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Abstract
In injection molding machines the molds are rarely equipped

with sensor systems. The availability of non-invasive ultrasound-
based in-mold sensors provides better means for guiding opera-
tors of injection molding machines throughout the production pro-
cess. However, existing visualizations are mostly limited to plots
of temperature and pressure over time. In this work, we present
the result of a design study created in collaboration with domain
experts. The resulting prototypical application uses real-world
data taken from live ultrasound sensor measurements for injec-
tion molding cavities captured over multiple cycles during the in-
jection process. Our contribution includes a definition of tasks
for setting up and monitoring the machines during the process,
and the corresponding web-based visual analysis tool addressing
these tasks. The interface consists of a multi-view display with
various levels of data aggregation that is updated live for newly
streamed data of ongoing injection cycles.

Introduction
Injection molding is an important manufacturing process in

polymer processing for producing components for a variety of
markets, including the automobile industry, medical engineering,
and the electronics industry [23]. The resulting products range
from screw caps to car bumpers [7] and degradable screws for
broken bone restoration [5]. The domain is characterized by
increasing requirements regarding various quality properties and
the reduction of rejects, leading to a rise in the need for zero
defect manufacturing, automated optimization, and the reduction
of production times. In this work, we focus on assisting machine
operators in performing tasks in both the setup phase of the
molding machines and the monitoring phase of the overall
production. These tasks are mostly driven by errors in the filling
process. This work is the result of a collaboration with domain
experts who specialize in the development of non-invasive
ultrasound-based in-mold sensors and the measurement pro-
cess [21]. Together we elicited a series of domain-specific tasks
which are essential to the process and persistent in the domain,
for which they provide real data. To the best of our knowledge,
there are currently no solutions available that address these
tasks. Existing solutions are often limited to encodings such as
individual time series plots with limited to no interactivity [6],
or are designed for analyzing overall production cycles [17].
Domain experts require live analysis capabilities of ultrasound
measurement data from the injection process being streamed to a
tool in which the visual encodings and interactions are tailored to
their specific tasks. In our design process, we iteratively refined

our shared understanding of the problem, the tasks, and the visual
design. Our main contribution is an interactive visualization tool
to assist injection molding machine operators. In addition, we
formulated a set of tasks that emerged from this collaborative
process, which are defined in the following.

Background and Tasks
An injection molding machine injects molten material into a

mold which consists of at least one negative form called cavity.
To increase the output, multiple cavities are being filled simulta-
neously, before undergoing additional phases such as holding and
cooling. After the resulting components are ejected, the process is
repeated over multiple iterations called cycles. The measurement
of this forming process and usage of the resulting data remains a
rare occurrence, as the molds are typically built without any con-
nected sensors [15], and due to the fact that in-mold sensors need
to withstand high pressures and temperatures [21].

The data to be visualized consists of ultrasound measure-
ments over time from which an intensity is calculated as the
integral of the absolute amplitude. The domain experts break
the ultrasound measurements into the first three semi-oscillations
called main pulse and the post-oscillation (see Fig. 2). Typical
problems in this procedure include the prevention of overfilling
of a cavity, referred to as flashing, and respectively underfilling,
referred to as short shot (see Fig. 3-c), as well as the efficient
setup and monitoring of the process. The design with which we
address these challenges is based on a comparison to reference
data of defect-free injection processes. We further decompose
and concretize these problems such that they can be efficiently
solved via visual analysis. As a result, we present the following
set of detailed tasks which need to be supported by the tool, where
T 1 through 6 are derived from the main pulse and T 7 from the
post-oscillation. The tasks are split into two process phases: the
setup phase, in which the operator configures the molding pro-
cess to result in high-quality products, and the follow-up moni-
toring phase in which the operator needs to ensure constant out-
put quality. The user of the visualization guiding this process and
the machine operator may be two separate individuals.

• T 1: Recognize problems during the filling process. Users
need to be able to recognize the occurrence of flashing or
short shot for each cavity.

• T 2: Optimize the holding pressure time. Users need to be
able to recognize deviations in the sealing point (see Fig. 3-
b) after which no more material can be injected, allowing
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Figure 1. Interactive multi-view display for various levels of aggregation in the visualization injection molding processes. (a) The validation heatmap (VHM)

displays the short shot (blue) and flashing (red) of cavities of the molding tool over multiple cycles streamed live to the visualization. (b) The progression heatmap

(PHM) explicitly encodes the difference in ultrasound sensor intensities of selected cycles/cavities to a selected reference. (c) The time series plot (TSP) shows

the reference curve (green) superimposed to other selected measurements (yellow), with additional annotated metadata (dashed lines). (d) Users can view

detailed comparisons to the reference by placing crosshairs (solid lines).

for the optimization of the holding pressure time.
• T 3: Minimize cooling duration. Users should be able

to check and compare the shrinkage-lift-time (see Fig. 3-b)
when the component loses contact with the cavity wall due
to shrinkage, as this allows for the minimization of the cool-
ing duration. For large components and multiple sensors,
users can then use this information to compare cooling con-
ditions among different measurement positions.

• T 4: Check the duration and consistency of the filling.
Users need to be shown the detection time for the area be-
tween melt and air (flow-front, see Fig. 3-b) and infer the
consistency of filling. When using similar cavities users can
then verify the regularity among them.

• T 5: Check whether the process is thermally stable.
Users need to be able to recognize deviations in mold tem-
peratures by comparing start-intensities before injection and
end-intensities before the shrinkage-lift-time (see Fig. 3-b),
given that the main pulse intensity is dependent on the tem-
perature (see Fig. 3-a).

• T 6: Recognize whether the overall process is stable. To
recognize whether the cavity status is acceptable, also in
cases where many cavities are displayed at the same time,
users need to be able to compare measurements to reference
data.

• T 7: Infer the consistency of the frozen layer growth rate
for post-oscillation data. Users need to be able to check
the minima and maxima of the post-oscillation intensity (see
Fig. 4) for monitoring after the process setup, as this allows

to infer the consistency of the freezing duration of the melt.
• T 8: Continuous monitoring of new cycles. New data

streamed to the tool needs to be added to the visualization
automatically.

Related Work
The domain problem at hand deals with the visual analysis

of dynamic temporal data, as characterized by Aigner et al. [2].
This data consists of a combination of the internal time of mea-
surements and an external time given by the streaming of new
cycles. This difference between internal and external time poses
a challenge for designing effective visualization solutions. We
address this problem by allowing users to interact with multiple
levels of data aggregation in a multi-view display. Dasgupta et
al. [9] discuss streaming data analysis, including machine-level
and human-centered challenges. Following their characterization,
we employ spatial encoding of age via juxtaposition in heatmaps
without sub-sampling, we archive old data via scrolling and apply
superimposition of user-selected cycles in a time series plot. Gle-
icher [12] introduces a framework for choosing visual encodings
that support the comparison of data, which fits our comparison
of fill status and intensities to selectable reference curves. In ad-
dition to the design elements juxtaposition and superimposition,
Gleicher mentions explicit difference encodings which we utilize
as well.

In the context of injection molding, a large body of work ex-
ists towards the hardware aspects and non-invasive measurements
during the running process, for instance, regarding the use of ul-
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Figure 2. Schematic depiction of the ultrasound measurement and how it is divided into the main pulse and the post-oscillation. From this signal, the intensity

is calculated as the integral of the absolute amplitude.
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Figure 3. Schematic depiction of the main pulse. (a) The main pulse is a result of intensity deviations caused by the injection and the heating of the mold. (b)

Metadata for the main pulse that is relevant for the user tasks. (c) Overfilling (flashing) and underfilling (short shot) of a cavity. (d) Thermally stable process in

which intensity deviations due to heating of the mold are constant over subsequent cycles.
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trasound sensors [4, 20, 1, 16]. Visualizations have been proposed
for simulating the material flow during the injection molding pro-
cess [10, 13], or for analyzing the mechanisms behind injection
molding based on imaging data [14, 25, 11]. The visualization
capabilities of state-of-the-art injection molding monitoring tools,
such as ComoNeo [18] and Cavity Eye [6], are limited to time
series plots and bar charts that often do not support direct inter-
action and are not interlinked. The same applies to more general
tools, such as ibaInCycle [17] or TIG [24], that cover the whole
manufacturing process ranging from order management to pro-
cess monitoring and quality assurance. An exception seems to be
the proprietary Greiner BigDataVis tool mentioned in the state-of-
the-art report on visualizations in industrial processes by Cibulski
et al. [8]. However, there is no public information available de-
scribing the tool in more detail. Very closely related to our work is
the approach by Musleh et al. [19] who create a visualization for
blow molding machines. In contrast to injection molding where
solid parts like plates or discs are formed, blow molding is sim-
ilar to glass blowing and used to create singular hollow objects
such as bottles. Musleh et al. make use of multivariate time se-
ries data and focus on extracting important features from the data
using machine learning. This is part of an iterative design process
in which they create a web-based visualization comprised of sev-
eral visual representations. The resulting tool is used to assist the
decision making process of the respective domain experts.

Data Abstraction
When discussing the tabular measurement data we refer to

rows as samples and columns as features. Any additional features
other than intensity and time will be referred to as metadata. Our
collaborators provided real-world data from an injection molding
machine that has the novel ultrasound sensors installed. The data
was partly extrapolated and modified to identify scalability issues
and test corner cases.

Data Format
As illustrated in Fig. 5, each sample consists of the features

cycle number, cavity number, intensity, measurement time, and
fill status (-1 for short shot, 0 for defect-free, +1 for flashing).
These are followed by additional metadata flags (0 or 1), which
we depict in Fig. 3-b and Fig. 4-a. For main pulse data, these
flags are sealing point, shrinkage-lift-time, flow-front-detection-
time, start-intensity, and end-intensity. For post-oscillation they
are the first minimum, the second minimum, shrinkage-lift-time,
flow-front-detection-time, start-intensity, and end-intensity.

Data Design Process
The data abstraction is a result of the iterative design of vi-

sualization possibilities and emerging tasks, the requirements for
which can be easily satisfied in this data format, and provided
without much overhead by the machines. The metadata is en-
coded for each sample individually, can be reported by the ma-
chine, and except for cycle and cavity numbers could occur in the
data multiple times per cycle-cavity pair. We choose to encode
these as per-sample metadata as it is sufficient for the visual en-
coding, and requires hardly any implementation overhead for the
domain experts.

Method
The iterative design process resulted in an interactive multi-

coordinated view setup consisting of three components that sup-
port different levels of aggregation, and provide assistance for
each task (see Fig. 1): (1) the validation heatmap (VHM) show-
ing for all cycles and cavities whether flash or short shot is oc-
curring, (2) the progression heatmap (PHM) visualizing the in-
tensity difference between selected cycle-cavity pairs and a ref-
erence, and (3) a time-series plot (TSP) providing access to the
detailed measurements with respect to the reference curve. Fig. 5
illustrates how the measurements are taken by the machine and
which features are shown on which level in the three connected
components.

Validation Heatmap
The VHM (see Fig. 1-a) serves as the top-level abstraction.

The x-axis and y-axis of the VHM display cycles and cavities
such that the diverging color map shows the average fill status of
each cycle-cavity pair. Gray indicates defect-free pairs, red indi-
cates flashing, and blue indicates short shot (supporting task T 1).
Users can choose the reference curve from a predefined set using
a drop-down menu. Alternatively, the reference curve can be set
by selecting a single tile in the VHM. In addition, users can ver-
tically brush over the VHM to select a number of cavities of one
cycle that they want to investigate. Similarly, they can horizon-
tally brush over cells to select a number of cycles for one cavity.
The heatmap grows horizontally when new cycles are streamed to
the visualization (supporting T 8). By selecting cycle-cavity pairs,
users can use the PHM and the TSP for addressing the remaining
tasks.

Progression Heatmap
The VHM selection adds the selected cycle-cavity pairs to

the PHM (see Fig. 1-b). The categorical y-axis displays the cy-
cles (or cavities) after a vertical (or horizontal) VHM brush. The
x-axis represents the time of the measurements. The color indi-
cates for each cycle (or cavity) at each time step whether and to
what extent the intensity is above, below, or within an acceptable
range regarding the reference value, displayed in red, blue, or gray
respectively. Within the PHM, users can also select one of the cy-
cles (or cavities). The heatmap especially supports T 6 and assists
the TSP with T 2-T 5, and T 7.

Time-Series Plot
The PHM selection allows users to further drill down in

the TSP (see Fig. 1-c). The VHM selection initially adds all
of the corresponding cycle-cavity pairs to the TSP, while also
displaying the reference curve. When users make a selection in
the PHM, the TSP shows only the reference and the selected
curve. Users can place crosshairs to quantify the difference
between the selection and the reference curve (see Fig. 1-d). The
first click places a crosshair that displays the intensity difference
between reference and selection at the given x-position. The
second click adds an additional crosshair on a new x-position for
the selected curve displaying the difference to the first reference
value. Additionally, the metadata is depicted by vertical dashed
lines for timestamps and horizontal dashed lines for intensities.
With annotations and crosshairs, the TSP supports T 2-T 5, and
T 7.
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Visualization Design Process
Task Utility Versus Collaborator Familiarity The tasks de-
scribed above were the main factors that influenced our design
decisions regarding the visual encodings and interactions. In addi-
tion, we considered the preferences our collaborators had regard-
ing visualizations they are already used to. This iterative design
process resulted in a multi-stage concept that supports different
levels of aggregation of the same data. The views display the
data via different encodings and interactions such as selections,
re-using the same axis, and synchronized zoom levels. This ap-
proach enables us to simultaneously show visual encodings they
are familiar with while offering more utility regarding the user
tasks via other encodings. Specifically, we include the TSP given
that domain experts are used to line charts with timestamp anno-
tations and crosshair interactions as the standard means to work
with the measurements.

Scalability An aggregated overview is necessary as the TSP
does not scale to more than 6-8 curves, and the resulting clut-
ter would impose difficulties in perceptually connecting curves to
their corresponding cycle and cavity. We, therefore, use the VHM
to show short shot and flashing events directly on a high aggre-
gation level. The possibility to then further drill down and select
individual curves naturally reduces the problem of clutter in the
TSP, and enables users to solve the tasks that require more detail.
The VHM also supports the streaming of new data such that new
cycles become immediately visible, and are separated from previ-
ous ones, by appending them further along the x-axis of the VHM.
Moreover, the PHM provides an additional view for the same data
shown in the TSP, and they are linked by re-using the same x-axis
for the time of measurements. This allows users to see differences
to the reference for dozens of cycle-cavity pairs at once, and more
with scrolling.

Difference Encoding The PHM allows us to visualize differ-
ences to the reference directly, making them immediately visible
without having to compare two curves. This also makes it appar-
ent to which cycle and cavity the measurements belong. Since
both the VHM and PHM display whether the measurements are
below or above the desired value, we use the same diverging color

map ranging from blue for a fill status smaller than the reference,
over neutral grey for the same status as the reference, and red for
a fill status above the reference.

Alternative Designs We considered a parallel coordinates plot
as an alternative for visualizing fill status, such that users can read
the exact average of short shot or flashing events. However, we
decided against the technique because the encoding would im-
pose difficulties on distinguishing cavities due to superimposition.
Even further aggregation showing the average fill status of all cav-
ities in a cycle would be too coarse for solving the user tasks. We
argue that our PHM encoding is an improvement over the time-
series plot, following the considerations by Gleicher [12], who
also provides a case study of Sequence Surveyor [3] which em-
ploys a similar visual encoding for large amounts of sequences.

Implementation
We select a fitting technology stack and choose Vega-Lite

[22] with custom external modifications, running on an Angular
web app. The tabular data consists of CSV files, and the live
updates containing new CSVs for the visualization are handled
via the streaming data functionality of Vega-Lite. A live demo of
the tool can be found at:
https://p2f-moldsonics.caleydoapp.org/

Usage Scenario
The following usage scenario illustrates how the solution

supports users in solving the defined tasks for setting up, fine-
tuning, and monitoring the molding process.
The user starts by loading the data source corresponding to the
desired machine and mold with the intention of setting up the
process for production. After the first molding cycle, the initial
cycle-cavity pairs are only displayed in the most aggregated form
in the VHM. The user immediately notices that flashing or short
shot events are occurring in all but one cavity of cycle 4 (T 1, see
Fig. 1-a). In the VHM, the user selects all cavities of the defec-
tive cycle 4, thereby displaying the respective data in the PHM
and TSP. In order to check them against the desired values for
the setup phase, the user selects the appropriate reference curve
from the defect-free cavity 1 of the same cycle 4. As a result,
the various metadata timestamps of a defect-free cavity are now
displayed. By inspecting the PHM the user recognizes where the
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other cavities deviate from the reference and to what extent. To
get the exact value by which the cavities are deviating, the user
selects the corresponding cavities one by one. They then position
the crosshair, to display the intensity difference. This way, the
user is able to optimize the holding pressure time (T 2) by ref-
erencing the sealing point timestamp, optimize the cooling dura-
tion (T 3) by referencing the shrinkage-lift-timestamp, and check
the duration and consistency of the cavity filling (T 4) by refer-
encing the flow-front-detection-timestamp. By the same means,
the user can check the exact difference between start and end in-
tensities indicated by the horizontal dashed lines at their respec-
tive y-positions, and infer the thermal stability of the tool (T 5).
From the signals described above, the user can also infer the corre-
sponding properties for different cavities of similar make. While
checking these values, as well as when no selection is made in
the PHM (meaning all curves are displayed in the TSP against the
reference), it is also evident from the shapes of the curves whether
the overall process is stable (T 6).

After this initial setup phase is completed, the user switches
to the process monitoring phase. Additional cycles of the
injection molding are performed, and new data is fed live into
the visualization and displayed in the VHM (T 8). Finally, the
user can switch to a different data source to monitor the post-
oscillation, and to observe whether the metadata timestamps,
which depict the extrema of the post-oscillation, are evenly
distributed (T 7).

Limitations
Currently, the entire interpretation of the data during both

the setup and monitoring phases is carried out by the user with
no automation. This can be a bottleneck, for instance, when users
want to use the crosshairs to determine exact intensity differences
rather than relying on the PHM. In this case, curves are compared
against the reference one by one. Additional automated analytics,
filtering, and predictive tools could further improve this workflow.

Conclusion
This collaboration with injection molding experts allowed us

to design an interactive tool for the visualization of the injection
molding process. We explained our decision-making process and
how it iteratively lead to the refinement of tasks, visual encod-
ings, and data abstractions. The design process resulted in both
a tool that can ease the setup and monitoring for machine oper-
ators, as well as insights that can pave the way towards further
advancements in the area. Our design brings the entire process
closer to automatization, as the domain experts state that some of
the tasks that were formalized in this design could be executed
without a machine operator after further development. One ad-
ditional factor regarding future improvements is the combination
of visualization with automated analytics concerning the collec-
tion of potentially interesting behavior and patterns in the process,
and the presentation of these together with an explanation to users.
This applies to characteristic temporal patterns within the process,
but also to effects caused by external influences, that is, predictive
maintenance.
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