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Abstract
This paper proposes a novel information visualisation inter-

face to help with the reading and improvement of biochips. The
interface serves two main groups of end users. These are bio-chip
model users and bio-chip model developers. Bio-chip model users
are biologists who use the software to read chips and detect bio-
chemical substances. Bio-chip model developers use the software
to design and train classification models by seeing how well the
different biosensors work and how well the data fits their model.
The interface proposed uses a Random Forest classifier and visu-
alises the classification to provide a better understanding of how
the data is classified by showing how it fits different classifications
and how changes in attribute values can affect the classification.
The interface also allows model-developers to interact to see how
their model works for different attribute values, and shows them
how new data (sent by model-users) fits into their classification
model. This allow the biochip designers to detect how their model
may be limited so they can retrain the model accordingly. The par-
ticular challenge with this project is how we manage and visualise
uncertainty related to bio-sensor readings (that can be resultant
from the manufacturing process and environmental factors) and
the machine learning models, so that biologists can account for
this when designing or using chips. Overall, our interface demon-
strates the potential of information visualisation to be used to al-
low developers and model-users to better understand the effec-
tiveness of classification models for their data, as well as the po-
tential of collaborative interfaces to help them work together to
build more effective supervised classification models.

Introduction
Machine learning algorithms for supervised classification,

which learn from labelled data to classify new data, have proven
to be effective in a number of important application areas such
as detecting credit card fraud [1, 2], diagnosing medical condi-
tions [3, 4], and image recognition [5, 6]. These classifiers are
often cited as being effective as human-beings for classification
task and have been shown to perform as well as humans, or even
outperform humans, in a number of benchmark tests [7, 8]. Ma-
chine learning algorithms, and computers in general, are very ef-
fective when it comes to remembering and rapidly processing vast
amounts of data. These are important abilities for classification
and decision-making tasks in general, but they are by no means
the whole story. Indeed, computers are somewhat less effective
at other aspects of decision-making such as drawing on diverse
sources of data, adapting to new patterns, reasoning with data,

or acting in an appropriate informed manner once decisions are
made [8, 9]. For these reasons much of the attention in the area of
machine-learning is moving away from improving algorithm per-
formance into the area of explainable AI [10] which looks at how
users can become a more informed part of the machine learning
and associated decision making process.

An issue with explainable AI is that the most effective mod-
els tend to act as black-boxes including large numbers of calcu-
lations. This makes it difficult to explain their operation effec-
tively to end-users [11]. Machine learning models also tend to de-
pend heavily on the quality and completeness of the training data.
Specifically, a supervised classification model cannot be relied on
to effectively classify new data correctly if it has not already seen
that particular type of data labelled correctly in the training data-
set. This can be a problem when a machine learning model is
used in the wild in real word situations to classify data that is not
similar to the data it was trained with [12]. Such a model will
still give a classification for this data, but the classification will
not be reliable and (perhaps more significantly) there will not be
no indication than classification is not reliable. This can be a se-
rious problem if decisions (such as the decision of a bank to give
someone a loan, or the decision of a doctor to treat a patient) are
to be based on such unreliable classifications. If a model is prone
to give these sorts of unreliable classifications then the problem
is more serious, so it is well worth considering how to avoid this
issue.

The work presented in this paper investigates how we can
improve the process of supervised classification by using an in-
teractive information visualisation technique that gives users an
overview of the model output showing how changes in attribute
values change the classification result. The technique is also de-
signed to be collaborative, which allows model-developers and
model-users to detect and resolve issues related to a limited train-
ing data-set. Our visualisation gives model-users an indication
of how reliable the classification model is for their data and re-
ports any new data being classified to the model-developers so
they can have an overview of how complete their training data-set
is and how effective their model is. This would help the model-
developers to tell if their model needs to be re-trained so that an
improved model can be re-distributed to model-users.

Requirements Analysis
Requirements analysis for our application was performed

with a team of six biologists involved in the early stages of devel-
oping a supervised learning model for the automatic classification
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of bio-chips designed to detect different types of antibiotic pol-
lution [13, 14, 15]. This allowed us to identify two distinct user
groups for collaborative supervised learning. These two groups
are described as follows.

1. Model-users. These would be end users of the bio-chips who
need to use the supervised-classification model to classify
new data. This group has the following requirements.

(a) See which class their data is most likely to belong to.
(b) Know how reliable the classification is.
(c) Know what other potential classifications are more or

less probable.
(d) Know how changes to their data would result in dif-

ferent outcomes.

2. Model-developers. These would be the biologists responsi-
ble for developing the bio-chips and bioinformaticians re-
sponsible for training the model to classify new samples.
This group has the following requirements listed below.

(a) Evaluate the overall effectiveness of the model.
(b) Evaluate the effectiveness of the model for different

classes.
(c) Evaluate the effectiveness of the model for different

patterns in the data.

Subsequent meetings with the biologists allowed us to char-
acterise the data generated by the bio-chips as multidimensional
data with numeric attributes. Each bio-chip would be covered in
an array of spots that change colour according to different bio-
chemical reactions (so that patterns of colour could be used to
identify different types of antibiotic pollution after the chip is ex-
posed to a sample). After the chips are scanned the colours can
be converted to numeric values so that each chip has an array of
values that can be used to determine the type of antibiotic pol-
lution it has been exposed to (see Figure 1). Some of the spots
on the chip will be biological replicates that can have their values
combined, so the actual number of values generated from each
chip will be smaller than the number of spots (around five or six).
The chips can also be classified as belonging to either one of five
different classes. These classes relate to the absence of antibiotics
or either of the four common types of antibiotic. So, our data
could be characterised as multidimensional data with a relatively
small number of five or six numeric attributes with each instance
belonging to one of five different classes.

This general data type is relatively common and is one of
the seven data types identified in Shneiderman’s task by data type
taxonomy for information visualisation [16]. We can also charac-
terise our data as having a relatively small number of classes and
a small number of attribute values which are all numeric.

Related work
If we look at the requirements of our biologists we can see

that some of these can already be met effectively by existing tech-
niques, and some can not. The first model-user requirement is to
see which class their data is likely to belong to (section , require-
ment 1a). All supervised learning algorithms for classification
will at least assign data to at least one class to satisfy this require-
ment.

Figure 1. The smartphone interface showing the results of scanning a

biochip with the classification and contribution of different spot values. The

four spot values that have the greatest information gain to affect the classi-

fication are on the screen initially with the user being able to scroll down to

see more.

Our second model-user requirement (requirement 1b), to
know how reliable the classification is with relation to other po-
tential classifications, can be satisfied by algorithms (such as Neu-
ral Networks [17] and Random Forest classifiers [18]) that assign
a value (or score) to each class for the given data. These values
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can be used as an indication of uncertainty in the classification
[19] and an indication of the probability that the data belongs to
another class. For example, if a Random Forest classifier outputs
a score of 15 for Class A and a score of 14 for Class B, the pre-
dicted class will be A but we will also have an idea that there is
some uncertainty in the prediction and a likelihood that Class B
could also be a possible candidate for the data provided.

Our third model-user requirement (requirement 1c) is to
know how changes to their data would result in different out-
comes. This is important for our own case study of antibiotic pol-
lution detection, as the values generated by scanning the colour
of individual spots on our bio-chips may not be accurate due to
external factors impeding one of the biochemical reactions. In
this type of situation a small change in the spot value could cause
the data to be classified in a different way and the biologist may
want to use a new chip or some other method to confirm the clas-
sification result. For other types of classification, changing input
values could be helpful to help the model-user understand how the
data affects the result of the model classifications. For example,
if a model is used to predict a patient’s likelihood of being diag-
nosed with a disease, changing input values such as the patient’s
weight or minutes of daily exercise could help them understand
how life-style choices affect their health.

One way to let model-users know how changes to their data
result in different outcomes is to allow them to change values in
their data and reclassify the data to view the result [20, 21]. In-
teractive visualisations that allow us to rerun classifiers with dif-
ferent values and show the results, satisfy this requirement to a
certain extent. For example, the RuleMatrix visualisation allows
users to interact to filter a set of data that is classified by a rule-
based model bases on a neural network [21]. These techniques do
not however explicitly show the result of changes until the user
interacts with the visualisation to see the result. This means that
important information such as the sensitivity of attributes to value
changes may not be apparent.

Other techniques, allow the users to see how the data is clas-
sified by showing the decisions used in the classification process
[21, 22, 23]. These types of technique tend to use rule based clas-
sifiers such as decision trees which are considered to be more ex-
plainable and transparent as the process applied by the model to
classify the data are relatively easy for human beings to compre-
hend [23]. The drawback of these types of technique is that they
don’t give any indication of the uncertainty in the classification
and can perform badly with data where patterns are more com-
plex. This contrasts with black-box classifiers such as Neural Net-
works and Random Forest classifiers which tend to perform well
will all types of data, but are often referred to as being opaque and
having poor explainability due to the large number of calculations
they use to arrive at a result [17, 18] .

The requirements of our model-developers are also satisfied
to varying degrees using existing techniques. The first model-
developer requirement (requirement 2a) is to evaluate the overall
effectiveness of the model. In order to evaluate the overall ef-
fectiveness of a supervised learning model, we can measure its
accuracy with a test data-set that is distinct from the training data.
Accuracy is the number of elements that are correctly classified
divided by the total number of elements and is represented as a
number in the range from one (all elements correctly classified)
to zero (no elements correctly classified). Usually a data-set is

Figure 2. Supervised learning models for classification are trained using

a randomly selected portion of a labelled data-set and evaluated with the

remainder of the same labelled data-set.

trained using a piece of a labelled data set that has been randomly
chosen, and then assessed (for accuracy, etc.) using the remaining
portion of the same labelled data set. (see Figure 2).

Accuracy can also be calculated for individual classes to-
gether with precision and recall. Recall is the number of elements
correctly classified as belonging to a particular class divided the
total number of elements actually belonging to that class. Preci-
sion is the number of elements correctly classified as belonging to
a particular class divided the total number of elements of any class
classified rightly or wrongly as belonging to that class. Other met-
rics, such as the f-score, are a balance of these two metrics [24].

Uncertainty of data may appear because of the production
environment and environmental factors. For example a doctor
may diagnose the patient by analysing the medical data, such as
blood pressure, blood test, and oxygen saturation. But by just
seeing these data, it will cause uncertainty. Doctor may need to
know patient’s medical history, in order to diagnose correctly. In
our case study, we consider that bio-chip also may result uncer-
tainty that might caused by production, environmental factor (e.g.
temperature, pH level) and the machine learning classifier. There-
fore, we studied on how other researchers have done to display
the uncertainty result.

There are different way to represent the uncertainty. The first
two type categorised as static representation[25]; first, it can be
differentiate with individual representations presented for an at-
tribute and its linked uncertainty. Second, representations can be
mixed, where a single visualization shows both an attribute and
its uncertainty - an attribute and its uncertainty are displayed by
overlaying one on top of the other using appropriate visual vari-
ables. The third method is visualising in an interactive computer
environment[25], allow users to control the display of both the
data and the uncertainty of the data.

The two general categories for techniques to represent uncer-
tainty proposed by are intrinsic and extrinsic [26]. Intrinsic rep-
resentation techniques display the uncertainty by differing an ob-
ject’s appearance, which include varying visual variables such as
texture, brightness, hue, size, orientation, position, or shape. For
example, finer texture or darker value could represent greater re-
liability and coarser texture and lighter values could represent un-
certainty. To represent uncertainty on extrinsic techniques, it ap-
plied geometric objects such as arrows, bars, and complex struc-
tures (such as pie charts).

There are three types of uncertainty according to [27,
28].The first is statistical, which refers to the data’s distribution, or
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the estimated mean and standard deviation (confidence interval).
The second is error, which can be either estimates or disparities
between a known correct datum and an estimate with an absolute
value. The final term is range, which refers to the time span over
which the data is available (and cannot be quantified into either
the statistical or error definitions). In our case study, we proposed
the prototype to represent the uncertainty interactively and add
animation [29], which is a part of Human Computer Interaction
(HCI). As our data is multidimensional data, the uncertainty can
be multiplied and hard to quantify. We will make our value view-
able, and able animate the classification result in the prototype.

In order to satisfy our model-developers second requirement
to evaluate the effectiveness of the model for different classes
(requirement 2b) our biologists could use another statistical tool
known as a confusion matrix [30]. This provides a more detailed
insight into a model’s performance by showing how the actual
class of elements map to the predicted class for every pair of
classes. This is generally represented as a grid (with every class
being represented as a row and column), and can be colour coded
to highlight classes that are confused by the model.

Our biologists’ third requirement, to evaluate the effective-
ness of the model for different patterns in the data (requirement
2c), is less well served by existing techniques. While we can indi-
cate how well the model works for patterns already present in the
test data-set using the methods described above, these methods
and metrics will not work for patterns that are not present in the
test-data set and the model is indeed unlikely to work well to clas-
sify these patterns either. These unknown patterns can be thought
of as gaps in the training data.

A simplified example of a problematic gap in the train-
ing data would be a model used to identify leafs according
to their shape being trained and tested using wide-long leaves,
narrow-long leaves and narrow-short leaves, but without wide-
short leaves. If the model is then used to identify a wide-short
leaf it is likely to erroneously classify it along with wide-long or
narrow short leaves. If this problem leads to a leaf being miss clas-
sified, it’s not likely to be too much of an issue. But in another
domain this type of false-positive could lead to someone being
refused a bank-loan or being prescribed unnecessary medication.

It is tempting to think that the problem of gaps in our train-
ing data could be avoided by simply using a larger training set that
contains a wider range of samples. Indeed, if the training data-set
was truly representative of the sample universe, then there would
be no gaps in the training data and no problem. There are, how-
ever, a number of reasons why a truly representative sample may
not be feasible. Firstly, the cost of building an truly exhaustive
training set may be prohibitive. It may also be the case that the
sample universe is growing and new patterns are emerging (e.g.
in the case of using bio-chips to detect viruses when a new strain
evolves). Therefore, it is necessary to consider how to manage the
problem of potential gaps in the training data, rather than to think
we can try and avoid the problem altogether.

The problem for model-developers trying to manage gaps in
the training data is that its difficult to tell if gaps in the training
data are just gaps in the training data, or if they reflect gaps in the
sample universe. For example, if our training-data lacks wide-
short leaves, it could be because our training data is not enough,
or that their are actually no wide-short leaves in the world. Indeed,
rather than rely on model-developers to identify gaps in the train-

ing data, it would be a lot easier to identify the new patterns when
a model-user attempts to classify data that has that pattern. In or-
der to preempt this problem, the application proposed in this paper
allows users to identify that they have detected novel patterns in
their data (i.e. patterns that cannot be classified effectively using
the model) for this data to be sent back to the model-developers
who can update the model accordingly.

Most of our complete set of user requirements can be sat-
isfied using existing techniques. Machine learning models can
be used to tell the model-users what class their data belongs to
(requirement 1a) and techniques that score different classes for
new data (such as Neural Networks and Random Forest classi-
fiers) can give the user and indication of how reliable the clas-
sification is (requirement 1b) and what other classifications are
more or less probable (requirement 1c). Metrics generated us-
ing a test data-set can show model-developers how effective their
model is overall (requirement 2a) and confusion matrices can tell
the model-developer how effective their model is at differentiating
between different classes (requirement 2b). Existing techniques
are somewhat less effective at showing model-users how changes
in attribute values affect the classification result (requirement 1d)
or showing model-developers how effective their model is for dif-
ferent patterns in the data (requirement 2c), particularity if these
patterns are not present in the data the model is trained with. The
technique developed for this paper is designed to satisfy these two
user requirements for data with smaller numbers of numeric at-
tributes and smaller numbers of classes as described in section .

BiochipVis
The application introduced in this paper is an interactive mo-

bile interface that allows users to classify biochips readings to
show the classification changes for adjustment in each value and
allows input values to be adjusted with the representation recal-
culated quickly. Therefore, users can see the changes on the data
classification and display how the classification is to changes in
individual bio-sensor values. The interface uses a Random Forest
classifier and the machine learning model is able to predict im-
precise measurements where a small difference in any input value
can potentially change the output of the model.

The results-panel shows the classification result for the cur-
rent attribute values by showing the percentage of the total classi-
fication score given to each separate class. This uses a wide rect-
angle divided into colour coded segments with their width pro-
portional to percentage for each class. The segments are labelled
and colour codded according to a colour-scheme adapted from the
Brewer colour schemes for accessibility [31].

The central attributes-panel has wide rectangles Attribute
boxes that show the users which attribute values are selected and
how changes in value change the classification result. These are
ordered according to the Information Gain for training-data at-
tribute values so that the attributes most capable of separating the
training data into different classes are closest to the top. For each
attribute box, a red line is used to show the currently selected
value. The boxes can also act like stacked bar charts [32] showing
the relative score for each class for each attribute value assuming
that the values for all other attributes remain constant. The user
can also click and drag on the red line so see how the classifi-
cation changes with different values. When this happens the red
line moves gradually to follow the mouse cursor so as the tran-
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Figure 3. Classification of sample DushuE 2019-31-7

Figure 4. Classification result changes after adjusting the value for spot 8.

sition between views is smooth [33, 34]. This allows the user to
see how sensitive the classification is to changes in the values for
individual attributes.

The curved lines in the central attribute panel act like a par-
allel coordinates plot [35, 36] to show the values for instances in
the training data-set closest to the currently selected values. The
weight of the colour of each line is proportional to the euclidean
distance of the training data instance to the selected values in nor-
malised attribute space so that more similar training instances ap-
pear darker and less similar instances fade into the white back-
ground. This shows the user what training-data is similar to their
own data and gives them an indication of how well the model is
suited to classifying their data.

Users can manipulate to explore the sensitivity of their clas-
sification to changing different spot values. This can help user to
understand the classification and better comprehend uncertainty
in their data. For example, by selecting the sample DushuE 2019-
31-7 (Figure 3), we can see the classification antibiotic x may be
sensitive to changes in the value for spot 8. By clicking and drag-
ging to adjust this spot value (with the red line and classification
animating gradually to a new hypothetical value) we can see the
potential change in the confidence in the classification toward an-
tibiotic y (Figure 4).

Evaluation
We performed an initial evaluation using the cognitive walk-

through method [37, 38], which is a usability evaluation process
that focuses on a user’s cognitive activities. The evaluation was
done with a small number of model-users where each participant
was asked to explore the data and describe patterns they were able
to find. During the evaluation the users were able to identify a
number of significant patterns related to imprecise readings that
they would not be able to identify using other techniques. Exam-
ples of this were the levels of uncertainty around readings of 115
on spot 8 and 110 on spot 16. Small changes around these values
would often change the confidence in a classification to a consid-
erable degree. The biologist let us know that this information was
useful and might prompt them to examine the physical chip, use
another chip to confirm the reading, or consider modifying the
design of the chip to be used.

Conclusion
We have developed an interactive information visualisation

application to support with the reading and improvement of bio-
chips classification for model-developers and model-users. The
application is designed to work on smartphones for model-users
and a tablet connected to a large display for model-developers.
The visualisation shows the output of the model and how the
model changes for different attribute values rather than showing
the workings of the model. This allows model-users to gauge
uncertainty for their classification and see how their classifica-
tion might be sensitive to changes in attribute values. Model-
developers can explore to have an overview of how their model
performs and see how new data fits their model. This should al-
low model-developers to find the limitations in their model and
retrain it accordingly. A small-scale user test was performed in
order to test the application interfaces which both scored well for
different usability metrics.

The interface currently works with a random-forest classifier
on up to sixteen numeric attributes (with four main attributes on-
screen and others access-able through scrolling) and three or four
classifications with around fifty or a hundred data-instances in the
training data-set. The model-developer interface is designed to
be used on more powerful devices so it could conceivably handle
larger scale-data with more instances. As the visualisation dis-
plays the classifier output rather than the workings of the classifier
itself, it should be able to display any sort of classifier for this sort
of data. However, performance and interface response time are
likely to be a problem on smartphone devices for more demand-
ing classifiers such as neural networks. Especially as the interface
needs to recalculate numerous output values while attribute values
are adjusted by the user. Larger data sets would also be an issue
for the interface as the number of classes is limited by the num-
ber of colours the user differentiate and the number of attributes
is limited by the vertical space on the devices screen. A design
for larger data with more attributes or classes could possibly work
by folding classes together or automatically reordering attributes
according to their relevance.

According to our user evaluation, results for the data-sets
used demonstrate great potential for this sort of technique for col-
laborative information visualisation driven explainable machine-
learning. This type of visualisation is likely to have more potential
applications as the use of machine learning becomes more preva-
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lent and mobile device capabilities improve [39, 40] with devel-
opers also coming round to see the advantage of making machine
learning more explainable and accessible [9, 10]. For future work
we plan to develop data collection functionality into the model-
users’ smartphone application and test the two types of applica-
tions working together to scan and classify bio-chips for antibiotic
pollution monitoring.
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