
FCLWebVis: A Flexible Cross-Language Web-based Data
Visualization Framework
Nguyen K Phan, Guoning Chen; University of Houston; Houston, TX/USA
George Navarro; University of Texas; Austin, TX/USA
Reshmitha Muppala; Round Rock High School; Round Rock, TX/USA
Jonathan Chu, Sunny Kim; Klein Cain High School; Houston, TX/USA

Abstract
We present a new web-based, client-server data processing

and visualization framework that supports a flexible workflow,
enabling the user to customize different data processing and vi-
sualization tasks with tools implemented in different program-
ming languages. Our framework supports server-side applica-
tions developed with different languages, allowing visualization
researchers to easily make their new techniques available to the
target users. The client-side of our framework is implemented in
the web browser environment with customizable interface and vi-
sualizations. We describe the design of the architecture of our
framework and the process of adding new user-defined tasks, fol-
lowed by the demonstration of the proposed framework on a num-
ber of data processing and visualization tasks.
Keywords: Web-based visualization system; Client-server; Scien-
tific visualization.

Introduction
Every year dozens of new techniques for scientific data visu-

alization and processing are published. However, to utilize these
new techniques, not only does a user need to know the program-
ming languages and frameworks required to build the program,
but also the right computing architecture and operating system
designed to run these techniques are required (which can often be
very expensive). In the meantime, larger projects that make use
of a server-client setup may require extensive experience in both
front-end and back-end development.

One recently popular way to address the above challenge and
make the new visualization techniques available to the public is
to create a web service that utilizes the method on the server-side
and delivers the resulting visualizations through the client’s web
browser. This method allows anyone with a web browser to gain
access. Unfortunately, not only do such web services incur very
high operating cost to maintain the servers, but it also requires the
researcher to have extensive knowledge of back-end and front-
end web development. Rather than creating single-purpose web-
services that require the visualization technique researcher to have
experience in full stack development or hire an expensive web
developing service, a more desirable solution is a customizable
and scalable web service that researchers can use to rapidly de-
ploy their new visualization methods as an accessible web service
that anyone can use. Researchers can utilize their own servers to
run the web service, or community-funded public servers can be
set up to receive contributions from researchers by implementing
their new methods into the public web services. If successful,
such a framework can rapidly improve the public’s accessibility

to new visualization techniques. Before describing the design of
such a framework, we start with a list of requirements for this new
framework. Note that these requirements are obtained through our
survey of similar frameworks and our collaborations with domain
experts, which may not be complete. Nonetheless, they serve as a
starting point for the development of such a framework.

Requirements
The first major requirement is a capable web application

client that allows the end-user to easily view and interact with
the visualizations of the data. It should also be efficient to run
on low-end devices such as mobile phone browsers. However,
as they can only run inside web browsers, they are extremely
limited in processing power and data storage, which will greatly
limit the scope and scale of the required visualization/processing
tasks, hence, we move on to the next requirement. The web client
should be able to transfer the majority of the heavy work to the
web server. This heavy workload includes the storage, process-
ing (data parsing, filtering, and transformation), and visualization
of the user-uploaded data sets. However, if the required task or
data set is sufficiently small then it is reasonable to perform the
data processing and visualization on the client side which should
be more responsive and provide a better user experience overall.
Thirdly, to help decrease the workload and experience needed for
researchers to implement their own visualization tasks into our
web service, the service should be able to support the implemen-
tation of visualization and data processing tasks from different
programming languages. This cross-language capability should
encourage more researchers to use the framework to integrate vi-
sualization tasks using the programming language(s) that they are
familiar with. The framework needs to be able to conduct efficient
data transfer between executions of code written with different
programming languages, in addition to having the capability to
save and load the visualization state data for sharing. Lastly, there
needs to be an effective abstraction of the method implementation
process. Not only should the source code be well-documented
and straightforward to set up, but the process of implementing the
visualization task (on the client-side) and the data processing task
(on the server-side) also needs to be intuitive and easy to follow.

In summary, a desirable client-server framework for web-
based scientific data processing and visualization should possess
the following features.

• Visualization Task Abstraction
- Task API: new visualization tasks can be created and mod-
ified.

IS&T International Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023 397-1

https://doi.org/10.2352/EI.2023.35.1.VDA-397
© 2023, Society for Imaging Science and Technology



- Flexible Workflow: visualization tasks defined within the
framework cannot be made from static class definitions and
hard-coded user interface elements.

• User Session Data
- Save/Load State Data: the current state of the program/vi-
sualization can be saved and loaded to prevent loss of
progress.
- Scene Export: Scene data can be exported into other for-
mats.

• Infrastructure Flexibility
- Server/Client Setup: Server handles data loading, process-
ing, and filtering, and sends relevant data to the client for
efficient visualization. This setup allows easy scaling.
- Cross-language API: Server should allow the data load-
ing, processing, and filtering to be done with different han-
dlers implemented using different programming languages.
(Note, this should not be confused with different languages
used between the server and the client application.)

There are a few existing frameworks that aim to address the
above requirements. Those frameworks provide many desired
features listed above, but none of them provides all these fea-
tures (see the Related Work section). To address this challenge,
we introduce a new web-based data processing and visualization
framework, FCLWebVis 1, that encompasses all the above fea-
tures. Note that while all the above requirements are satisfied
within our framework, the state of the FCLWebVis is more to-
wards being a prototype as these features are not fully ready for
practical usage (compared to those seasoned software and tools).
Nonetheless, this work demonstrates the potential of our frame-
work that hopefully will attract continued contributions to it.

Related Work
Despite many recent web-based visualization systems that

only provide the front-end applications to process and visualize
(mostly information) data locally, like those visualization systems
created with the popular D3 library [3], there exist only a few
frameworks that utilize the client-server architecture for scientific
data processing and visualization, which we briefly review below.
Note that while efficient content delivery and scaling are consid-
ered, they are not the main focus of our research. Hence, our
related works are selected more towards their flexibility and diffi-
culty in implementing new visualization tasks.

Paraview [1] is a flexible and powerful visualization tool de-
signed for many visualization tasks. It supports user extension to
the existing visualization and can handle extremely large data sets
by performing parallel processing on shared or distributed mem-
ory machines. Unfortunately, there are certain limitations to Par-
aview that inspired the creation of our framework. Firstly, while
Paraview can be set up in a client-server configuration, it is not
a web-based framework and must be installed locally. Secondly,
Paraview is limited by the system architecture and hardware of
the system that it runs on, a user with a less powerful system
may not be able to run Paraview with their desired tasks which
might require a stronger system setup. If a researcher wants to
directly share their methods, the best way is to host a web-service
on their servers so that anyone can access and use it from the web
browser. While Paraview can also be used as a servers that others

1source code available at: https://github.com/MangoLion/FCLWebVis

can connect to, the host must share the actual address and logins of
the server, which complicates the process and require the users to
install Paraview locally on their own machines. In addition, Par-
aview’s workflow depends heavily on the C++ VTK library and/or
Python scripting, Paraview processing methods and filters mostly
make use of VTK’s data structures and methods. This prevents
(or makes the process very challenging for) new visualization or
data transformation methods that do not rely on VTK from being
implemented into Paraview.

Paraview Web is a separate web-based 3D scientific visual-
ization developed by Jourdain et al. [7]. It is specialized in visu-
alizing large data sets by making use of one or more PWServer
which is a Paraview-based visualization engine. Unlike Paraview
which renders using the VTK engine, Paraview Web encapsu-
lates the VTK object in proxies that can behave the same way
as the VTK object, allowing the rendering process to work on
both the local web browser and on the server-side (the user can
choose either server rendering or local browser rendering). How-
ever, Paraview Web’s robustness comes with many complexities.
When implementing a Paraview Web visualization, the Paraview
extension must be written in the VTK format and correspond-
ing JavaScript proxies in Javascript for the web application. Fur-
thermore, Paraview’s intuitive pipeline design also isn’t present.
Without the task pipeline design, Paraview Web’s user interface
components must be defined manually by the developer, unlike
Paraview’s simple XML inputs. Hence, Paraview Web is not
a replacement for Paraview as a web application. In contrast,
FCLWebVis not only comes with a flexible workflow (similar to
Paraview’s pipeline) but also allows quick implementation of new
tasks that can be executed in different programming languages.
FCLWebVis also allows rapid creation of the task’s user input
components with XML, similar to Paraview. FCLWebVis is also
not limited to only the VTK framework, allowing the use of other
visualization frameworks and data structures.

Mayavi Project [10] is a visualization frameworks that com-
petes with Paraview in some way. They offer very similar features
to Paraview, boasting a flexible treeview workspace similar to Par-
aview’s intuitive pipeline. It also allows extensive customization
and the integration of new visualization tasks using Python script-
ing. However, similar to Paraview, it is mostly limited to Python
scripting and not configurable as a web service.

VisIt [4] is an open source scientific data visualization and
analysis tool that is interactive and scalable. In a way, it is similar
to Paraview as it mainly relies on the VTK framework for data
representations and processing. It also possesses a similar un-
derlying pipeline system while not as robust. Nonetheless, VisIt
boasts about 60 more importable data formats than Paraview!

Recently, Bock et al introduced the Openspace [2], which
is an extensive and flexible visualization framework for visualiz-
ing astronomical data. Its customizable and modular design en-
sures the support of any present and future astronomy visualiza-
tion tasks. Unfortunately, Openspace’s module’s customization
scope is limited to the core structure defined in the Openspace-
Core package, which limits its potential to astronomy-related vi-
sualization tasks only. Compared to Paraview, Openspace has a
much more intuitive user-interface setup and better accessibility
(i.e., accessible via any web browser), it has to compensate with a
more restricted architecture, supporting a more limited set of data
structures and less robust user-interface inputs.

397-2
IS&T International Symposium on Electronic Imaging 2023

Visualization and Data Analysis 2023



Liu et al. [8] created a robust web application for the visual-
ization of 3D ocean eddies. The web application utilizes ThreeJS
[14] to display different 3D rendering tasks of ocean eddies’ prop-
erties with various interactive features. The eddy extraction and
tracking are performed on a separate C++ program that utilizes
VTK to process ocean eddy data and can take hours to complete
before the user can explore the results via the web application.

Table 1 compares the frameworks reviewed above and our
new FCLWebVis in terms of the desired features listed in the In-
troduction section . As can be seen, only our new framework
provides all these desired features. Note that even though existing
tools and software do not provide all the desired features, they do
offer easier interface for extension and intuitive user interaction,
compared to FCLWebVis, which is still a prototype framework.

Table 1: Comparison of different frameworks
Task Abstraction Infrastructure Flexiblity
Task
API

Flexible
Workflow

Server
Client

Web
-based

Cross-language
API

FCLWebVis
Paraview - -
Paraview Web - - -
Visit -
Mayavi -
OpenSpace - -

Design of FCLWebVis
FCLWebVis first starts with the basic definition of the base

components, including the data source which is the dataset or its
transformations and the task which transforms the data source
and/or visualizes it. Unlike Paraview which relies mainly on the
Visualization Toolkit (VTK) as the foundation for it’s data repre-
sentations and algorithms, FCLWebVis has more loosely defined
data representations. Each data source type is a simple data con-
tainer by definition, and the developer decides which task can uti-
lize the source type as the input or as the output to other sources.
A data source can be defined as a VTK data type and can interact
with tasks that perform VTK methods on those data types, but this
setup allows FCLWebVis’s data sources and tasks to not be lim-
ited to VTK and it’s data representations. A developer can easily
define a new data type and task that utilizes it, and incorporate it
into existing data sources and tasks.

To ensure the web service is accessible from any modern
browsers running on different device types (laptop, mobile phones
and tablets), the Web Application is a React JS application hosted
on a Node JS server using Express JS. Node JS is the back-end
JavaScript run-time environment that we use to implement all
server instances of FCLWebVis (the processing server, web ap-
plication host server, and the load balancer). React JS is a widely
used open-source JavaScript front-end library used to build and
display responsive user interface (UI) HTML elements and facil-
itate user interactions for web applications. To deliver the files
needed to run the web application to the user’s browser over the
internet, we make use of Express JS which is a Node JS frame-
work for content delivery. Aside from serving the web applica-
tion files to the user’s browser, the web application itself needs to
be able to maintain a reliable connection between the web appli-
cation with the processing server and transfer a potentially large
amount of data between the two, and allow for the easy restoration

of disrupted or dropped connections, the Socket IO framework is
used as the main communication method over the internet. Socket
IO is a popular bi-directional low latency, event-based communi-
cation framework.

While FCLWebVis supports the cross-language implemen-
tation of visualization tasks, we also take into account situa-
tions where cross-language scripting is not needed. Firstly, if the
new task (visualization or data filtering/processing) is written in
Javascript then Node-Gyp Addon API is not needed. Secondly,
if the new task is in the form of an executable program (rather
than compilable source code) then the task can be integrated us-
ing simple pipe communication instead.

Next we describe the architecture of FCLWebVis following
the above design.

Figure 1. The System Architecture of the web application and the server

package. Note that the dashed boxes indicates that the contents are of the

same types.

FCLWebVis Architecture
Overview Our framework utilizes a client-server architecture as
illustrated in Figure 1. Recall that the design goal is to create
a web-based visualization framework that can accommodate any
type of visualization task, the tasks themselves can be executed in
any programming language or framework on the server-side. The
service will also keep track of each user’s workspace and allow
the saving and loading of user sessions. In the following, we will
describe the detailed architecture of the web-based client side and
the server side, respectively.

Web Application
To address the requirement of displaying different visualiza-

tion types and allow easy implementation of new visualization
frameworks, the View Panel renders all visible tasks provided
that the task has a corresponding visualization component whose
type matches the view type of the current view panel. Different
view types are supported based on the type of visualization. The
view panel utilizes ThreeJS [14] for displaying 3D visualizations,
such as surface visualization or volume rendering. For 2D tabular
data visualization, such as drawing histograms and scatter plots,

IS&T International Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023 397-3



FCLWebVis uses Vega-Lite [12] which is a robust visualization
grammar framework. And for other dynamic 2D visualizations,
Pixi JS can also be used. It is important to note that new view
types can be easily defined with a new ReactJS View Panel Com-
ponent. For example, a natural language processing task may re-
quire a custom type of view that displays text HTML elements,
then a new view component can be defined that accepts the task’s
output and visualizes it as a set of text elements of different colors.

Client to Server Connection. Once the user accesses the React
web app, the app will contact the processing server using Socket
IO. Socket IO will handle the user id, and the server creates a tem-
porary workspace with that id. Any subsequent request (data set
upload/download, visualization tasks on a data set) will be exe-
cuted inside that workspace. At any time, the user can download
the snapshot of the entire workspace from the web app (stored
in the main memory of the web app) for viewing later. Lastly,
the user’s workspace data stored on the processing server can be
saved and resumed at a later time.

Web Server Package
The server package holds the required components on one

or more server machines required to maintain the web service. It
consists of the following two main components.

Processing Server The processing server is a NodeJS server de-
signed to handle all data processing, data storage, and workspace
export requests. Its main purpose is to receive user-uploaded data
sets, and for each visualization/processing task, it performs the
needed data processing operations and then returns the visualiza-
tion data back to the web application. The processed data is also
kept so that it may be used in future tasks that utilize them. To
properly manage the data set and the processed data of each task
for each user, the processing server encapsulates each user’s data
into a separate workspace that can be saved onto disk if the user
wishes to continue working on their workspace in the future or
to recover user work if the session was interrupted (such as from
loss of internet, or the browser was closed unexpectedly).

To summarize, the processing server handles all data stor-
age and processing requests. It receives requests from the user
(through the web application) to upload data sets or process vari-
ous data processing tasks that can be used for visualization. It also
sends the needed data to the web application for visualization (of-
tentimes the visualization data is only a very small fraction of the
original data in size). It also can also back up and restore the
user’s work. Communication with the web application is done
mainly through Socket IO.

Node Gyp Native Addon Node-gyp is a native addon that al-
lows the execution of visualization/data processing tasks from dif-
ferent programming languages. It enables the FCLWebVis frame-
work to utilize visualization tasks that are written in other lan-
guages than Javascript. Despite being written in a different lan-
guage, Node JS can still run these programs natively, ensuring ef-
ficient program execution and memory usage. Currently, FCLWe-
bVis supports visualization tasks written in either Javascript, C,
C++, Python, Java, or as a separate executable program.

Executable Tasks If the new task to be added to FCLWebVis is
in the form of an executable program, then instead of using Node-

gyp to communicate with the task, our framework will use pipe
communication. The processing server will start an instance of
the executable program and communicate using pipe to send user
input and receive the program’s output. However, there are sev-
eral limitations to this implementation. Firstly, tasks implemented
with Node-gyp API (or with native Javascript) are more efficient
as the task’s code is executed within the same memory space as
the server process, allowing faster data transfer. Secondly, pipe
communication also requires more implementation work to con-
vert the data to and from binary for the transfer process.

Figure 2. The main components of an FCLWebVis Task. They are required

to include a new task.

Task Definition
An FCLWebVis’s Task is the basic building block of the vi-

sualization pipeline. A task can be used to simply store data (as a
source) or the results of the transformation/filtering of data (of an-
other source). A task can also be used for analysis and visualiza-
tion. To fully define and deploy a new task for the user to access,
one needs to provide the task definitions in both server package
and web application. To make the process of implementing a new
task into FCLWebVis (both server package and web application)
intuitive, we split the task into different definition containers and
React components (Figure 2). Each container and component is
easy to define and implement for any researcher who wants to add
their visualization method into FCLWebVis as a new task. Here
we explain the roles of each task container/component, and how
they interact with each other, organized based on whether they
are located in Server Package or in Web Application. The com-
plete details of how these components and containers behave and
how they should be implemented are in the documentation on the
GitHub page of FCLWebVis.

397-4
IS&T International Symposium on Electronic Imaging 2023

Visualization and Data Analysis 2023



Server package task definition
In the processing server, the task’s definition includes the

task’s main properties (component (b) in Figure 2), such as the
task’s input data type and output data type. Any referred data
type needs to be defined first. An FCLWebVis data type holds a
set of data fields. For example, a vector field data type holds a set
of data fields for its properties from dimensions and spacing, to a
large data field that stores the array of vector values.

Receive Handler receives the input data required to run the
task, including the data sent by the web application, such as the
user input parameters, and any uploaded data sets. It also receives
the output data of the parent task (if there is one). For example,
the user creates a vector field task. The task created on the server
will then receive the vector field data from the web client. Since
the vector field by itself does not have any parent task, no parent
output data is given. Then the user creates a streamline tracing
task from the vector field task. The streamline tracing task on the
server will receive the streamline parameters (seeding points, step
size, integration length/time) from the web client and the vector
field data from the parent vector field task saved on the server.

Node Gyp Handler bridges the FCLWebVis framework with
the execution of the task in a different programming language.
The input data for the task needs to be properly defined so that
NodeJS can send them to the task’s program and receive the re-
sults. The results of executing the task will then be sent to the
output handler. The Node Gyp Handler is optional, and data from
the receive handler can be sent directly to the output handler in
some tasks (e.g., storing data used by other tasks).

Output Handler receives the output data after the task execu-
tion. It decides which data to save to the task’s output stored on
the processing server and which data is necessary for client visu-
alization. The latter data will be sent back to the web client for
visualization. This means that the web application keeps a differ-
ent representation of the data compared to the processing server.
This visualization data is only a small fraction in size compared
to the data’s original representation on the processing server.

Web application task definition
This process is similar to the task definition in the processing

server. The task’s main properties, any new data types, and output
must be defined.

Task Parameters Interface is a React component that holds the
input HTML elements for the task’s input parameters. FCLWe-
bVis has a large number of default input components from text
fields to list boxes that can be added with a simple line (and the
data field that the element will update). New input components
can also be defined by creating new React Components. Updates
to the task parameter inputs will directly update the task’s data
fields. Additionally, data check handlers can be defined for each
data field to ensure the input data is valid, before updating the data
fields with the user input value. Note that input data of the tasks
are defined in the task’s Input Fields.

A task’s parameters panel can be easily defined using ex-
isting input components (e.g., text box, drop-down, slider bars,
etc.). If a new input component is needed, then it can be defined
as a new ReactJS component and added to the task panel.

Figure 3. User Task Creation and Modification.

Submit Handler will be triggered when the user clicks the Sub-
mit button. It will determine from the task’s data fields which data
to be sent to the processing server, and which data to be directly
sent for visualization. Some tasks may not require a data process-
ing server at all and can be visualized directly, and in that case,
the submit handler does not need to send any data to the server.

Visualization Fields are data fields of the task that are solely
used for visualization. This data is often much smaller in size
than the original data set.

Task Visualizer is a React Component that utilizes the visual-
ization fields of the task to visualize. The type and definition of
the task visualizer component depend on the current view type.
For example, if the current view panel uses ThreeJS to render a
3D scene, then the task visualizer component of the task needs to
be of type ThreeJS React component to be rendered by the view;
otherwise, the task will not be rendered in the current view panel.

Visualizer Interface is a React component that holds input
components for adjusting the task’s visualization settings. Any
adjustments to the input values will send updates to the task vi-
sualizer component to update the visualization. Note that this be-
havior is togglable.

User Task Addition and Modification Logic
There is a need to better illustrate how the main components

of FCLWebVis interact with each other. In this section, we de-
scribe the internal process that happens once the user adds a new
task (or modifies an existing task), and clicks Submit, the fol-
lowing process will begin (Figure 3). This section is not to be
confused with a developer implementing a new visualization task
into the framework.

Firstly, the Submit Handler of the task will be called. It re-
trieves the Task Input Data and the Task Parameters Input. If the

IS&T International Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023 397-5



task was created from uploading a fresh data set, then the task in-
put data is the user uploaded data set; otherwise, if the task was
created as a child task of another task, then the task input data is
the parent task’s previous output data (step a). Note that the parent
task data represented in the web client is often only the fraction of
the data needed for visualization, while the main data set is stored
in the processing server. This is because the web client is lim-
ited by the memory and resources of the web browser and must
conserve memory. The task parameter inputs are the parameter
values of each input component in the Task Parameters Interface.
For tasks that do not require additional parameters (such as up-
loading a new data set), this component can be blank. The submit
handler will then decide which data will be sent to the processing
server, and which data to be directly sent to update the visualiza-
tion data fields of the task.

Once the processing server receives the submitted data, it
will call the corresponding task module and execute the task (task
module in Figure 3). Once the task is finished and the result data
is generated, the task module’s output handler will decide which
data to be sent to the web client and which data to be saved into
storage as the current task’s output data (so that future tasks cre-
ated under this task can make use of the output data). The data
sent to the web client will be used to update the visualization data
fields of the task. When sufficient visualization data is provided,
the task visualizer component will automatically update the visu-
alization in the view panel. Due to React’s efficient responsive de-
sign, the rendering update only applies specifically to the changed
properties of the specific task visualizer and the web client does
not have to re-render all current task visualizations.

The Practice of Implementing a New Task
After describing the necessary components that a task should

have and the logic of how a task can be added and modified on
FCLWebVis, in this section, we will briefly describe the practice
of adding a new task to FCLWebVis. Please note that the detailed
instructions, syntax, and file directory references are in the docu-
mentation attached to the project’s GitHub page.

Task Registration
We begin with the web application package and create a .js

file with the task name in the tasks folder. registerFileType()
is used to register any new data set file types that the task will
handle. Note that if the file type is already implemented then this
step is not needed.

registerFileType({

name: 'file_type_name',

fields: {},

sendToServer: false

})

Then, registerTaskType() will register the new task and
specify the task’s input and output file types, task properties (such
as if the task is client-side only), task input parameters, and meth-
ods (initialization, what to do when submitting to the server, and
so on).

registerTaskType({

name: 'task_name',

fields: {},

init:function(){},

onSubmit:function(){},

inputFileType: 'file_type_name',

outputFileType: 'file_type_name',

})

Note that some additional required steps are omitted here
(but are detailed in the documentation). These steps involve mod-
ifying some of FCLWebVis’s source code files manually to add
the corresponding “include” statements and register new entries
into the main index mapping. We are working to remove this lim-
itation to allow a more self-contained packaging process for the
creation of new tasks that can be conveniently added to FCLWeb-
Vis without the modification of source code.

Input Component Implementation
Here we define the React JS UI components for the new task.

This should be in the same previous .js file that holds the regis-
tration methods. Next, we define a TaskInput component that
holds the UI input elements. Each element is connected with one
of the task’s parameters. The following is an example XML of a
streamline trace task’s input:

<DropdownComponent name='direction'

values={['both', 'forward', 'backward']} />

<TextField name='stepsize' />

<TextField name='length' />

If we are defining a new file type, and this file should be
displayed in a visualizer, then we can create a FileInput compo-
nent that holds the input elements connecting to the visualization
parameters of the file type. For example, a streamlines file type
may have a geometry parameter to select whether the lines are
displayed as lines or tubes.

Note that a short import statement is needed for each UI ele-
ment type that will be used in the interface component. We hope
to remove this step in the future by refactoring the Node JS project
to make UI elements available without the need to write individual
import statements.

View Component Implementation
For tasks or file types that are displayable in a visualizer,

we need to define the corresponding view components for the file
or task. A view component is a React JS component that will
be input into the visualizer. Depending on the type of visual-
ization framework used, this view component should be imple-
mented accordingly based on that framework’s API. For example,
if a view component for displaying streamlines is a ThreeJS com-
ponent then it needs to return the correct ThreeJS syntax based on
ThreeJS documentation. In our current web demo, the Streamline
Tracing Task’s view component displays a sphere for each seed-
ing point, and the Streamline file type’s view component displays
the streamlines. Here is an example code for creating some empty
views and input components, and exporting them:

let TaskView = ({ task }) => {return null}

let TaskInput = ({ task }) => {return null}

let FileView = ({ file }) => {return null}

let FileInput = ({ file }) => {return null}

397-6
IS&T International Symposium on Electronic Imaging 2023

Visualization and Data Analysis 2023



Figure 4. Labeled interface panels and the demonstration of the streamline tracing task and Vega lite chart view on the flow past a cuboid cylinder simulation

[15]. (1) The workspace directory panel holds all created tasks and data sets. The checkbox indicates if the task should be rendered in the visualization panel.

(2) The render properties panel holds user input elements of the visualization data. (3) The task parameters panel holds user input elements of the current

task’s input parameters. (4) Visualization panel visualizes all checked tasks (provided that the task’s visualization component is of the same type). This specific

panel is of type ThreeJS which can display 3D visualizations. (5) The Vega-Lite chart panel is a visualization panel of type Vega-Lite, used to display a selected

Vega-Lite chart task.

export {

TaskView, TaskInput, FileView, FileInput

}

Server Side Processing
On the server package, we first create a new method for the

task in tasks. js. In this method, we write in Javascript what the
server should do when it receives the input data for this task. Any
cross-language methods can be called here for processing and re-
ceiving data (details in our documentation on the project’s GitHub
page and the node-gyp-addon documentation). Then, we return
the new results that are sent back to the client. This result is also
stored on the server locally for that user.

example_task: function(parameters, data){

//parse the parameters

//call any cross-language methods

//return the new result back to the client

//and also store it in user workspace here

}

Lastly, we write the cross-language hookup methods in the
addon folder, based on which language the task is written in.

One current limitation of FCLWebVis is the need to mod-
ify one of the server package’s source code files to add the new
task’s method and an import statement for the cross-language API

method. We hope to remove this requirement in the future to al-
low seamless integration of new tasks without the need to modify
source code (as the task should be added as a separate plug-in
package, similar to how ParaView includes new plug-ins).

Use Cases and Applications
Next, we demonstrate how to use the proposed framework to

achieve the visualization of 3D vector fields and integrated explo-
ration of the vector fields via their abstract information.

3D Vector Field Visualization via Three JS View
FCLWebVis supports 3D data visualization with the ThreeJS

visualizer. 3D Data sets by default will show a bounding box in-
dicating the range of the data set. Additional tasks can be created
for different visualizations. Figure 4 shows a vector field task that
shows the vector field’s bounding box, combined with a stream-
line tracing task that visualizes the streamlines traced from a set
of seeding points. Seeding points and other integration parame-
ters for streamline computation can be adjusted by the user. Note
that since the vector field data lies inside the processing server,
the streamline tracing task also needs to be executed on the server
before sending the resulting streamlines back to the client.

Additionally, the streamline tracing task’s visualizer compo-
nent can display the seeding points by accessing the task’s param-
eter data. Each 3D dot indicates a seeding point. Oftentimes, the
task visualizer will also need to visualize the task input parameters
as a guide for better adjustments and observation before executing

IS&T International Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023 397-7



Figure 5. Demonstration of the stream surface construction and volume rendering

the task. Additional visualization tasks for vector fields include
stream surface construction [5] and volume rendering (Figure 5).

In the future, we plan to add VTK.JS as an additional 3D
visualizer which is more specialized for VTK data types and pro-
cessing methods, since many visualization techniques utilize the
VTK framework.

User Exploration via Vega-Lite View
To demonstrate FCLWebVis’s data analysis capabilities, we

show a split view of the streamline visualization (using the
Three.js view type) and a bar chart (using the Vega-Lite view
type) of the average direction change of the first 50 streamlines
(Figure 4). The Vega-Lite task component is straightforward, with
two input text boxes. The first input accepts a data-prepossessing
Javascript method that can transform the parent task’s data (in this
case, the streamline tracing task) into the desired chart data. If not
provided, the output data of the task will be used as the input for
the chart. The second output accepts a Vega-Lite configuration
(as a file or text) that will be used to create the chart based on
the input data. This allows each Vega-Lite task to fully utilize the
Vega-Lite framework to create one or more interactive and cus-
tomized charts. However, this requires the user to know how to
write the Vega-Lite grammar and may spend some time perform-
ing prepossessing of the input data. In Figure 4, the streamlines
data needs to be prepossessed by computing the average direction
change of each streamline. We are actively working on integrating
the Voyager 2 framework [17] to greatly simplify the Vega-Lite
chart creation process by relying on Voyager 2’s intuitive drag-
and-drop interface and dynamic chart generation.

Additional interactivity between the Vega lite plot and the
3D view can be achieved by registering a custom event listener
to the generated vega view that, when the user interacts with it,

will update the corresponding data entry in the streamlines view
component to display changes to the 3D view (Visualizer compo-
nent). This is currently achieved using the Vega-Lite task within
FCLWebVis as demonstrated in Figure 6. In this example, the user
selects streamlines of interest through the Vega-Lite plots show-
ing some accumulated characteristics of streamlines [18]. How-
ever, to achieve this linked-view setup, the user first needs to un-
derstand how to write the custom event listener for Vega-Lite by
themselves. In the future, we will develop a more generalized
Vega-Lite component for FCLWebVis that can allow a more in-
tuitive, non-coding approach to set up the Vega-Lite for 3D view
interaction.

QuadriFlow Mesh Quadrangulation

To demonstrate the ease of implementing new tasks, we
added QuadriFlow [6] task to FCLWebVis. Quadriflow is a re-
cent automatic quadrilateral (quad-) mesh generation method.
Comparing to previous approaches, Quadriflow tends to gener-
ate quad-meshes with smaller numbers of irregular vertices and
better-shaped elements. Since the authors of Quadriflow have
published their method as a compilable executable program, we
integrated it into FCLWebVis as a new visualization task. The in-
tegration process is very simple and straightforward. First, we
define a new task definition with a new data type (e.g., quad
mesh); then, we add some instructions on the server side to run
the QuadriFlow executable with the input data, retrieve the output
quad mesh file, and send it back to the client. Next, we define
a quad mesh view component for the task of rendering the quad
mesh in the Visualizer component. Figure 7 shows an example
result of QuadriFlow after uploading a triangular mesh.

397-8
IS&T International Symposium on Electronic Imaging 2023

Visualization and Data Analysis 2023



Figure 6. Two examples of the interaction between the Vega-Lite plot and the 3D view. (a) and (b) each shows the highlighted streamline whose index is the

selected bar entry on the Vega-Lite plot.

IS&T International Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023 397-9



Figure 7. Demonstration of the QuadriFlow Quadrangulation task.

3D Vector Field Vortex Core Extraction
Another example task we implemented is the extraction of

vortex core lines within a vector field dataset [11]. We decided
to first write a Python script that makes use of the PythonVTK
framework instead of using VTK in C++, to demonstrate FCLWe-
bVis’s cross-language capability. Similar to QuadriFlow’s task,
the vortex core extraction task in FCLWebVis first calls the ex-
ternal Python script, provides the input data and parameters, and
then forwards the resulting file to the web client for visualizing
the core lines in the 3D view. Note that due to this task being
implemented in Python, and the original vector field data was im-
plemented in C++ as the vtkUnStructuredGrid data type, it can-
not be directly transferred to PythonVTK’s vtkUnstructuredGrid
and had to be re-parsed which introduced more computation time.
Figure 8 shows the core lines extracted from the Benard convec-
tion flow. A core line is highlighted based on the user interaction
on the Vega-lite plot showing the average λ2 values along the in-
dividual core lines.

Performance Assessment
In this section, we provide an assessment of the performance

of FCLWebVis.

The Web Application’s performance on a normal consumer
laptop is considerably efficient. The only CPU and GPU in-
tensive operations are from the first rendering of an extensive
visualization task such as streamline tracing (with hundreds of
streamlines), or when the view is changed (panning or zooming)
which requires re-rendering of all tasks. After a new task is ren-
dered, additional changes to the task will only change the specific
part of the task’s visualization component and do not require re-
rendering the view. Since the web application only keeps the min-
imal amount of data needed for visualization, the memory usage
is negligible compared to the actual amount of memory needed to
perform tasks. An average user session that makes use of multi-
ple data sets and multiple visualization tasks do not suffer from

performance issues.

The Processing Server’s performance depends mainly on the
operation cost of the task and the number of consecutive users.
The server can manage consecutive connections, such as from
multiple users uploading data at the same time, or when the result-
ing data is sent to multiple users at the same time. However, if the
task requires the execution of non-JavaScript code (e.g., C++ or
Python), the server can only execute the task concurrently due to
the limitation of the Node Gyp framework. A bottleneck may hap-
pen if a user submits a computationally expensive task in which
case other users will have to wait until the server finishes process-
ing the task.

Figure 9 illustrates the processing server’s response to mul-
tiple submitted client requests. Each request is timed in 4-second
intervals to ensure a clear ordering (and confirm that the results
will be first-in-first-out). Every request is identical and involves
the upload of the Bernard 3D vector field (8MB) [16] to the pro-
cessing server. The server will then parse the VTK file into the
correct format in memory (e.g., VTKStructuredGrid). After load-
ing the data set, the server will send a success message back to the
client along with the basic information of the data (e.g., data range
and spacing) for visualizing the bounds of the vector field. How-
ever, to test the client’s ability to receive large data results, in this
experiment the server will send the fully parsed vector field back
to the client. Figure 9 demonstrates the server’s ability to receive
and send data to multiple clients at the same time, with the only
major bottleneck is that the server must process each task one at a
time (if the task requires executing a non-JavaScript language, in
this case, the vector field is stored in C++ VTKStructuredGrid for-
mat). If the server cannot receive and send data simultaneously,
then there would be a long and consistent delay for each succes-
sive client request, but in this case, each request is completed at
similar times.

Since the only major bottleneck is the task execution and not
on networking (e.g., uploading the input data and sending result

397-10
IS&T International Symposium on Electronic Imaging 2023

Visualization and Data Analysis 2023



Figure 8. Demonstration of the vortex core extraction task combined with an interactive Vega-Lite plot that shows the average λ2 values of each core line.

0 10 20 30 40 50

Client sending
request

Server 
processing request

Client received
results

Seconds since start

0

1

2

3

4
Clients

Figure 9. Response times of the processing server to five simultaneous

client requests.

data), we can create a rough estimate of the average user wait
time (AUWT) with AUWT = (U ∗ Tp + Tio)/PS where U is the
expected number of active users, Tp is the average task process-
ing time, Tio is the average networking time, and PS is the number
of processing servers. If the AUWT is too long, then more pro-
cessing servers should be added.

Multi-threading and Parallel Computation. Unfortunately,
due to FCLWebVis’s design goal of allowing intuitive and easy
implementation of new tasks and cross-language scripting, the re-
sulting high degree of freedom in the process of implementing
new tasks also makes the automatic utilization of multi-threading
and parallel computation very challenging. To clarify, enabling
multi-threading or parallel computation on a specific task can be
done by importing the required libraries and methods for such fea-
tures (such as OMP for C++). We have done basic testing on sim-
ple multi-threaded tasks (e.g., streamline tracing) and obtained the
expected results. The challenge here is to enable multi-threading
or parallel computation out of the box without requiring the devel-
oper to incorporate them into individual tasks. ParaView does al-
low much easier incorporation of parallel computation and multi-
threading into their filters because they mainly rely on one frame-

work (VTK) for data representation and algorithms. We hope to
achieve similar capabilities in the future, but for the moment we
prioritize the ease of use and implementation of new visualization
tasks in exchange for sub-optimal capabilities.

Conclusion
In this paper, we present a new web-based scientific data

processing and visualization framework, called FCLWebVis. Our
framework is built on the modern client-server architecture and
supports a flexible workflow and user-customized new tasks. We
have demonstrated the use and flexibility of our framework via a
few 2D/3D data processing and visualization tasks.

It is worth mentioning that one of FCLWebVis’s major goals
is to enable community support of the operation cost for running
visualization web services, which should encourage researchers
to make their methods easily accessible by contributing to a
community-supported FCLWebVis server.

Limitations and future work. While FCLWebVis is an ambi-
tious web-based visualization framework with a high degree of
flexibility and accessibility, there are still some limitations that
need to be addressed. Firstly, the current implementation only
has a limited number of working visualization tasks (e.g., stream-
line/stream surface construction and visualization, volume ren-
dering, and vortex core extraction). More tasks for vector fields
(e.g., vector field reconstruction, streamline clustering [13], and
unsteady flow exploration [9]) and other data types can be added,
which we are working on. Secondly, FCLWebVis can only dis-
play a maximum of two visualization panels split horizontally and
do not support the dynamic creation of visualization panels yet.
Thirdly, due to the current setup of the file upload process, if the
user tries to upload a data set that is larger than the memory limit
of the user’s browser, the web application will freeze. Also, un-
handled exceptions may happen during the visualization process
that can terminate the web application. We plan to address these

IS&T International Symposium on Electronic Imaging 2023
Visualization and Data Analysis 2023 397-11



limitations in future work. In addition, we wish to add more intu-
itive multi-threading and parallel computation implementation to
the web service to remove the need for researchers to write their
own multi-threading or parallel computation methods into their
tasks. Finally, while FCLWebVis does satisfy all of the listed re-
quirements, the framework should be considered more as a work-
ing proof-of-concept prototype, as these features need more time
to mature and stabilize to be ready for real-world usage. We hope
that this paper can demonstrate the usefulness and potential of
FCLWebVis and attract enough attention to motivate future devel-
opers to help this aspiring open-source framework reach fruition.

As a final note, our main goal is to raise awareness of the
potential limitless applications of what an online, easily accessi-
ble, simple to contribute (i.e., adding new visualization methods),
straightforward to setup and host, and cross-language capable
web service can do to promote the use of cutting-edge visualiza-
tion techniques to the general public. Hence we also welcome the
development of new frameworks (or the addition of these features
to existing frameworks, such as Paraview) with cross-language,
online web service, and straightforward task API.

Acknowledgment. We wish to thank the anonymous reviews
for their valuable feedback. This research was supported by NSF
IIS 1553329.

References
[1] James Ahrens, Berk Geveci, and Charles Law. Paraview: An

end-user tool for large data visualization. The visualization
handbook, 717(8), 2005.

[2] Alexander Bock, Emil Axelsson, Jonathas Costa, Gene
Payne, Micah Acinapura, Vivian Trakinski, Carter Em-
mart, Cláudio Silva, Charles Hansen, and Anders Ynner-
man. Openspace: A system for astrographics. IEEE trans-
actions on visualization and computer graphics, 26(1):633–
642, 2019.

[3] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3

data-driven documents. IEEE transactions on visualization
and computer graphics, 17(12):2301–2309, 2011.

[4] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Mered-
ith, Sean Ahern, David Pugmire, Kathleen Biagas, Mark
Miller, Cyrus Harrison, Gunther H Weber, et al. Visit: An
end-user tool for visualizing and analyzing very large data.
2012.

[5] Matt Edmunds, Robert S Laramee, Rami Malki, Ian Mas-
ters, TN Croft, Guoning Chen, and Eugene Zhang. Auto-
matic stream surface seeding: A feature centered approach.
In Computer Graphics Forum, volume 31, pages 1095–
1104. Wiley Online Library, 2012.

[6] Jingwei Huang, Yichao Zhou, Matthias Niessner,
Jonathan Richard Shewchuk, and Leonidas J Guibas.
Quadriflow: A scalable and robust method for quadrangu-
lation. In Computer Graphics Forum, volume 37, pages
147–160. Wiley Online Library, 2018.

[7] Sebastien Jourdain, Utkarsh Ayachit, and Berk Geveci.
Paraviewweb, a web framework for 3d visualization and
data processing. International Journal of Computer Infor-
mation Systems and Industrial Management Applications,
3(1):870–877, 2011.

[8] Li Liu, Deborah Silver, and Karen Bemis. Visualizing three-

dimensional ocean eddies in web browsers. IEEE access,
7:44734–44747, 2019.

[9] Duong B Nguyen, Lei Zhang, Robert S Laramee, David
Thompson, Rodolfo Ostilla Monico, and Guoning Chen.
Physics-based pathline clustering and exploration. Com-
puter Graphics Forum, 40(1):22–37, 2021.

[10] Prabhu Ramachandran and Gaël Varoquaux. Mayavi: 3d
visualization of scientific data. Computing in Science & En-
gineering, 13(2):40–51, 2011.

[11] Martin Roth and Ronald Peikert. A higher-order method for
finding vortex core lines. In Proceedings Visualization’98
(Cat. No. 98CB36276), pages 143–150. IEEE, 1998.

[12] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsupha-
sawat, and Jeffrey Heer. Vega-lite: A grammar of interactive
graphics. IEEE transactions on visualization and computer
graphics, 23(1):341–350, 2016.

[13] Lieyu Shi, Robert S Laramee, and Guoning Chen. Integral
curve clustering and simplification for flow visualization: A
comparative evaluation. IEEE transactions on visualization
and computer graphics, 27(3):1967 – 1985, 2021.

[14] three.js. three.js / editor, 2015.
[15] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel.

Smoke surfaces: An interactive flow visualization technique
inspired by real-world flow experiments. IEEE Transactions
on Visualization and Computer Graphics (Proceedings Vi-
sualization 2008), 14(6):1396–1403, November - December
2008.

[16] Daniel Weiskopf, Tobias Schafhitzel, and Thomas Ertl.
Real-time advection and volumetric illumination for the vi-
sualization of 3d unsteady flow. In EuroVis, pages 13–20,
2005.

[17] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley
Chang, Felix Ouk, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing
Systems, pages 2648–2659, 2017.

[18] Lei Zhang, Duong Nguyen, David Thompson, Robert
Laramee, and Guoning Chen. Enhanced vector field visual-
ization via lagrangian accumulation. Computers & Graph-
ics, 70:224–234, 2018.

Author Biography
Nguyen Phan received his B.S in Computer Science at the

University of Houston-Downtown (2018) and is currently pursu-
ing a Ph.D. degree at the University of Houston. His research
interest is in data visualization with specialty in vector field (or
flow) data visualization.

Guoning Chen is an Associate Professor at the Department
of Computer Science at the University of Houston. He earned his
Ph.D. in Computer Science from Oregon State University in 2009.
Before joining the University of Houston, he was a post-doctoral
research fellow at the Scientific Computing and Imaging (SCI)
Institute at the University of Utah. His research interests are in
Data Visualization, Geometric Modeling, Geometry Processing,
and Physically-based Simulations.

397-12
IS&T International Symposium on Electronic Imaging 2023

Visualization and Data Analysis 2023




