https://doi.org/10.2352/E1.2023.35.1.VDA-402
This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit hitp://creativecommons.org/licenses/by/4.0/ .

VVAFER — Versatile Visual Analytics Framework for

Exploration and Research

Moritz Zeumer; German Aerospace Center (DLR); Braunschweig, Germany

Jonas Gilg; German Aerospace Center (DLR); Braunschweig, Germany

Pawandeep Kaur Betz; German Aerospace Center (DLR); Braunschweig, Germany

Andreas Gerndt; German Aerospace Center (DLR); Braunschweig, Germany; University of Bremen; Bremen, Germany

Abstract

The development of interactive visualization applications
that are applicable to many real-world problems is a challeng-
ing affair. For every new project, developers need to follow the
same repetitive steps of fetching the raw data, transforming the
data into processable form, defining visual structures and then
displaying them appropriately. To accelerate this, we propose
the Versatile Visual Analytics Framework for Exploration and Re-
search (VVAFER). VVAFER is planned to be an extensible visual
analytics framework, upon which different applications can be de-
veloped with minimum overload at the development side. Through
modular architecture, unified data formats, reusable templates
and software components, developers will be able to quickly de-
ploy and create their visualization applications by configuring ex-
isting templates with their own specific functionalities. In this pa-
per, we describe our motivation for this future framework and its
architectural design.

Introduction

In developing a visualization application, a developer must
follow several complex steps, which are an essential part of a
visualization development pipeline. Following the information
visualization pipeline from [1], the steps involved are: fetching
raw data from the source, transforming the data into a data table,
defining the visual structure of the data, and then displaying them
appropriately. If these steps are not followed appropriately, peo-
ple might interpret the data unintendedly or not understand the
underlying information [2].

Visualization frameworks offer an off-the-shelf data im-
port/storage solution. They often include a variety of widely used
visualization layouts and algorithms that not only create the front-
end visualizations but also provide an end-to-end instance for the
complete visualization application. For an end-to-end solution
in visualization development, frameworks are composed of dif-
ferent models: abstract data, visualizers, interaction operators,
views, the user, etc. [3]. Due to the involvement of many discrete
steps, the deployment, development and maintenance of frame-
works is a labour-intensive job. Moreover, the coding skills re-
quired in such frameworks hinder users from effective construc-
tion [4]. D3.js [5], for example, is one of the prevalent visual-
ization libraries that create very expressive visualizations which
are difficult to realize in many current visualization production
tools [4]. Additionally, the programming paradigm followed in
these frameworks is imperative, where the software components
are tightly coupled. Therefore, a lot of pre-processing or code
modification is required to create a new data structure or visual-

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023

ization technique in the available framework. Previous studies [6]
suggest that most development time is spent manually tweaking
data or creating ad-hoc code. It is important to note that in most
places, especially research institutions, developers primarily are
also scientists. Thus, instead of allocating their valuable time
to producing scientific artifacts, they have to spend it on non-
scientific development tasks of repetitive nature. This raises the
need for a solution that seamlessly performs all the concrete tasks
needed in initially creating and deploying the base application.

To answer many such problems and accelerate our process of
creating visualization applications in the visual analytics group of
DLR, we propose VVAFER. In our group, we receive scientific
datasets prominently for spatio-temporal analysis. Most of the
times, the main questions that need to be answered are similar;
however, sometimes they deviate based on the datasets and type
of study. Earlier, we were developing a new framework for pro-
ducing the visual analytics tools for every new dataset. We figured
out that as most visual tasks are moderately similar, i.e. looking
at spatial distribution, finding correlations, and subsequent tasks.
The amount of work in creating relatively similar visualizations
and tools can be easily reduced if we have a versatile framework
in place. This leads to the conception of VVAFER, a Versatile
Visual Analytics Framework for Exploration and Research.

VVAFER is planned to be the basis for future development
in the visual analytics (VA) field at DLR. This framework will
provide essential, pre-designed modules for the easy deployment
of VA applications. From an easy project setup to the data acqui-
sition from different sources, data wrangling, and the creation of
visualization and its controls — it will provide high-level reusable
software modules to perform all these activities seamlessly and ef-
ficiently. So, it will provide a solution for developers to deploy,
configure and run their VA applications without much labor unre-
lated to the visualization task itself.

Motivation

While developing applications to visualize scientific or sta-
tistical data, lots of repetitive steps need to be undertaken. At the
same time for every new visualization project, many tasks are sim-
ilar, if not the same. They all include the same code for initializ-
ing a graphical context, for file input/output, data pre-processing,
user interaction, etc. [7]. To illustrate this, we present three ap-
plications in the area of visualization and have highlighted their
similarities.

402-1



VVOLUME RENDERING

= Data
€5 RENDERING
® LIGHTING

~ TRANSFER FUNCTION

et

DD
Y-Range > ©

a
Export Spin-Transition-Induced Densit
Import Task3.json -
Z= PARALLEL COORDINATES <
DispLAY

DEPTH

PARALLEL COORDINATE

Active altitude

CosmoScout VR

CosmoScout VR [9] is a visualization tool for scientific data
within the solar system. It has many use cases for visualizing data.

One such use case is visualizing the mantle convection of
planets like Earth and Mars. A CosmoScout VR plugin called
RayPC [8] was developed to tackle the task. Initially, the raw data
was provided by planetary scientists, and the data is unsuitable to
work with directly and has to be pre-processed. In this specific
case, an octree-based level-of-detail data structure was generated.
Additionally, derived variables were computed, which are helpful
for the analysis later.

For data analysis an interactive visualization was developed.
A screenshot can be seen in Figure 1. In the center is the 3D visu-
alization of the Earth mantle. On the left are configuration options
for the visualization. Currently, the transfer function editor is se-
lected. At the bottom is a parallel coordinate plot that displays
how the scalar values are distributed over the cells of the dataset.

There are multiple ways to interact with this visualization.
First, it is possible to move the camera freely in 3D space and
look at the mantle data from different viewpoints. Second, the
transfer function is editable; thus, the coloring and transparency
of the 3D visualization can be modified in real-time. Lastly, the
parallel coordinate plot can be used to filter the cells by scalars.
This interactivity helps understand the flows and structures of the
mantle convection easily.

While the 3D visualization is written in C++, the user inter-
face is a standard website with HTML, JavaScript and CSS. The
transfer function editor and the parallel coordinate plot come from
different libraries and need different formats for working with the
data.

402-2

Figure 1: RayPC — A plugin of CosmoScout VR for visualizing mantel convection data of planets and moons [8].

m)

ESID

ESID is the visualization and analytics interface developed
as frontend for metapopulation models by Koslow et al. [10] and
Kiihn et al. [11], [12] to analyze simulations of epidemics and
pandemics. ESID reads a predefined data format and, therefore,
could also visualize output from other models as long as they
comply with the format definition. Primarily, it is intended to
be used by local health authorities and political decision-makers
to create non-pharmaceutical interventions with minimal restric-
tions and the largest effect. Additionally, it should also be open
to the public, so that decision processes can be retraced and bet-
ter understood which should improve the acceptance of the taken
measures. The interface is being developed according to prelimi-
nary user interface (UI) and user experience (UX) studies by Stoll
and Grappendorf [13].

Figure 2 shows an early version of ESID. On the left side is
a map of the official German districts with a customizable heat
legend. In the top section are two cards representing two different
simulation scenarios: blue and purple. Left of the scenario cards
is a list of compartments, like infected, hospitalized, and dead.
The bottom portion contains a line chart comparing the scenarios
over a set timeline. This tool has multiple ways to interact, filter
and select data. The following table shows the relationship among
different components and how they coordinate with each other
and visualize data.

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023



#ESID

Q_ Region Hannover (Landkreis)

7.6.2021
Infected 24
Hospitalized
ICuU 266

Dead

Summer 2021
Simulation 1

Summer 2021
Simulation 2

1,77 93% 147 -94%

55
50
45
% i 40
35
30

25
LA

- B8

20

10
# Deutsches Zentrum s
DLR fiir Luft- und Raumfahrt

German Aerospace Center

N

Juni

Juli 08. Aug. 2021 Aug

Figure 2: An early version of ESID, an application for analyzing pandemic simulation data.

Scenario Compartment Date District
Card select all 1 1
List none select 1 1
Chart all 1 select 1
Map 1 1 1 select

Table 1: Displayed information and interaction between visual-
ization components of ESID.

The table can be read the following way: The Map shows
the data of one scenario for one compartment on one date over all
districts. Since it shows all districts, it also serves as a selection
tool for districts. The Chart shows the data of all scenarios of one
compartment over all days of one district. Since it shows all dates,
it also serves as a selection tool for dates.

From Table 1 and Figure 2, one can see that all components
are coordinated and pass some filtered data to each other which
then requires extensive communication with a unified data store
and formatting of the data. Unfortunately, the current application
version displays each component using different libraries, which
use different data structures. Each component has to transform
the incoming data to the required format and pass it to the visual-
ization library.

PANDEMOS-UI

PANDEMOS-UI, similar to ESID, is a visualization and
analysis tool for pandemic simulations. It differs from ESID in
the type of data it needs to visualize. While ESID shows district-

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023

level data with daily time steps, PANDEMOS focuses on the sim-
ulation and visualization of individual agents. The data is about
moving agents with a spatial resolution of a few meters and a tem-
poral resolution of minutes.

In the case of Germany, 80 million agents would be moving
through the simulation, and visualizing this is not trivial. First,
the data has to be loaded via a REST-API serving JSON data. The
data needs to be filtered using different visual components so the
user can get meaningful information from it. To see the spatio-
temporal movement of incoming trajectories for one month, for
example, first the time must be filtered and then the specific geo-
graphical locations. Finally, using different statistical charts, the
data about different agents needs to be shown. To fulfil all these
tasks, we need different libraries for getting the data, filtering the
data and displaying the data. Different libraries come with their
conventions, which a developer needs to adhere.

Common Problems

There are multiple common problems we encounter in all
our visual analytics applications. The first problem is loading the
data from different sources (APIs, databases, etc.) and in differ-
ent formats (JSON, geoJSON, CSV, etc.). Then, an even bigger
problem is to support the coordinated environments, which are a
must in real-world visual analytics applications. In a coordinated
environment, different visual components talk to each other when
a user interacts with them. This leads to lots of data passing be-
tween the components. Each visual component needs its specific

402-3



data structure. For example, maps need geoJSON data, whereas
most statistical charts can be created with data formatted in arrays
or CSV. Different libraries enable different tasks, leading to a lot
of boilerplate code that deals with data conversion. This is ineffi-
cient for the developer and for the application’s performance.

Related Work

There is a plethora of impressive visualization frameworks
and toolkits available today, and the in-depth review of each is
beyond the scope of this paper. Interested readers can look into a
community-curated list available at the InfoVis-Wiki'. In the fol-
lowing section of our paper, we will examine some notable works
in visualization software development.

The Visualization Toolkit (VTK) [14] is one of the earliest
known open-source software system for 3D computer graphics,
image processing, and visualization. It is written in C++ and
provides a collection of libraries and tools for developers to cre-
ate interactive 3D visualizations and simulations. VTK supports
a wide range of data types and file formats, and it can be used
for various applications, including scientific visualization, med-
ical imaging, and virtual reality. Though it provides a modular
architecture, it has a steep learning curve and a complex architec-
ture, making it difficult for new users to get started. Moreover, as
it is primarily designed for 3D visualizations, its support for 2D
and information visualizations is limited. VTK does not have a
built-in user interface component, which means developers must
use a separate library or create their own graphical user interface.
However, some of these drawbacks can be mitigated using Par-
aView [15], which is built on top of VTK and provides a collection
of tools and libraries for scripting via Python, web visualization
through ParaViewWeb, and in-situ analysis with Catalyst. Like
VTK, to use Paraview, developers need to set up their project en-
vironment and build the Paraview libraries manually. This usually
involves downloading the source code, configuring the build en-
vironment, and then compiling the libraries. This process can be
time-consuming and may require some knowledge of the under-
lying operating system and build tools.

Prefuse [16] and the Infovis Toolkit [17] are a few of the
earliest known open-source Java-based toolkit for creating inter-
active data visualizations. They provide a set of libraries and tools
for building visualizations that can be integrated into web-based
and desktop applications. They provide wide range of visualiza-
tion techniques, which can be quickly set up and used. However,
as these tools are not actively maintained, thus they cant run on
modern browser which do not support flash or java applets any-
more. They provide limited support to modern multidimensional
visualization techniques like parallel coordinates and heatmaps
and does not provide advanced interactions like linked views.

Commercial visualization software like Tableau, Microsoft
PowerBI, and Charts in Microsoft Excel are primarily built for
business applications and end-users. They follow a “’one-big-tool”
strategy [18], providing a rich interface with numerous features
that are designed to be user-friendly and easy to explore. How-
ever, this can make the interface overly cluttered and confusing
for some users. Additionally, since these software’s source is not
open, users and developers cannot add and remove features and
configure the interface to their specific requirements. This can

Uhttps://infovis-wiki.net/wiki/Toolkit_Links

402-4

make it difficult for users to customize the software to meet their
unique needs. Another drawback is that many commercial visual-
ization software hosts users’ data on their servers, which can lead
to data privacy and security issues, especially for scientific and
research projects. This can limit the use of these tools in sensitive
or confidential environments where data privacy and security are
crucial. Additionally, these tools are generally more expensive
than open-source visualization tools, which can be a concern for
some users.

Open-source visualization libraries have earned much com-
munity attention since the last decade, mainly due to the popu-
larity of scripting languages like JavaScript, Python and R. These
libraries are primarily intended for developers and require knowl-
edge of both the library and the base scripting language. For ex-
ample, D3 js [5] for javascript, matplotlib [19] for Python and gg-
plot2 [20] for R. While relatively easy to learn, they may require
significant training for non-technical users. These libraries are
not capable of creating complete visualization applications and
are often used as visualization components in modern web-based
frameworks like Angular? and React®. For example, the Raw-
Graphics [21] visualization toolkit is based on AngularJS for the
frontend and D3.js [5] for the visualization models.

Recent years have seen a significant growth in visualization
applications based on modern web frameworks that are specifi-
cally designed for a particular domain. However, these frame-
works can have limitations in their flexibility and reusability, as
they often require significant base code changes when applied to
other domains and have limited support for data management ca-
pabilities. For example, Geovisto [22] is a geospatial analysis
framework that combines the advantages of authoring systems
and programming libraries to let the user configure maps with
some interaction and control. Their base component is a map and
all the other interactive components (zoom, filters), data models
(JSON, XML, GeoJSON) and statistical charts (nested pie charts)
are based on this base component. Therefore, their modules can-
not be reused for non-spatial scenarios. These Frameworks pri-
marily support front-end configuration and provide little assis-
tance with the complete visualization pipeline. Such domain spe-
cific frameworks can be tightly connected and configured to the
demands of their specific datasets, but it also makes them less ver-
satile and less adaptable to different types of data. This can make
them less suitable for developers looking to customize or config-
ure their visualization pipeline. For example, ICE[23] is a highly
responsive user interface for exploring spatial patterns in large-
scale environmental datasets. They support routines from their
own modeled datasets and thus provide limited data management
capabilities.

Although our motivation mainly stems from our projects
in spatio-temporal domains, the goal of VVAFER is to create a
framework that can be easily applied to different domains with
minimal changes to its base functionality. In the next section the
core aspects and architecture of this proposed framework is pre-
sented in more detail.

Zhttps://angularjs.org/
3https://reactjs.org/

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023



VVAFER

VVAFER is planned to be an extensible visual analytics
framework upon which different visualization applications can
be developed with minimum overhead on the development side.
Through different modular components, a developer is free to de-
ploy any visualization project and configure and show different
visualization types. The core architecture of VVAFER is shown
in Figure 3 and its features are described below:

» Standard Visual Analytics (VA) Framework: VVAFER
will provide a standard visual analytics framework which
provides various base components pertinent to different
steps in the visualization pipeline. This way, a full-fledged
visualization application can be developed without using
other libraries or programming packages. This will save
a developer’s time for more productive tasks, rather than
searching, including and connecting these libraries in their
project.
Reusability: VVAFER will provide template-based module
development. Each module consists of its boilerplate code
and routines that can be further configured to match the in-
dividual requirements of the project.
Standard Visualization Toolkit: We will primarily be han-
dling the visualizations that assist in spatio-temporal analy-
sis (different forms of maps), basic statistical analysis (scat-
ter plot, line charts, bar charts, pie charts etc.) and multidi-
mensional data analysis (parallel coordinate charts, scatter
plot matrices). All these chart modules can be easily con-
figured and reused in different applications. The framework
itself will be flexible enough, so that inclusion of new visu-
alization types can be possible without much overhead. At
the same time, the exclusion of one or another visualization
types will not affect the functionality of other visualization
types.

Standard Data Handling Modules: The pre-processing

steps for data handling in creating visualization systems are

quite similar. For example: Loading the data from differ-
ent formats, creating a standard data schema, ensuring data

quality, creating data views etc. VVAFER must support a

standard module to handle this for different types of data

we receive. We would also be creating routines that can be
expandable to the data requests not handled by us.

» Extensibility: The VVAFER framework must be easily ex-
tensible without much change to the base architecture and
with minimal programming so that anyone who understands
basic coding can deploy it to create their application.

* Data Controls: We will support basic data and interactive
controls to explore the data. For example, controls that sup-
port: lenses, dragging, zooming, common data transforma-
tion (calculating min, max, distances) etc.

* Project Setup: A framework that assists in easy project
setup (e.g. as in create-react-app* with minimal dependen-
cies, so users with limited coding knowledge can adapt to
their environments. At the backend, the framework will pro-
vide boilerplate functions for testing and debugging.

» Rapid Prototyping: A framework that allows developers to
quickly and easily build and test different ideas and concepts
without having to start from scratch each time. This can

“https://create-react-app.dev/

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023

PANDEMOS

|

VVAFER - Versatile Visual Analytics Framework for Exploration and Research

Base Layers Basic Layouting

Interactive
Components

Visualization
Components

Data Management Unified Dataformats

| | !

D3.js TypeScript React

Figure 3: An overview of the proposed architecture for VVAFER.

save a significant amount of time and effort, and also allows
for more experimentation and iteration in the development
process.

Accessibility and Open Source: The first requirement of
accessibility can be accomplished by building on web tech-
nologies, which allows access to the application from any
device with a browser, without the need to install any addi-
tional software. Web technologies also have the advantage
of a large ecosystem with easy access for developers. This
framework will be open source and available with an appro-
priate license.

Architecture

VVAFER'’s architecture consists of multiple layers with
modularity and separation of concerns in mind. The foundational
layer of VVAFER provides the necessary tools for data manage-
ment and standardization, including data import functionality and
a unified data format. This makes it easy to import and format
data, and ensures efficient and standardized access and interop-
erability by higher-level components. The use of a unified data
format throughout the architecture also helps to reduce complex-
ity and ensure consistency.

The component library is seperated into visualization and
interaction components, which provides greater flexibility. For
example, CosmoScout VR’s case, where only interactive compo-
nents are part of the web interface and the visualization is handled
in C++.

VVAFER’s design is influenced by the React library, which
is used for building interactive and visual components in web ap-
plications. Unlike React, VVAFER places a greater emphasis on
separating the visualization and interaction components. This ap-
proach provides a powerful tool for creating custom visual ana-
Iytics and visualization applications, while also ensuring ease of
maintenance and extension.

In summary, the VVAFER architecture provides a flexible
and efficient solution for creating visual analytics and visualiza-
tion applications, with a focus on modularity, separation of con-
cerns, and standardization.

402-5



DataSocket

Data Operations

+ aggregation: Object<data>

+ statistics: Object<data>

+ transformation: Object<data>

v
Backend Connection

+ data: Object
A

Programmable Filter

+ filterRules: Object

+ isActive: boolean

Figure 4: Diagram of the data socket component structure.

Data Management

The connection between the data layer and the higher com-
ponents is a data socket component which handles the data man-
agement behind the scenes, like connections to data backends
(REST APIs, databases or other sources). The data socket also
provides information on the dataset like statistical values, aggre-
gations and other operations. Additionally, programmable filters
can be added, providing alternative versions of the raw dataset
based on filter rules and similar transformations. In summary, the
data socket component handles the fundamental data management
and provides datasets in a unified format for the visualization and
interactive components.

Unified Dataformats

One of the largest problems in developing visualization ap-
plications is that each library uses its own data format. The data
loading library uses a different format than the graphing library
for example. This leads to a lot of code dealing with conversion
between data formats. VVAFER will use a single data format
for each data type across the whole application. This will reduce
the amount of code, improve the communication between compo-
nents and improve the performance. Since there are a lot of dif-
ferent data types for different use cases, an incremental approach
will be used. There is already research that tackles this task of cre-
ating a standard data format for specific domains. For movement
data, which will be the first priority of VVAFER, there is a good
starting point by Andrienko et al. [24]. Data formats for other do-
mains will be researched and implemented when required, since
it is impossible to deal with all formats of all domains from the
start.

Interactive Components

The interactive component is one of the two key component
types of VVAFER. A key concept of visualizations, especially vi-
sual analytics, is the ability to interact and manipulate the data
and visualization views to explore the data. All interactions are
bundled into an interactive component container where core inter-
active elements like buttons, sliders, drop-down menus, and cor-

402-6

Interactive Component Container

Foen Speed Dial
+dataSockets: List<Ref> ~ f--eee- :

+ controlledCompnents: List<Ref>

Selection

+ optionList: lst —
+ currentSelection: list | null 4‘ Label :

Container handles high-level logic
sub-components handle internal
logic and expose results

+ handleChange()

Button

,,,,, Labels and Buttons can contain
+ handleClick() either

Sider / text, icons, or both (only for labels)
Input Field

Toggle Button

+ currentState: bool

Dropdown /
Searchbar

Pagination __| Support for paginated data & page
selection (e.g. for tabular visualizations)
—{ Peripherals Support for keypress events etc. %

Figure 5: Diagram of the interactive component structure.

Checkboxes /
Radio Buttons

responding labels are compiled and arranged inside the container.
An interactive container can also have a component listening for
input on peripherals like key-press events on keyboards or other
peripherals. Each element contains its styling and other internal
code, and only exposes the properties to the parent container rele-
vant for the high-level interaction. This can be a function handle,
which is called when a button is pressed or a slider changed, as
well as properties like a list of selectable options and the current
value for drop-down menus and search bars. The parent container
handles the interaction logic, modifies the data sockets and ex-
poses specific interactions to change properties of visualization
components to the parent layout container, which facilitates the
connection between the components. An example of an interac-
tive component container is map controls for the visualization of
geo-referential data. The container has two buttons that are bun-
dled in a function realizing zooming in and out of the map, as well
as a nested interactive container that uses a set of checkboxes and
exposes a list of visible layers on the map. These functions and
properties are exposed to the parent Layouting component, which
connects the information to the visualization component used to
display and interact with the map correctly. The interaction com-
ponents are strongly separated from the visualization components
to facilitate easier nested and coordinated visualization controlled
by a single set of interactive controls manipulating multiple visu-
alization components or the shared data sockets.

Visualization Components

The visualization component is the other fundamental com-
ponent. It uses the data provided by the data socket and handles
the visualization of it. The visualization component also exposes
necessary settings to be modified or passed to interactive compo-
nents. Since the visualization type is strongly dependent on the
data, the component resides in an abstract wrapper that only con-
tains a reference to a data socket. The realization can then be
flexible and even wrap other libraries that visualize the data from
the data socket, like amCharts® or Leaflet®. This way new visu-
alizations can be created as components and added to a library
of visualizations which can be reused in any VVAFER project.

Shttps://www.amcharts.com/
Shttps://leafletjs.com/

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023



Visualization Component Container Container handles the DataSocket and has the’
------- Interactive Component Container for interaction with
+ DataSocket: Ref the Visualization

Geo-referential Realizations contain code to visualize the provided

data from the DataSocket.
Wrapper Components for other libraries (e.g.
AmCharts) are also possible.

need a base layer in the
layout container and only
display their data at the
goelocation on top of the
base layer, e.g. displaying
vectors, heatmaps, etc.

Realizations can also expose selected properties
like visual styling (e.g. colors, sizes, etc.) to be
manipulated by a filter or interactive component.

Scatter Plot

Parallel Coordinate Plot

Box Plot

Figure 6: Diagram of the visualization component structure.

A

Layout Container combine +--+| + position: Array[int]
Visualization and Interactive |
Components into a cohesive

layout and connect the
mutually exposed controls
and properties.

They also contain a base
layer for visualization
components like maps for
georeferential visualizations

Layout Container

+ size: Array[int]

Visualization Component

Base Layer Interactive Component

Figure 7: Diagram of the layout container structure.

Additionally, visualization components can contain nested visu-
alization components, for example, to display visualizations like
polar diagrams or pie charts instead of glyphs or markers in other
diagrams. For example, a geo-referential visualization uses the
data from the data socket to fill a canvas with information on top
of the base layer of its parent Layout container, like heatmaps or
movement vectors displayed on top of a topographical map. The
visibility state of the layer is exposed, so an interactive component
can manipulate the layer visibility.

Layouting and Base Layers

Combining the two key components into a cohesive struc-
ture is a standard container system. These layout containers can
be arranged like HTML div elements with size and position in
the overall layout. They can contain nested layout containers,
visualization or interactive component containers. Additionally,
the functions and properties exposed by visualization and interac-
tive component containers are connected in the layout component,
similar to a breadboard connecting the general sub-components.
The layout containers can also be influenced by interactive com-
ponents in parent layout containers to change their properties if
needed, like their size, position, visibility, etc. Additionally, a
layout container may contain a base layer necessary for compo-
nents like geo-referential or other special visualizations that re-
quire a specific environment, like a topological map, to function
properly. For example, this base layer can contain a map, which is
the background for a visualization component to draw a heatmap
onto.

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023

Workflow

A flow chart for creating a visualization or visual analyt-
ics dashboard with VVAFER is shown in Figure 8. Initially,
the basic VVAFER template is generated, creating the boilerplate
code, which initializes the basic functionality and data types us-
ing npx create-vvafer-app <app_name>, similar to the cre-
ation of React apps’. Then, the raw data is imported and pro-
vided to the application through a data socket. Next, a visual-
ization component container is created with the desired visual-
ization inside. If the visualization requires any form of interac-
tive controls, an interactive component is created with the con-
trol elements to manipulate the visualization. If the visualization
needs programmable or static filters, they can be added to the data
socket and controlled by the interactive component. These steps
are repeated if more visualization components are needed. Differ-
ent datasets can be added via the same or a different data socket,
depending on the data source. Finally, the created components
are styled, arranged, and connected within the layout containers,
and base layers are configured where needed. The different com-
ponents can also be created using npx commands to generate a
template for the components. The template contains a basic react
function component where necessary properties for a VVAFER
component are already in place, like a hook that provides the ref-
erence to the corresponding data socket. The desired visualization
or interaction can then be implemented at locations in the code in-
dicated by comments.

Example: ESID

In order to visualize the process more clearly, we present
an example of how the workflow is used to create a visualization
project like ESID. As mentioned above, first the general project
structure is generated. This includes the foundational file struc-
ture as well as necessary boilerplate code. Next, the database
and REST API are connected to the application through a data
socket component that bundles the application’s requests to the
database. Depending on available resources and data size, the data
socket can also cache responses to increase performance. With the
data flow into the app created, the necessary visual and interactive
component can be created according to the screenshot in Figure 2:

* Scenario Cards (top): a visualization component to display
the scenario and case data values and an interactive com-
ponent bundling functions to select scenarios and compart-
ments, and the buttons to move through the data along the
temporal axis.

District Overview (left side): a visualization component
that handles drawing the choropleth map, as well as an inter-
active component containing functions and modules to han-
dle map controls, selecting districts, and the transfer func-
tion editor to modify the coloring of the map.

Timeline Chart (bottom): a visualization component draw-
ing the available data along the temporal axis, and finally an
interactive component with functions to zoom into the line
chart and select dates.

With the basic component created, nested layout containers
are created to tie the application together. The layout containers
determine the makeup and visual structure of the application as

https://reactjs.org/

402-7



Create & Configure
Interactive Component

Create & Configure
Filters
in Data Socket

Configure
Filter interaction
in Interactive Component

n

Cre_a(e_& Cr?nﬁgure ‘ need

Generate
VVAFER template

Create & Configure
Data Socket i
with Backend connection

with Data Socket ‘

different <

\L T Yes

interaction?

Nest
< ualization C
inside Interactive Component
I Yes

No need No
fiters?

more

data?

visualizations?

Create & Configure
Layout
with created components

Build & Deploy
VVAFER Web App

®-| =

Figure 8: An example flowchart of creating a visualization or visual analytics dashboard in VVAFER.

seen in the screenshot (Figure 2). Inside the layout container the
properties of the visualization components, like highlighting for
selected scenarios, compartments, dates, and districts, as well as
other functionalities like the transfer function editor modifying
the palette used for the choropleth map.

Once everything is connected, the application can be built
and deployed. New, additional features in visualization or inter-
action can be incorporated into existing modules or preferably im-
plemented in new components without the need to touch exiting
code unless absolutely necessary.

Conclusion

From our various visual analytics projects at DLR, we have
felt the need for a framework that avoids repetitive programming
of similar modules. We realized the benefits to have a versatile
framework that supports all common processing steps and is ex-
tensible to include and configure the new functionalities. This
resulted in a conception of VVAFER (Versatile Visual Analytics
Framework for Exploration and Research) which we have pre-
sented in this paper. We are looking forward to start develop-
ment based on the reasoning behind this framework, the shown
architecture, and its modular designed components. Through its
modular component architecture, VVAFER can support the con-
struction of any domain-independent visualization and analytics
application with minimum development overhead.

VVAFER is a proposed framework for visual analytics that
aims to avoid repetitive programming and support common pro-
cessing steps. It is designed to be versatile and extensible, with a
modular component architecture that allows for the construction
of domain-independent visualization and analytics applications
with minimal development overhead. The authors of the paper
have presented the reasoning and architecture behind VVAFER
and plan to begin development based on these ideas.

Funding

The authors gratefully acknowledge the funding by the
German Federal Ministry for Digital and Transport within
the mFUND Innovation program under the grant agreement
FKZ19F2211A.

402-8

Bibliography
[1] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Read-
ings in Information Visualization: Using Vision to Think.
Morgan Kaufmann, Jan. 1999, 1SBN: 9781558605336.

O. Kulyk, R. Kosara, J. Urquiza, and 1. Wassink, “Human-
centered aspects,” in Human-Centered Visualization Envi-
ronments: GI-Dagstuhl Research Seminar, Dagstuhl Cas-
tle, Germany, March 5-8, 2006, Revised Lectures, A. Ker-
ren, A. Ebert, and J. Meyer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 13-75, 1SBN: 978-
3-540-71949-6. DOI: 10.1007/978-3-540-71949-6_2.

(2]

[3] M. Sanver and L. Yang, “A linking mechanism to integrate
components of a visualization framework,” in 2009 13th
International Conference Information Visualisation, 2009,

pp. 92-97. DOI: 10.1109/IV.2009.39.
[4]

“Viscomposer: A visual programmable composition envi-
ronment for information visualization,” Visual Informatics,
vol. 2, no. 1, pp. 71-81, 2018, Proceedings of PacificVAST
2018, 1SSN: 2468-502X. DOIL: 10 . 1016/ j . visinf .

2018.04.008.

M. Bostock, V. Ogievetsky, and J. Heer, “D? data-driven
documents,” IEEE transactions on visualization and com-
puter graphics, vol. 17, no. 12, pp. 2301-2309, 2011. DOI:
10.1109/TVCG.2011.185.

A. Ruiz. “The 80/20 data science dilemma.” (2017), [On-
line]. Available: https : / / www . infoworld . com /
article / 3228245/ the - 80 - 20 - data - science -
dilemma.html (visited on 07/22/2022).

P. Gralka, M. Becher, M. Braun, et al, “Megamol-a
comprehensive prototyping framework for visualizations,”
The European Physical Journal Special Topics, vol. 227,
no. 14, pp. 1817-1829, 2019. por: 10 . 1140/ epjst /
e2019-800167-5.

J. Fritsch, M. Flatken, S. Schneegans, A. Gerndt, A.-C.
Plesa, and C. Hiittig, Raypc: Interactive ray tracing meets
parallel coordinates, 2022. DOI: 10 . 48550 / ARXIV .
2207.12011.

(5]

(6]

(71

(8]

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023



(9]

[10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

S. Schneegans, M. Flatken, and A. Gerndt, CosmoScout
VR. DOI: 10 . 5281 / zenodo . 3381953. [Online].
Available: https : / / github . com / cosmoscout /
cosmoscout-vr.

W. Koslow, M. J. Kiihn, S. Binder, et al., “Appropriate
relaxation of non-pharmaceutical interventions minimizes
the risk of a resurgence in sars-cov-2 infections in spite of
the delta variant,” PLOS Computational Biology, vol. 18,
no. 5, pp. 1-26, May 2022. pOI: 10 . 1371/ journal .
pcbi.1010054.

M. J. Kiihn, D. Abele, T. Mitra, et al., “Assessment of
effective mitigation and prediction of the spread of sars-
cov-2 in germany using demographic information and
spatial resolution,” Mathematical Biosciences, vol. 339,
p. 108 648, 2021, 1SSN: 0025-5564. DOI: https://doi.
org/10.1016/j .mbs . 2021 .108648. [Online]. Avail-
able: https://www.sciencedirect.com/science/
article/pii/S0025556421000845.

D. Kiihn Martin J.and Abele, S. Binder, K. Rack, et al.,
“Regional opening strategies with commuter testing and
containment of new sars-cov-2 variants in germany,” BMC
Infectious Diseases, vol. 22, no. 1, p. 333, 2022, 1SSN:
1471-2334. poI: 10.1186/s12879-022-07302-9.

J. Stoll and V. Grappendorf, “Esid - epidemiologisches
simulationstool fiir den infektionsschutz in deutschland,”
Betreuung der Arbeit im DLR: Martin Joachim Kiihn,
Bachelorarbeit, Hochschule fiir Gestaltung Schwibisch-
Gmiind, 2021. [Online]. Available: https://elib.dlr.
de/143505/.

W. J. Schroeder, L. S. Avila, and W. Hoffman, “Visualizing
with vtk: A tutorial,” IEEE Computer graphics and appli-
cations, vol. 20, no. 5, pp. 20-27, 2000. por: 10.1109/
38.865875.

J. Ahrens, B. Geveci, C. Law, C Hansen, and C Johnson,
“36-paraview: An end-user tool for large-data visualiza-
tion,” The visualization handbook, vol. 717, pp. 50 038-1,
2005.

J. Heer, S. K. Card, and J. A. Landay, “Prefuse: A toolkit
for interactive information visualization,” in Proceedings
of the SIGCHI conference on Human factors in computing
systems, 2005, pp. 421-430. DOI: 10 . 1145/1054972 .
1055031.

J.-D. Fekete, “The infovis toolkit,” in IEEE Symposium on
Information Visualization, IEEE, 2004, pp. 167-174. DOI:
10.1109/INFVIS.2004.64.

H. Childs, E. Brugger, B. Whitlock, et al., “Visit: An end-
user tool for visualizing and analyzing very large data,”
2012.

J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3, pp. 90—
95, 2007. DOI: 10.1109/MCSE. 2007 .55.

P. M. Valero-Mora, “Ggplot2: Elegant graphics for data
analysis,” Journal of Statistical Software, vol. 35, pp. 1-
3,2010.

IS&T Infernational Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023

[21] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, and M. Azzi,
“Rawgraphs: A visualisation platform to create open out-
puts,” in Proceedings of the 12th Biannual Conference on
Italian SIGCHI Chapter, ser. CHltaly *17, Cagliari, Italy:
ACM, 2017, 28:1-28:5, 1SBN: 978-1-4503-5237-6. DOI:
10.1145/3125571.3125585.

[22] J. Hynek, J. Kachlik, and V. Rusndk, “Geovisto: A
toolkit for generic geospatial data visualization,” in VISI-
GRAPP (3: IVAPP), 2021, pp. 101-111. pOI: 10.5220/
0010260401010111.

[23] J. D. Walker, B. H. Letcher, K. D. Rodgers, C. C.
Muhlfeld, and V. S. D’ Angelo, “An interactive data visu-
alization framework for exploring geospatial environmen-
tal datasets and model predictions,” Water, vol. 12, no. 10,
p- 2928, 2020. DOI: 10.3390/w12102928.

[24] G. Andrienko, N. Andrienko, P. Bak, D. Keim, S. Kisile-
vich, and S. Wrobel, “A conceptual framework and taxon-
omy of techniques for analyzing movement,” J. Vis. Lang.
Comput., vol. 22, pp. 213-232, Jun. 2011. DOI: 10.1016/
j.jvlc.2011.02.003.

Author Biography

Moritz Zeumer received his M.Sc. degree in applied Computer Sci-
ence in 2021 from the University of Applied Sciences and Arts Hanover.
Since then, he is employed as a research scientist at the German
Aerospace Center in the Institute for Software Technology. His research
domain is visualization and visual analytics with a focus on human-
computer-interaction.

Jonas Gilg received his M.Sc. degree in Applied Computer Sciences
from the University of Applied Sciences and Arts, Hanover in 2019. Since
then, he is employed as a research scientist at the German Aerospace
Center in the Institute for Software Technology. His research domain is
visual analytics with a focus on georeferenced data.

Dr. Pawandeep Kaur Betz received her doctorate in Data Visu-
alization in 2021 from the Friedrich Schiller University of Jena, Ger-
many. Since 2022, she is employed as a research scientist at the German
Aerospace Center in the Institute for Software Technology. Her research
domain is visual analytics, user-centric visualization designs and evalu-
ation studies, automated insights, and visual interfaces for data manage-
ment.

Prof. Dr. Andreas Gerndt received his degree in computer science
from Technical University, Darmstadt, Germany in 1993. In the posi-
tion of a research scientist, he also worked at the Fraunhofer Institute
for Computer Graphics (IGD) in Germany. Thereafter, he was a software
engineer for several companies with focus on Software Engineering and
Computer Graphics. In 1999 he continued his studies in Virtual Reality
and Scientific Visualization at RWTH Aachen University, Germany, where
he received his doctoral degree in computer science. After two years of
interdisciplinary research activities as a post-doctoral fellow at the Uni-
versity of Louisiana, Lafayette, USA, he returned to Germany in 2008 to
head a department at the German Aerospace Center (DLR). Since 2019,
he is also Professor in High-Performance Visualization at the University
of Bremen, Germany.

4029





