the eyebrows, while the WIDER FACE

dataset marks the whole face’s position. To reconcile the

differences between the annotation protocols of the two datasets,

the partial annotations in WIDER FACE were extended to whole

faces, following the protocol that the marked bounding box range

was from below the hairline to above the lower edge of the chin,

and the left and right borders do not include the ears. Moreover, we

also collected some samples of incorrectly wearing masks and

some edge conditions.

In the data annotation, we used the CDC mask guidance as a

criterion to distinguish whether the mask was worn properly or not.

The guidance requirements include: (1) must cover the nose, (2)

must cover the mouth, (3) must fit under the chin. (4) must be snug

on the face.

As a result, the final training dataset contained 4065 images

from MAFA, 3894 images from WIDER FACE, and 1138

additional images from the internet. In general, a total of 9,097

images with 17,532 labeled boxes were divided into 80% training

and validation, and 20% testing.

Modeling
To deploy deep learning models on edge devices without

advanced GPUs, the efficiency and size of such models are

essential. In general, the smaller the model is, the fewer

computational resource is needed on edge devices. The YOLO-

Fastest model is employed as the detection method in the

WearMask solution, as a lightweight version of the You only look

once (YOLO) [4] object detection model. YOLO is one of the most

widely used fast object detection algorithms. As opposed to the

traditional anchor-based detection algorithms (e.g., Faster-RCNN

[22]), YOLO divides the image into predefined grids to match the

target objects. The grid definition alleviates repetitive anchor

computation, thus improving the computational efficiency

dramatically. To further improve the computational speed, YOLO-

Fastest was proposed as an open-source object detection model. In

the YOLO-Fastest implementation, the EfficientNet-lite [23] is

employed as the encoder. The total model size is only 1.3 MB

(MegaByte), compatible with low computing power scenarios such

as edge devices.

To further speed up the convergence of the training process,

the COCO dataset (Microsoft Common Objects in Context, 80

categories) [23] was employed to pre-train the detection backbone.

The model was then further trained by the face mask datasets as a

transfer learning practice [24], by adjusting the network to suit new

object definitions.

Serverless Edge-Computing
Moreover, as opposed to current cloud-computing based

implementations, we implemented the WearMask as a serverless

edge-computing framework. For face mask detection, the cloud

computing solution is limited by the availability of enough internet

bandwidth for real-time camera video streams, with high costs for

cloud services. By contrast, our serverless edge-computing design

minimizes hardware costs by utilizing users’ existing devices.

Beyond the lower hardware costs, the edge-computing design has

another critical advantage of low privacy risk. In the WearMask

framework, the video data are processed locally without uploading

processes (e.g., upload to cloud servers), which is essential as a

healthcare-related method.

In-browser Deployment
We further implement the edge-computing strategy as an in-

browser deployment by aggregating NCNN and WebAssembly

(WASM) architectures (Fig. 2). NCNN is an open-source

optimized inference framework for mobile platforms developed by

Tencent. It is implemented in pure C++ without third-party library

dependencies. Herein, the size of the compiled model will be

minimized, with decent computing efficiency on edge devices,

especially on devices with ARM architecture chips. It supports

custom layers, which means it works when there are custom

operators in the model. Moreover, it has provided tools to convert

from various frameworks to NCNN. WASM is a low-level

language that runs in the browser. It is in binary form, which is

faster than JavaScript programs. Moreover, prevalent web

browsers, such as Chrome, Edge, Firefox, and WebKit (Safari),

have already supported WASM with minimal generalizability

barriers.

Figure 2. the overall workflow of training and deploying of the proposed
WearMask framework

Using the NCNN library, we first converted the PyTorch

model into an NCNN model with a model size of 581 KB. Then

we created a new C++ program to streamline the detection process

from image preprocessing to finally output the category,

confidence, and box position, using the NCNN library for

inference. After compiling this C++ program into WASM format,

the entire framework was executed as a function in JavaScript. To

visualize the detection results, we used HTML and CSS to render

the detected bounding boxes with original face images.

Results

Experimental Setting
The training was performed on Google Colab (Tesla V100-

SXM2-16GB). The PyTorch Version was 1.7.0 + cu 101. The

IS&T International Symposium on Electronic Imaging 2023
High Performance Computing for Imaging 2023 229-3

training code was modified from the public code for YOLO-V3

[25] from Ultralytics [26].

Results
The qualitative results of our proposed WearMask framework

are presented in (Fig. 3). It can correctly identify the cases when a

subject is not wearing the mask properly, such as when the nostrils

or mouth are exposed. It also has a higher probability of

recognizing that it is not a mask even if the object uses the hands,

elbows, or other things such as cell phones to cover the face. The

model is able to work on multiple faces within the same frame.

Figure 3. the different detection results. a) and b) show the cases with wear

masks properly, c) and d) are the examples that wear mask improperly, and
e), f), g) and h) are the cases of not wearing the mask.

From quantitative results, the trained YOLO-Fastest model

achieved mean of Average Precision when IoU is 0.5 (mAP@0.5)

of 0.89 after 120 epochs with batch size 16(Fig. 4). The detection

FPS on representative edge devices is presented in Fig. 4.

Figure 4. The left figure shows the testing mAP @ 0.5 of different training
epochs. The right figure shows the different Frames Per Second (FPS) using
different edge devices.

After converting the PyTorch model to an NCNN model with

WASM, we established a website and published it at facemask-

detection.com, to demo the in-browser deployment.

Comparison with Previous Studies
Previous related works used various datasets with different

tasks and evaluation strategies. For instance, some of the methods

evaluated the performance of detection and classification using

detection metrics, while other works only evaluated detection or

classification, respectively. Therefore, most of the previous

evaluation results cannot be directly compared with the results

obtained in this paper. In this study, we compared our performance

with the most similar settings among previous works, which (1)

used real mask pictures instead of simulated mask pictures, and (2)

performed simultaneous object detection and classification.

Among them, the LLE-CNNs model used by Shiming Ge et

al. obtained an AP of 76.4% [9]. Mohamed Loey et al. used

YOLOV2 with ResNet-50 and obtained an AP of 81% [13]. Our

model achieved an AP of 89% (Fig. 4). It shows that the

performance of this model is at a comparable level with prior arts.

Moreover, this study aims to build a lightweight edge computing

framework for face mask detection rather than to achieve the best

detection accuracy. More testing examples are presented in (Fig.

5).

Discussion
Current mask detection solutions typically require specialized

equipment or dedicated environments for deployments, which are

often unscalable, high-cost, or not flexible. To address such issues,

we proposed a new edge-computing based face mask detection

method, called WearMask, with the following features:

1. Serverless edge-computing design. The proposed framework

can be deployed conveniently with minimal costs and high

flexibility. The deep learning model size is minimized for

edge devices.

2. Easy deployments. The framework is device-agnostic (e.g.,

across computers, laptops, cell phones, or tablets) and

compatible with major operating systems (e.g., Windows,

macOS, Linux, Android, and iOS).

3. Installation free. No installation process and environmental

settings are required to use the application. Users only need to

visit our web page and enable camera permissions to trigger

the software.

4. Low privacy risk. Since the program is run locally without

exchanging data, there was no need to save any content or

upload any data to the server. For privacy purposes, the model

and data can be disconnected from the Internet after they are

loaded.

The proposed mask detection solution also had several

limitations. Since most common devices do not support infrared

detection, the program cannot detect human body temperature as

professional equipment. As a reminder-only device, it cannot force

a person to wear a mask if they insist on not wearing it.

The potential future improvements of this mask detection

scheme will be as follows: (1) The existing dataset divides the no

mask and the wearing masks incorrectly into one category, which

causes some misunderstanding in detection. Fine-grain

classification would be helpful with more training data. (2) For a

subject that does not wear the mask properly, the current scheme

can recognize this case. However, it cannot remind the subject of

the specific incorrect location, such as revealing the nostril or

mouth. In the future, we can add an attention map [27] to specify

the location where the mask is not worn properly. (3) Due to the

system limitation in iOS, only Safari supports WebAssembly-

related functions, and it does not support parallel computing

features such as SIMD (Single instruction, multiple data).

Therefore, when running on iOS, the Frames Per Second (FPS) is

significantly lower than the performance of the same CPU level on

other system devices. From our experiments, when SIMD-related

features were enabled, the FPS was twice faster.

Conclusion
In this paper, we proposed a system agnostic no-installation

face mask detection solution to remind people who are not wearing

a mask or wearing a mask improperly. As a serverless edge-

computing design, it can be run locally on various edge devices,

with a low risk of privacy, low required network bandwidth, and

low response time. The deployment scheme tackled insufficient

support of deep learning from the JavaScript community, by

aggregating NCNN and WASM. Our WearMask solution is a

general framework where the detection algorithm can be replaced

229-4
IS&T International Symposium on Electronic Imaging 2023

High Performance Computing for Imaging 2023

http://facemask-detection.com/
http://facemask-detection.com/

with other lightweight deep learning models. During the COVID-

19 epidemic, our WearMask solution can monitor and remind

people to Wear masks, alleviating respiratory infections.

Figure 5. More testing examples using the proposed WearMask tool masks.
The results follow the CDC mask guide criteria.

IS&T International Symposium on Electronic Imaging 2023
High Performance Computing for Imaging 2023 229-5

References
[1] 1Point3Acres.com. Global covid-19 tracker & interactive charts: Real

time updates & digestable information for everyone.

https://coronavirus. 1point3acres.com/ (2020)

[2] D.K. Chu, E.A. Akl, S. Duda, K. Solo, S. Yaacoub, H.J.

Schu¨nemann, A. Elharakeh, A. Bognanni, T. Lotfi, M. Loeb, et al.,

The Lancet (2020)

[3] C. for Disease Control, Prevention, et al., Document modifi´e le

10 (2020)

[4] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, in Proceedings of the

IEEE conference on computer vision and pattern recognition (2016),

pp. 779-788

[5] nihui, et al. Ncnn: A high-performance neural network inference

framework optimized for the mobile platform.

https://github.com/Tencent/ncnn (2020)

[6] A. Rossberg, B.L. Titzer, A. Haas, D.L. Schuff, D. Gohman, L.

Wagner, A. Zakai, J. Bastien, M. Holman, Communications of the

ACM 61(12), 107 (2018)

[7] SBA. 2018 small business profiles. https://www.sba.gov/sites/default/

files/advocacy/2018-Small-Business-Profiles-US.pdf (2018)

[8] dog qiuqiu, et al. Yolo-fastest: Yolo universal target detection model

combined with efficientnet-lite. https://github.com/dog-qiuqiu/Yolo-

Fastest (2020)

[9] S. Ge, J. Li, Q. Ye, Z. Luo, in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2017), pp. 2682-2690

[10] A. Nieto-Rodr´ıguez, M. Mucientes, V.M. Brea, in Iberian

Conference on Pattern Recognition and Image Analysis (Springer,

2015), pp. 138–145

[11] B. QIN, D. LI, Sensors (Basel, Switzerland) (2020). DOI

10.3390/s20185236

[12] M. Loey, G. Manogaran, M.H.N. Taha, N.E.M. Khalifa,

Measurement 167, 108288 (2020)

[13] M. Loey, G. Manogaran, M.H.N. Taha, N.E.M. Khalifa, Sustainable

Cities and Society p. 102600 (2020)

[14] G.J. Chowdary, N.S. Punn, S.K. Sonbhadra, S. Agarwal, arXiv

preprint arXiv:2009.08369 (2020)

[15] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu, K.

Zhang, S. Cai, E. Nielsen, D. Soergel, et al., arXiv preprint

arXiv:1901.05350 (2019)

[16] Microsoft. Onnx.js: run onnx models using javascript.

https://github.com/ microsoft/onnxjs (2020)

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., in Advances in

neural information processing systems (2019), pp. 8026-8037

[18] J. Bai, F. Lu, K. Zhang, et al. Onnx: Open neural network exchange.

https://github.com/onnx/onnx (2019)

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., in 12th {USENIX}

symposium on operating systems design and implementation

({OSDI} 16) (2016), pp. 265-283

[20] S. Yang, P. Luo, C.C. Loy, X. Tang, in Proceedings of the IEEE

conference on computer vision and pattern recognition (2016), pp.

5525-5533

[21] Z. Wang, G. Wang, B. Huang, Z. Xiong, Q. Hong, H. Wu, P. Yi, K.

Jiang, N. Wang, Y. Pei, et al., arXiv preprint arXiv:2003.09093

(2020)

[22] S. Ren, K. He, R. Girshick, J. Sun, IEEE transactions on pattern

analysis and machine intelligence 39(6), 1137 (2016)

[23] M. Tan, Q.V. Le, arXiv preprint arXiv:1905.11946 (2019)

[24] S.J. Pan, Q. Yang, IEEE Transactions on knowledge and data

engineering 22(10), 1345 (2009)

[25] J. Redmon, A. Farhadi, arXiv preprint arXiv:1804.02767 (2018)

[26] G. Jocher, Ttayu, Josh Veitch-Michaelis, Gabriel Bianconi, Fatih

Baltac谋, Daniel Suess, and WannaSeaU. ultralytics/yolov3: Video

Inference, Transfer Learning Improvements (2019)

[27] J. Schlemper, O. Oktay, L. Chen, J. Matthew, C. Knight, B. Kainz, B.

Glocker, D. Rueckert, arXiv preprint arXiv:1804.05338 (2018)

Author Biography
Zekun Wang received her BS in statistics from the Central South University

(2018) and his master’s degree in Data Science from Vanderbilt University

(2021). Since then, he has worked as a Research Engineer at Indeed, Inc.

His work focused on applied machine learning solutions for small

businesses.

229-6
IS&T International Symposium on Electronic Imaging 2023

High Performance Computing for Imaging 2023

