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Abstract
Spatial and temporal contrast sensitivities are typically mea-

sured using different stimuli. Gabor patterns are used to measure
spatial contrast sensitivity and flickering discs are used for tem-
poral contrast sensitivity. The data from both types of studies is
difficult to compare as there is no well-established relationship
between the sensitivity to disc and Gabor patterns. The goal of
this work is to propose a model that can predict the contrast sen-
sitivity of a disc using the more commonly available data and
models for Gabors. To that end, we measured the contrast sen-
sitivity for discs of different sizes, shown at different luminance
levels, and for both achromatic and chromatic (isoluminant) con-
trast. We used this data to compare 7 different models, each of
which tested a different hypothesis on the detection and integra-
tion mechanisms for discs. The results indicate that multiple de-
tectors contribute to the perception of disc stimuli, and each can
be modelled either using an energy model, or the peak spatial
frequency of the contrast sensitivity function.

Introduction
Contrast sensitivity explains the visibility of low-contrast

patterns and is an important indicator of performance of the vi-
sual system. There have been multiple attempts to model an all-
encompassing function of contrast sensitivity [1, 2, 3, 4, 5], which
could predict the visibility thresholds for stimuli of a given spatial
and temporal frequency, luminance, size, orientation, eccentricity
and modulation along different directions in a colour space. To
model all these dimensions, it is necessary to combine contrast
sensitivity measurements from multiple sources, often obtained
using different procedures and varying stimuli. The two domi-
nant types of stimuli are Gabor patterns, typically used for the
measurement of spatial contrast sensitivity, and discs, which are
used to measure temporal contrast sensitivity. Combining spatial
and temporal sensitivity data is problematic as there is no estab-
lished model that can explain the detection of discs from Gabor
data or vice-versa. Our goal is to propose such a model.

This work is also a step towards building a contrast sen-
sitivity function for edges. Edges are important image feature,
which are arguably more relevant for practical applications than
Gabor patterns or sinusoidal gratings. However, it is unclear how
the contrast sensitivity of an edge can be predicted from contrast
sensitivity functions fitted to data for Gabor patches. To address
this problem, we measured detection threshold for discs of three
different sizes, shown at different luminance levels (from 0.002
to 200 cd/m2), with achromatic contrast and two chromatic con-
trast directions (red-grey and violet-grey). Next, we fit six models
that predict disc sensitivity using a contrast sensitivity function
for spatio-chromatic Gabor patterns [4]. The results indicate that
multiple detectors contribute to the detection of a disc and each

detector can be modelled either using an energy model, or the
peak spatial frequency of the contrast sensitivity function.

Related work
Numerous studies over the years, have measured contrast

sensitivity across a very large parameter space. It varies along
spatial frequency [6, 7, 8], temporal frequency [9, 10, 11], lumi-
nance level [12, 9, 13, 14], colour direction [15, 16, 14], stimulus
size [9, 17, 18, 13], retinal eccentricity [19, 20], stimulus shape
and grating profile [7, 21, 22, 18], and orientation [23, 24, 25].
Many studies have presented contrast sensitivity data along differ-
ent combinations of the aforementioned parameters but the mea-
surements can be difficult to compare due to slight differences in
methodology and the data covering a different part of the param-
eter space. Some of these differences in measurements can be
compensated by a constant offset in sensitivity [5]. Differences in
pupil diameter can be compensated using standard models [26].
However, when the stimuli differ considerably, a simple offset or
multiplier cannot account for the differences.

Most achromatic and chromatic temporal contrast sensitivity
studies have used a fixed-aperture flickering stimulus to measure
the temporal contrast sensitivity [27, 28, 29, 11, 30, 31]. In addi-
tion to contrast sensitivity, flicker sensitivity measurements are a
widely used measure to characterise temporal vision. Most older
studies investigating this use a simple backlight temporal mod-
ulation with a fixed aperture resulting in a disk shaped stimulus
[32, 33, 34]. To be able to compare these fixed-aperture stim-
uli with the more physiologically-motivated stimuli (e.g., Gabor
patches), we need a model that can integrate the sensitivities from
fundamental components to predict the thresholds of more com-
plex stimuli.

Since the visual system is composed of channels that are
tuned to different spatial frequencies and orientations [7, 35], the
combined sensitivities of these individual channels can be used
to predict sensitivities of more complex stimuli. In their semi-
nal work, Campbell and Robson (1968) proposed the spatially-
selective multi-channel model of the human vision system by
comparing contrast thresholds from sine and square wave grat-
ings. They proposed a simple relationship between contrast sen-
sitivities of high-frequency square and sine waves [7]. Here, we
test this simple model on disk stimuli. Watson and Ahumada
(2005) proposed a relatively simple energy summation model to
predict the contrast sensitivity of different spatial stimuli [22].
Their model performs very well for a variety of different achro-
matic spatially-varying stimuli. However, the model has not been
demonstrated to work across luminance levels, stimulus sizes and
for chromatic contrast modulation. This work validates the energy
model for such a variety of conditions.
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Experiment: disc CSF
Displays Our study was carried out using three different dis-
plays, two in Liverpool and one in Cambridge. The complete set
of measurements was collected on an Eizo ColorEdge CS2740
27” 4K LCD monitor in Cambridge. This monitor could be cali-
brated with very high accuracy and was driven with a 10 bit signal.
Further 2 bits were simulated by spatio-temporal dithering. To re-
produce luminance levels below 1 cd/m2, the observers wore a
modified pair of goggles with neutral density (ND) filters (Kodak
Wratten Gelatin 2.0D). A few select conditions were measured by
a larger number of participants on either a custom-HDR display
(described in [14]) or an LG G2 55” OLED display in Liverpool.
Goggles with a 2.1 ND filter were used to measure 0.2 cd/m2 con-
ditions on the OLED display. All displays were colour-calibrated
prior to measurement. CIE2006 cone fundamentals [36] were
used to generate colour stimuli. We used three different displays
to ensure that the measurement are consistent across different de-
vices. A chin rest was used to control the viewing distance (1.07 m
in Cambridge).

Stimuli The stimuli were circular disks of different sizes, lumi-
nance level and colour directions. Some examples of those are
shown in Figure 1. The stimuli varied along the following param-
eters:

• Luminances: 0.02, 0.2, 2, 20 and 200 cd/m2

• Sizes: 0.0833, 0.5 and 2 deg diameter disks
• Colour directions: luminance (C1), pinkish red (C2) and vi-

olet (C3) directions were the three cardinal colour directions
in the DKL colour space [37]. C1 is an achromatic stimu-
lus with contrast changing only along the luminance direc-
tion. C2 and C3 contrasts are isoluminant (with respect to
the background) modulated along the positive directions of
the DKL colour space. We did not attempt to find individual
isoluminant plane via heterochromatic flicker photometry as
we were interested in models that could generalise beyond
individual measurements.

The background for all stimuli was D65 grey with the correspond-
ing mean luminance level and had the size of 31.2×17.9◦ (Cam-
bridge).

Experimental procedure Initial estimates of contrast sensitiv-
ities were recorded via a method of adjustment where the ob-
servers were asked to adjust the contrast of each of the stimuli
until they could just detect it. This initial estimate was the prior

Figure 1. Example disc stimuli used in the experiment

for the the next adaptive 4AFC stage. In the 4AFC stage, the ob-
servers were shown a 2x2 grid, with only one quadrant containing
the stimulus. The presentation time was not limited. The ob-
servers indicated which quadrant contained the stimulus and their
response drove the QUEST adaptive sampling method [38] imple-
mented in PsychToolBox-3 [39]. The responses were fitted with a
psychometric function and the contrast level with 0.84 probability
of correct responses was chosen as the threshold contrast for the
specific stimulus.

A single luminance level was measured at a time. The ob-
servers were asked to adapt for 3 minutes to the lowest luminance
(0.02 cd/m2), one minute to 0.2 cd/m2 and 30 seconds for other lu-
minance levels. The sizes and colour directions were randomised
across the QUEST trials.

Participants 3 colour normal observers and one deutan took
part in the experiment in Cambridge. The deutan observer com-
pleted only the conditions for the achromatic disc. A further 6
observers participated in Liverpool for a reduced number of con-
ditions. The data collected in Liverpool was meant to test repro-
ducibility and estimate variance across the population.

Results The individual measurements are shown as small mark-
ers in Figure 4. The means were computed over all the data col-
lected in Cambridge and Liverpool. The inter-observer variability
across the devices used in Cambridge and Liverpool was found to
be comparable. Table 1 reports the standard deviations in dB for
the data.

Table 1. Mean of inter-observer standard deviation for all stimuli. Standard

deviations from two of the devices separately is also reported. Only one

observer participated in experiment with the device liverpool-HDR, so the

variance is not reported.
All devices Cam-Eizo Liv-OLED

SD [dB] 2.9687 2.7678 2.7126

A one-way ANOVA was performed to test if there were sig-
nificant differences in contrast measurements between the three
devices. Luminance, spatial frequency, and stimulus size were
random effects in the model. No statistically significant differ-
ence was found between the measurements from the difference
devices (F(2,283) = 0.1026, p = 0.9025).

Our data shows that contrast sensitivity increases with lumi-
nance and the size of the disc (Figure 4) for all measured colour
directions. To test the statistical significance of these effects, we
performed a n-way ANOVA with log of luminance and size (along
with their two-way interaction) as fixed effects and colour direc-
tion, device, and observers as random effects. The combined ef-
fect of luminance and size was found to be statistically significant
(F(1,282) = 6.3668), p < 0.05).

Contrast energy models
First, we will review a family of contrast energy models [22]

that attempt to predict the sensitivity to a disk. The contrast en-
ergy model assumes that a pattern is detected when the energy of
that pattern exceeds a pre-determined threshold. The energy is
computed as

E =
∫

ρx

∫
ρy

(
I(ρx,ρy)S(ρx,ρy)

)2 dρx dρy , (1)
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(a)

(b)

Figure 2. Decomposition of disk stimuli into sinusoids in Fourier space. (a)

1D representation of disk stimulus in spatial domain; (b) Fourier transform

magnitude of the disk stimulus in spatial frequency domain. The transform of

rectangular pulse is sinc function.

where ρx and ρy are the horizontal and vertical spatial frequencies
in cycles per degree (cpd), I is the Fourier transform of a signal
(Fourier transform of a luminance map) and S is a contrast sensi-
tivity function.

To model the frequency decomposition of a disc, we can take
its cross section, which forms a rectangular function as shown
in Figure 2. The analytical Fourier transform of a rectangular
function is a sinc function:

D(ρ;r) = r sinc(2ρ r) (2)

where r is the radius of the disc in visual degrees and ρ is the
spatial frequency in cycles per degree. To avoid integration in
both spatial dimensions, as done in Eq. (1), we can integrate the

energy in the polar coordinates (ρ =
√

ρ2
x +ρ2

y ,θ):

E(r,Lb,c) =
∫ 2π

0

∫
ρ

(cD(ρ;r)S(ρ,Lb,a))
2

ρ dρ dθ

= 2π c2
∫

ρ

(D(ρ;r)S(ρ,Lb,a))
2

ρ dρ ,

(3)

where S() is the contrast sensitivity as the function of spatial fre-
quency ρ , luminance of the background Lb and area a. The last
term ρ serves as the Jacobian determinant. c is the contrast of
the disc expressed as a Weber ratio, ∆L/Lb. The disc is detected
when the energy exceeds the threshold energy, Ethr, therefore the
detection threshold can be found as:

cthr =

√
Ethr

E(r,Lb,1)
(4)

We compute the contrast sensitivity as the inverse of the detection
threshold, s = 1/cthr.

We use the spatio-chromatic CSF from [4] as function S().
This model relies on data from 5 separate datasets, measured
from 0.0002 cd/m2 to 10 000 cd/m2, and is capable of predicting
contrast sensitivity for modulation in any direction in the colour
space. We query the colour direction corresponding to the achro-
matic or chromatic contrast of the disc. This CSF does not model
the effect of orientation, and therefore the energy summation in
Eq. (3) is assumed to be orientation-independent.

Model fitting and practical considerations
The integral from Eq. (3) is approximated by a numerical

integration between 0 and 32 cpd. We found that the predictions
are stable at 128 samples. To fit each model described below, we
minimise the prediction error:

20

√√√√ 1
N

N

∑
i=1

(
logSpredicted[i]− logSmeasured[i]

)2 [dB] (5)

for N data points. For Smeasured, we used the mean of the data
measured across the three displays and all observers. For all mod-
els, we fit the threshold energy separately for the achromatic and
two chromatic colour directions.

One difficulty with the energy model from Eq. (3) is the
choice of the area parameter for the contrast sensitivity function.
Below we review several models that differ in the way stimuli are
integrated over spatial area.

Disc area
If we assume that the detection of a disc is mostly determined

by its low-frequency components, the detection should depend on
the size of the disc. Therefore, we can set the area parameter of
the CSF to be proportional to the area of the disc: a ∝ π r2. Unfor-
tunately, we cannot optimise for the proportionality constant, as
the area parameter is too strongly correlated with Ethr parameters
(optimisation results in very large areas). Instead, we assumed
that a = π r2.

Constant area
We can argue that the area parameter is irrelevant for the con-

trast energy model as the model itself accounts for spatial pooling
by integrating over area. This is because the integration over the
frequency domain in Eq. (3) is equivalent to an integration over
spatial area (Plancherel theorem).

We tried to fit a constant-area model by optimising for the
area parameter of the CSF, but this resulted in an implausible large
value (900 deg2). Therefore, we instead set this parameter to 1.

Sinc local extrema
One major inconvenience of modelling a disc as a sinc func-

tion is that it requires a numerical solution to an integral from
Eq. (3). We tested a more convenient model, in which the integral
is approximated by summing up the CSF-weighted energy only
for the local minima and maxima of the sinc function.

Sum of Gabors
Most CSF models, including the one we use in this work, ex-

plain the sensitivity to Gabor patches rather than to isolated spa-
tial frequencies. The sensitivity to isolated frequency can only be
measured for an infinite-size grating. The Fourier transform of a
Gabor patch is a Gaussian function in the frequency domain —
it occupies a band of frequencies rather than a single frequency
in the Fourier domain. This raises a question, whether we can
approximate the sinc function with a sum of Gabors, or a sum
Gaussian functions in the frequency domain.

Figure 3a shows that indeed the sinc function can be well ap-
proximated as a sum of multiple Gaussian curves. We can express
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Table 2. Base values of Gaussian curves parameters for the central and

the next 5 sinc function lobes as depicted in Figure 3a.
Sinc lobe (n) 0 1 2 3 4 5

ρn 0 1.43 2.46 3.47 4.48 5.48
σn 0.5 0.37 0.36 0.35 0.35 0.34
hn 1 -0.22 0.13 -0.09 0.07 -0.06

the sinc function from Equation 2 as a series:

Dg(ρ;r) =
∞

∑
n=0

hn exp

−

(
ρ − ρn

2r

)2

2
(

σn

2r

)2

 , (6)

The peak (ρn), deviation (σn) and height (hn) of the Gaussian
functions are fixed and the first few values are listed in Table 2.
The total contrast energy for this model can be represented as a
numerical integral with respect to the spatial frequencies corre-
sponding to the peaks of the sinc lobes. Equation 3 then becomes:

E(r,Lb,c) = 2π c2
∞

∑
n=0

f (n−1)+ f (n)
2

∆ρn ,

where, f (n) = (Dg(ρn;r)S(ρn,Lb,an))
2

ρn,

an = π

(
r

πσn

)2
=

1
π

(
r

σn

)2

(7)

an is the area of the corresponding patch which is directly propor-
tional to the radius of the disk and inversely proportional to the
standard deviation of the Gaussian curve in Fourier domain.

(a)

(b)

(c)

(d)

Figure 3. Decomposition of disk stimuli into Gabor patches in Fourier

space. (a) Sinc function as a sum of Gaussian curves; (b) Sinusoids modu-

lated with a Gaussian envelope are the 1D spatial domain representation for

each sinc lobe (Gaussian curve). The position of peak in the Fourier space

represents the spatial frequency of the sinusoid, the height of the Gaussian

is the amplitude of the sinusoid and the standard deviation of the Fourier

Gaussian represents the width of the Gaussian envelope in spatial domain;

(c) Representative Gabor patches for each lobe of the Fourier transform in

(a); (d) 2D achromatic disk stimulus.

Multiple detector models
Foley at el. demonstrated that the detection of Gabor patches

of different sizes, shapes (circular, collinearly and orthogonally
elongated) and phases can be explained by detection by one or
more mechanisms that are characterised by a receptive field that
sums contrast linearly followed by a nonlinear transformation to a
response [40]. Here, we extend that idea to model the detection of
discs. However, instead of modelling an array of receptive fields,
as done in their work, we derive an analytical detection model for
a disc.

We assume that when detecting a disc, we detect mainly its
edge. Lets assume that a single piece of such an edge is detected
by a single hypothetical edge detector. When a disc radius is in-
creased, the edge gets larger and more detectors have a chance
to detect it. Such contribution of multiple detectors is typically
modelled as probability summation, which corresponds to a gen-
eralised sum1:

sall =
(

sβ

1 + sβ

2 + sβ

3 + . . .+ sβ

N

)1/β

, (8)

where s1, . . . , sN are the sensitivities of individual detectors. β

is the exponent of the psychometric function, typically between
3 and 4. For convenience, we assume that the edge detectors are
identical and we perform summation in the continuous domain.
Therefore, if all detectors along the circumference of a disc with
the radius r contribute, the sensitivity is:

sall =
(

2π r sβ

ed

)1/β

= (2π r)1/β sed , (9)

where sed is the sensitivity of a single edge detector. Below we
consider several candidate models for the individual edge detec-
tor.

Fundamental frequency
Campbell and Robson demonstrated that the detection of the

square wave can be explained by the detection of the fundamental
frequency of that square wave [7]. Although we are interested in
the detection of discs rather than square waves, we could assume
that a single edge detector in a multiple-detector model detects a
pattern similar to a square wave. This is because the cross-section
of a disk is a rectangular function, and a square wave consists of
tiled copies of rectangular functions.

The Fourier series representation of a square wave is com-
posed of a set of sine waves with decreasing amplitude and in-
creasing frequency. For a 50% duty cycle square wave of a spec-
ified spatial frequency, the Fourier series representation would be
the fundamental component (sine wave) with the same spatial fre-
quency as the square wave and a series of odd harmonics with
spatial frequencies in odd multiples (3x, 5x, 7x, ...) of the fun-
damental. Campbell and Robson showed that for higher spatial
frequencies, the sensitivity of a square is 4/π times the sensitivity
of a sine wave with the same fundamental frequency. This rela-
tionship remains valid as long as the third harmonic component
remains below the detection threshold. Given that, the multiple
detector model can be expressed as:

Sdisc(Lb,r) = Sc (2πr)1/β
4
π

S
(

1
4r

,Lb,a
)
, (10)

1see for example ”Luminance intrusion” section in [14]
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Figure 4. Measurements of the disc contrast sensitivity and the predictions of the four contrast energy models.

The spatial frequency, 1/4r, is selected so that the rectangual
function formed by the cross-section of the disc corresponds to a
square wave. We tested variations of the model where the area is
either a function of the radius of the disc a = πr2, set to a con-
stant value a = 1 or fitted as a parameter of the model. We also
tested the model with different β values. The model provided the
best predictions when both the area and the β parameter were op-
timised in conjunction. However, the optimised value of β = 1.24
is not realistic for a Weibull psychometric function. So, we fixed
β = 3.5 and fitted the area and the Sc parameters; the fitted values
are reported in Table 4.

Peak spatial CSF
Edge contrast sensitivity has been shown to be an indicator

of the most sensitive contrast vision channel [41, 42]. In other
words, the peak of the contrast sensitivity envelope (across spatial
frequencies) is proportional to the edge sensitivity of the visual
system. Since a disc forms a circular edge, we can combine the
peak-sensitivity assumption with the multiple-detectors model to
predict the disc sensitivity as:

Sdisc(Lb,r) = Sc (2π r)1/β maxρ (S(ρ,Lb,a)) , (11)

where Sc is the fitted base sensitivity for a particular colour di-
rection and β is optimised as a parameter of the model, listed in

Table 3. Parameters and error of fitting each contrast energy model. The

threshold energy, Ethr is reported for achromatic, red-grey and violet-grey

colour directions. The error is reported in the units of dB (see Eq. (5)).
Model Each

thr Erg
thr Evg

thr a Error
Disc area 0.1639 0.0826 0.0864 n/a 6.78
Constant area 0.4805 0.2533 0.1758 1 4.99
Sinc local extrema 0.1925 0.0917 0.0502 1 6.74
Sum of Gabors 0.3213 0.1495 0.1353 n/a 5.62

Table 4.

Multiple contrast energy detectors
We can combine the multiple detector model with the energy

model. Assuming that the inner integral of Eq. (3) represents an
individual edge detector, we have:

E(r,Lb,c) = c2 (2π r)1/β

∫
ρ

(D(ρ;r)S(ρ,Lb,a0))
2

ρ dρ , (12)

where a is the nominal (fitted) area, so that S(ρ,Lb,a0) models
the sensitivity of a single edge detector (sed). β was optimised as
a parameter of the model.

Results and discussion
The numerical errors and the fitted parameters for our con-

trast energy models are summarised in Table 3. In terms of nu-
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Figure 5. Measurements of the disc contrast sensitivity and the predictions of the three multiple detectors models.

Table 4. Parameters and error of fitting each multiple detectors model. The

threshold energy, Ethr and base sensitivity, Sc is reported for achromatic, red-

grey and violet-grey colour directions. The error is reported in the units of dB

(see Eq. (5)).
Model Sach

c Srg
c Svg

c a β Error
Fundamental
frequency

0.6967 0.8040 1.1020 6.94 3.5 6.01

Peak
spatial CSF

0.5641 0.9429 1.2404 2.42 3.01 4.54

Each
thr Erg

thr Evg
thr

Multiple
c.e.
detectors

2.1066 0.7460 0.4044 3.63 4.08 4.39

merical error, the disc area model is the worst performing, while
the constant area model has the lowest prediction error among
the four contrast energy models. The predictions, shown in Fig-
ure 4, demonstrate that the sensitivity to disc type stimuli does not
increase with the disc radius as rapidly as predicted by the disc
area model. Therefore, we can discard the hypothesis that the
detection of the disc is mostly mediated by the detection of the
low-frequency signal formed by a disc. The constant area model
predicts the data better than the disc area model. However, this
model does not account for the small increase of sensitivity with
the radius of the disc. In case of the sinc local extrema model,

the summation over a discrete set of frequencies poorly predicts
the sensitivity to discs. And our last contrast energy model, sum
of gabors does not predict the data as well as the constant area
model despite the theoretical premise that a disc can be approxi-
mated by a series of Gabors.

Figure 5 and Table 4 show the fitting results for the three
proposed multiple detectors models. Numerically, the fundamen-
tal frequency multiple detectors model, performs worse than the
constant area and sum of gabors models but better than disc area
and sinc local extrema models. Qualitatively, the fitting results of
the fundamental frequency model show that the shape of the CSF
with respect to luminance is distorted as the radius of the disc
stimuli increases, as depicted in the top-right panel in Figure 5.
The assumption that the contrast sensitivity of a disc could be ap-
proximated as a function of square wave contrast sensitivity could
be valid for smaller sized disc stimuli only.

Multiple c.e. detectors and peak spatial CSF models have
the lowest two error values respectively among all our proposed
models. Increasing the size of a disc has a small effect on sensitiv-
ity that is well modelled assuming probability summation across
multiple detectors, shown in Eq. (9). This is the strategy used
in both our best-performing models. The fitting errors of both
models (4.39 and 4.54 dB) are comparable, as well as the curves
shown in Figure 5. The available data cannot sufficiently discrim-
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inate between both the models. Therefore, we recommend using
the simpler peak spatial CSF model.

Conclusions
To establish the relation between the detection of Gabor pat-

terns and discs, we measured the contrast sensitivity for discs of
different sizes and colour modulations, which were shown at dif-
ferent luminance levels. Our attempts to explain the data with six
models indicate that we most likely detect the edge formed by
a disc. The detection thresholds decrease with the length of an
edge and the decrease can be explained by a probability summa-
tion over multiple edge detectors. A single edge detector can be
explained either by the peak sensitivity of the contrast sensitivity
function, or using an energy model that integrates of over radially
symmetric sinc function.

The current work does not show whether our findings gen-
eralise to flickering discs, luminance above 200 cd/m2 and also to
other types of edges. We would like to address these questions in
future studies.
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