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Abstract

Lightness perception is a long-standing topic in research on
human vision, but very few image-computable models of light-
ness have been formulated. Recent work in computer vision has
used artifical neural networks and deep learning to estimate sur-
face reflectance and other intrinsic image properties. Here we
investigate whether such networks are useful as models of human
lightness perception. We train a standard deep learning architec-
ture on a novel image set that consists of simple geometric ob-
Jjects with a few different surface reflectance patterns. We find
that the model performs well on this image set, generalizes well
across small variations, and outperforms three other computa-
tional models. The network has partial lightness constancy, much
like human observers, in that illumination changes have a sys-
tematic but moderate effect on its reflectance estimates. However,
the network generalizes poorly beyond the type of images in its
training set: it fails on a lightness matching task with unfamil-
iar stimuli, and does not account for several lightness illusions
experienced by human observers.

Introduction

Human visual perception begins with the formation of im-
ages on the retina, and from this stimulus the visual system con-
structs useful representations of scene and object properties, in-
cluding distance, shape, colour, and material. Making these in-
ferences is often a difficult computational problem, and how the
human visual system carries out this task is poorly understood.
Lightness perception is one such problem that has been studied
extensively. Reflectance is the proportion light that is reflected by
a surface in the visible wavelength range (a purely physical prop-
erty), and lightness is perceived reflectance (a perceptual prop-
erty). Reflectance estimation is difficult because retinal stimuli
are deeply ambiguous, at least locally: the light intensity at a
given location on the retina could have been generated by a wide
range of combinations of reflectance and illumination, so from
pointwise luminance alone it is not possible to make accurate es-
timates of reflectance.

Decades of work on lightness perception have led to a good
qualitative and sometimes quantitative understanding of some as-
pects of how human vision infers reflectance, including the role
of shadow boundaries, occlusion edges, and natural scene statis-
tics. (For reviews, see [1, 2, 3, 4, 5, 6].) However, this work has
resulted in few image-computable models that predict human per-
cepts over a wide range of scenes. Here we investigate whether
recent progress using deep learning on the closely related prob-
lem of intrinsic image estimation in computer vision [7, 8, 9] may
provide a new approach to modelling human lightness perception.
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Previous work

There have been several attempts recently to use neural net-
works to estimate reflectance and other scene properties [7, 8, 9].
For example, Li et al. [9] used photorealistic renderings of com-
plex scenes, and trained a network to map colour input images to
chromatic reflectance. This network also learned to estimate local
3D shape and lighting conditions. The network was successful
enough to support applications like object insertion, where the
user adds new objects into a photograph, and the inserted objects
are shaded in a way that is consistent with lighting in the rest of
the scene.

These impressive results raise interesting questions with re-
gard to modelling human vision. Do these networks really learn
general strategies for lightness, or do they learn heuristics that are
specific to the training images and do not support robust, general-
purpose lightness perception? Are they promising starting points
for models of human vision? Here we approach these questions
by examining an intrinsic image network using the same kind
of lightness perception experiments often used with human ob-
servers, and testing whether the network behaves like human ob-
servers in important ways. To anticipate, we find that the network
is successful and human-like in some ways, but breaks down dra-
matically in other ways, particularly when generalizing to new
kinds of scenes. An earlier version of this work was reported in
[10].

Network and training
Network architecture

We used PyTorch to implement a subset of InverseRender-
Net [8]. The resulting network was a 30-layer convolutional neu-
ral network (CNN) in an hourglass architecture with skip connec-
tions. In this architecture, the input image is progressively down-
sampled to a narrow bottleneck layer with many feature maps, and
then progressively expanded back up to its original size. The net-
work mapped an n X n achromatic luminance input image to an
equally sized output image that gave pixelwise estimates of achro-
matic reflectance. To indicate that the network is derived from but
also different from InverseRenderNet, we call it IRNet.

Training images

We used Blender [11], an open-source rendering package,
to render 100,000 training images, 5,000 validation images, and
5,000 test images of random geometric objects with achromatic
Lambertian surfaces (Figure 1, top row). We used images of sim-
ple geometric objects as a first step in exploring the hypothesis
that many properties of human lightness perception arise from
generic features of 3D scenes, such as cast shadows and occlu-
sion, rather than from more subtle properties of genuine natural
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scenes. Each scene contained 20 randomly positioned geometric
objects (spheres, cubes, cylinders, icosahedra, cones, and tori).
Each object had a one-third probability of being (1) coloured
solid grey, with reflectance uniformly drawn from the interval
[0.1, 0.9], (2) having a greyscale Voronoi texture, or (3) having
a greyscale low-pass noise texture. The background consisted
of three planes, intersecting at randomly chosen angles between
80° and 100°, and each independently assigned a randomly cho-
sen reflectance from [0.1, 0.9]. Lighting consisted of an ambient
source with fixed intensity, and a directional (i.e., infinitely dis-
tant) source whose intensity varied from trial to trial. The direc-
tion of the directional source was randomized across scenes, with
azimuth randomly choosen between 30° and 60°, and elevation
randomly chosen between 50° and 80°. The virtual camera was
located at a position with an azimuth randomly chosen between
30° and 60°, and an elevation between 10° and 40°. The camera
was directed at a randomly chosen point within 0.7 distance units
of the origin (which was approximately where the three back-
ground planes intersected). All surfaces were Lambertian, and
rendering did not include interreflections. We rendered a 256 x
256 luminance image of each scene, and an equally sized image
of the reflectance at each pixel.

Training

We used supervised learning to train the network to infer re-
flectance images from luminance images. We used the Adam op-
timizer [12] with a mean-squared error criterion, and a batch size
of five images. Batches were randomly sampled without replace-
ment from the 100,000 training images. Training continued until
error on the 5,000 validation images had asymptoted, which typ-
ically occurred within one or two epochs. We found that training
was fast and reliable.

Network evaluation
Reflectance estimates

Figure 1 shows a typical luminance image (row 1, left panel)
and corresponding reflectance image (row 1, right panel), as well
as the trained network’s output (row 2, left panel). The output
was a reasonably good estimate of the reflectance image, and in
particular there was little intrusion of cast shadows and shading
(luminance variation as a function of surface orientation relative
to the light source) on the reflectance estimate, with just some
residual mottling visible. Figure 1 also shows a scatterplot of the
network’s estimated vs. true reflectance at 1,000 pixels randomly
selected from 100 test images (row 2, right panel), and indicates
that the reflectance estimates were strongly correlated with true
reflectance. The network’s median reflectance error across pixels
was 0.03, in reflectance units that range from zero to one.

Figure 1 also shows the outputs of several other algorithms
for comparison. The third row shows the results of a null model,
whose reflectance estimates are simply an affine transform of the
luminance input image. We chose the affine transform parameters
by regressing true reflectance against luminance for individual im-
ages. This results in a generous estimate of model performance,
as the model output is optimized for individual images, relying
on knowledge of the true reflectance map for each image. The
median pixelwise reflectance error of the null model was 0.11.

The remaining rows of Figure 1 show results for three ad-
ditional computational models. For each of these models, there
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Figure 1. Rendered stimuli and model outputs. The top row shows a typical
luminance image (left panel) and its corresponding reflectance image (right
panel). Each remaining row shows the output of a model in response to the
luminance image (left panel) and a scatterplot of model output versus true
reflectance at 1,000 pixels randomly selected from 100 test images.
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are reasons why they are perhaps not directly comparable to IR-
Net, but given the dearth of image-computable models of light-
ness, they provide informative if imperfect points of compari-
son. McCann [13, 14] presents his variant of retinex as a model
of the ‘sensation’ of lightness; he distinguishes this from per-
ceived reflectance, which he regards as a cognitively inferred
property. (For McCann’s model, we used the recommended pa-
rameter value nlterations=4.) Dakin and Bex [15] describe their
bandpass normalization model sometimes as an account of light-
ness, and sometimes as an account of brightness (i.e., perceived
luminance). Blakeslee and McCourt’s [16] ODOG model is a
model of brightness, but it has been evaluated as a model of light-
ness as well [17]. The bottom three rows of Figure 1 show the
outputs of these models to the luminance image in the top row. In
all three cases, cast shadows and shading are clearly visible in the
model outputs (left panels), so the models did not fully discount
lighting for these stimuli. These models give outputs in arbitrary
units, not estimates of absolute reflectance, so the scatterplots in
Figure 1 (right panels) show model outputs after an affine trans-
form that gives them the best sum-of-squares prediction of true
reflectance for individual images. This affine transform was fit-
ted for each model via linear regression of true reflectance ver-
sus model output for individual images, as was done for the null
model. Even after this optimal affine transform, all three model
outputs were only loosely correlated with true reflectance. The
models had about the same median reflectance error as the null
model that is simply an affine transform of luminance (0.11), and
much higher errors than IRNet (0.03).

Generalization

As a test of IRNet’s ability to generalize even minimally be-
yond the type of images used to train it, we trained and evalu-
ated the network on several variations of the geometric-object im-
age set described above. We rendered images containing (1) only
spheres, (2) only cubes, or (3) all six object types in the original
image set. We also rendered images where objects had (1) uni-
form reflectance, with each object assigned a random reflectance
from [0.1, 0.9], or (2) all three reflectance patterns in the origi-
nal image set. Crossing these two factors gave 3 x 2 = 6 image
sets. For each image set we rendered 100,000 training images,
5,000 validation images, and 5,000 test images. We trained an
instance of IRNet on each of the six training sets, and evaluated
each trained network on each of the six test sets, for a total of 36
evaluations.

Figure 2 shows the median reflectance error of each trained
network on each test set. The network generalized well: the me-
dian error did not vary dramatically between estimates for the im-
age type a network was trained on, and for a novel image type. In
all cases, the median reflectance error was much less than errors
found above for the null model and for previous computational
models (around 0.11). We had expected that the variety of surface
patterns and 3D shapes in the original image set would provide
important information during training, but in fact the network was
somewhat robust against mismatch between training and test sets,
at least for these fairly small differences.

Thouless ratios
To evaluate the network’s degree of lightness constancy, we
ran human observers, the network, and the three other compu-
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Figure 2.  Generalization error for IRNet. Each cluster of bars shows the
median reflectance error for an instance of IRNet trained on a single image
set (named in the cluster’s label on the x-axis) and tested on six image sets.
The top word in the x-axis labels indicates the type of geometric object in the
image set (spheres, cubes, or mixed shapes), and the bottom word indicates
the surface pattern (solid or mixed textures). The order of test sets within
each cluster is the same as the order of training sets indicated on the x-axis,
e.g., within each cluster, the leftmost bar shows test error on the "spheres
solid” image set, and the rightmost bar shows test error on "mixed textured’.
Yellow bars show errors where the network was tested on the same type of
image it was trained on, and blue bars show errors where the network was
tested on a novel type of image.

tational models discussed above in a lightness matching experi-
ment. Figure 3(a) shows a typical stimulus, rendered in Blender.
The reference cube (on the right) was in shadow, and was illumi-
nated with the same ambient lighting intensity on all trials. The
reference cube was given a reflectance of 0.1, 0.2, or 0.4 on dif-
ferent trials. The match cube (on the left) was not in shadow, and
the intensity of its illumination from a distant point light source
varied across seven values from trial to trial.

In the experiment with human observers, six observers were
asked to adjust the reflectance of the match cube so that it ap-
peared to be the same as the reflectance of the reference cube.
The experiment consisted of three blocks, each block including
all three reflectance conditions of the reference cube and all seven
lighting conditions of the match cube. We also included a con-
dition where the stimuli were flipped left-to-right, for a total of
3 x 7 x2 =42 trials per block. Stimuli were displayed on a
gamma-corrected monitor so that the physical stimulus luminance
at each pixel was proportional to rendered image luminance.

In the simulated experiment with IRNet (trained on the orig-
inal Blender image set, i.e., six geometric shapes and three sur-
face texture patterns) and the other models, we found the mod-
els’” output on the top face of the match cube for several match
cube reflectances, and used interpolation to find the match cube
reflectance for which the model gave the same output on the top
face of the match cube and the reference cube.

Figure 3 shows results for a typical human observer as well
as model observers, plotting match reflectance as a function of
the illuminance on the top face of the match cube. Each panel
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shows results for the three reference reflectances (0.1 in red, 0.2
in green, 0.4 in blue). For the human observer, match settings de-
creased moderately as illuminance increased (Figure 3(b)). This is
a classic finding, where higher illuminance makes reflectances ap-
pear slightly lighter at the match location, and so observers make
a lower match setting. We can quantify the degree of lightness
constancy with the Thouless ratio, which is an index where 1.0
represents perfect constancy (a horizontal line in a plot like Fig-
ure 3), and 0.0 represents simple luminance matching (a line with
slope -1) [2, 6, 10]. Thouless ratios for the human data in Figure
3(b) ranged from 0.34 to 0.44 (mean 0.40), and the median Thou-
less ratio over all six observers and three reference reflectances
was 0.43. This is somewhat lower than values typically found in
rich, complex scenes [18], but it is a reasonable value for the sim-
ple scene used here that provided relatively few lighting cues!.

Results for IRNet were qualitatively similar to those from
human observers, in that match reflectance declined linearly as
a function of illuminance (Figure 3(c)). The network’s Thouless
ratios were in fact higher than those from human observers, rang-
ing from 0.79 to 0.87, indicating better lightness constancy than
acheived by humans. We believe that the qualitative similarity is
most interesting: the network has partial lightness constancy, and
when it fails, it does not fail dramatically or randomly, but has
a linear falloff from perfect reflectance matching, just as human
observers do.

Results from the other three models were very different (Fig-
ure 3(d)-(f)). Match reflectance declined sharply as illuminance
increased, meaning that the models largely confounded illumi-
nance and reflectance in these stimuli. Thouless ratios were
around zero, so lightness constancy was poor, and the models
were close to matching luminance instead of reflectance.

Further generalization

To further test IRNet’s ability to generalize beyond the type
of image it was trained on, we ran the network in another light-
ness matching experiment. Here the stimuli were taken from a
previous experiment that was run with human observers in virtual
reality (Figure 4(a)) [19]. Stimuli were rendered in Unity [20].
We showed a reference patch under fixed lighting intensity, and
a match patch under a lighting intensity that varied from trial to
trial. Observers adjusted the reflectance of the match patch so that
it appeared to be have the same achromatic surface colour as the
reference patch. Human observers had good lightness constancy
in this task, with Thouless ratios around 0.75 (results not shown).

As in the lightness matching experiment reported above, we
measured the IRNet’s output at the match patch for several re-
flectances, and interpolated the match reflectance at which the
outputs were the same at the match and reference patches. The
network failed dramatically in this matching task. With the low-
est reference reflectance, the network’s matches were a highly
nonlinear function of illuminance (Figure 4(b)). With the other
two reference reflectances, matches were approximately linear
functions of illuminance, but decreased rapidly as illuminance
increased. Thouless ratios were around zero, meaning that the
network largely matched luminance, not reflectance. Although
the stimuli in this experiment do not seem especially demand-
ing, these results show that they are too far outside the network’s
training domain for good generalization, and they result in poor
lightness constancy.
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Figure 3. A lightness matching task. (a) A typical stimulus. The right cube
(in shadow) is the reference cube, and the left cube is the match cube. The
remaining panels show match reflectance as a function of match illuminance
for (b) a typical human observer, (c) IRNet, (d) retinex, (e) Dakin-Bex, and
(f) ODOG. Each panel shows results for three reference reflectances: 0.1
in red, 0.2 in green, and 0.4 in blue. The numerical values reported next to
each fitted line are Thouless ratios.

Lightness illusions

We also evaluated IRNet on several lightness illusions. Mur-
ray [6] created 16 x 16 grid versions of well-known lightness il-
lusions in order to test a Markov random field model of perceived
reflectance and illumination. Each grid image had two isolumi-
nant test locations where human observers perceived one test lo-
cation to be lighter than the other (except in control stimuli). Here
we rendered scenes in Blender with a subset of these grid illusion
images attached to to one side of a cube (Figure 5, left column).
An instance of IRNet trained on the original Blender image set
had mixed results in accounting for these illusions (Figure 5, right
column). The model’s output was consistent with a weak effect
in the argyle illusion (row 1), but predicted a stronger illusion in
the argyle control stimulus (row 2), where human observers see a
reduced illusion. The model predicted a weak simultaneous con-
trast effect (row 3). The model predicted an effect in the wrong
direction for the Koffka-Adelson illusion (row 4), but did account
for the snake illusion (row 5) and White’s illusion (row 6).
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illuminance

Figure 4.  Another lightness matching task. (a) A typical stimulus from
Patel et al.’s [18] lightness matching experiment. The two large circles at the
centre of the panel are the reference patch and the adjustable match patch.
The luminance edge down the middle of the panel is a shadow boundary.
(b) IRNet’s match reflectance as a function of match illuminance, for three
reference reflectances: 0.18 in red, 0.39 in green, and 0.55 in blue. The
numerical values reported next to each fitted line are Thouless ratios.

Discussion

There are few image-computable models of lightness per-
ception, so recent neural network models are a significant and
interesting development. The network we tested here has some
strong similarities to human vision, but breaks down when gen-
eralizing too far beyond the training set. Overall, these results
give some support to a normative view of lightness perception, in
which human-like behaviours emerge naturally from a data-driven
attempt to estimate surface reflectance from ambiguous images
[21]. We did not train the network on human behavioural data, so
insofar as it emulates human lightness perception, this is presum-
ably because it was trained to solve a limited version of the same
inference problem faced by the human visual system.

One promising direction for future work is to develop ar-
chitectures that are informed by an understanding of the problem
of inferring and representing surface properties such as lightness,
instead of using off-the-shelf networks. For example, in typical
deep learning approaches to colour constancy, estimates of light-
ing conditions do not guide estimates of surface colour; rather,
lighting conditions are either estimated independently, or are cal-
culated from estimates of surface shape and colour [7, 8, 9]. An
interesting alternative would be for a preliminary network to es-
timate lighting conditions, and for these estimates to guide es-
timates of surface properties, as is often the case in models of
human colour constancy [3]. Photorealistic datasets will also be
useful for exploring lightness and colour constancy in more re-
alistic scenes [22], and evaluating the hypothesis suggested ear-
lier that important properties of human lightness perception result
from broad, generic properties of natural scenes, such as occlu-
sion and shadow boundaries. These new computational tools pro-
vide a valuable approach to leveraging the substantial knowledge
of lightness perception that has emerged from many years of re-
search, to construct image-computable models that make testable
predictions for complex, naturalistic scenes.

Endnote

1. In this lightness matching experiment, observers could po-
tentially match any of the three visible faces of the cubes. When
running the computational models, we specified that the top face
should be matched. With human observers, we had no control
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Figure 5. Left column: lightness illusions attached to one side of a cube.
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dicate isoluminant test locations where the area surrounding the green patch
appears lighter to human observers than the area surrounding the red patch.
See Murray [6] for larger images of these illusions. Right column: IRNet’s
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over which face or combination of faces were matched. This com-
pliated the analysis of human data. The three faces of the match
cube received the same amount of light from ambient illumina-
tion, but different amounts of light from the point light source
that we varied to manipulate illuminance. As a result, depending
on which face of the match cube we used to quantify the match
illuminance on a given trial, we would arrive at a different Thou-
less ratio. We resolved this problem by using the illuminance at
the top face of the match cube as the independent variable. This
side of the cube faced the point light source most directly, so it
had the greatest variation in illuminance from trial to trial, and
using this illuminance as the independent variable gave an upper
bound on human Thouless ratios. Our main conclusion from the
lightness matching experiment was that IRNet had qualitatively
similar data to human observers, and achieved better-than-human
lightness constancy. These conclusions are supported by com-
paring the network’s performance to an upper bound on human
Thouless ratios.
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