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Abstract
To improve clinical care practice, it is important to under-

stand the variability of clinical pathways executed in different
contexts (e.g., pathways in different geographical locations, de-
mographics, and phenotypic groups). A common way of repre-
senting clinical pathways is through network-based representa-
tions that capture the trajectories of treatment steps. However,
first-order networks, which are based on the Markovian property
and the de facto standard model to represent transitions between
steps, often fail to capture real trajectories. This paper intro-
duces a visual analytic tool to explore and compare pathways
represented in higher-order networks. Because each higher node
in the network is a sub-trajectory (i.e., partial or full history of
treatment steps), the tool can display true sequences of treatment
steps and compute the similarity of the two networks in the space
of higher-order nodes. The tool also highlights areas where the
two networks are similar and dissimilar and how a certain sub-
trajectory is realized differently in different pathways. The paper
demonstrates the tool’s usefulness by applying it to multiple an-
tidepressant pharmacotherapy pathways for veterans diagnosed
with major depressive disorder and by illustrating heterogeneity
in prescription patterns across pathways.

Introduction
Clinical pathways (CPs) are typically structured healthcare

plans designed to implement evidence-based clinical guidelines,
medical algorithms, and protocols [13]. Intended to improve
the quality of personalized care, establish cost-effective and
evidence-based care management, and standardize care proce-
dures, CPs have become increasingly important for clinical pro-
cess optimization and communication between different stake-
holders in clinical process management. To improve CPs or en-
force a new policy, it is essential to capture CP variability in differ-
ent contexts, such as hospitals in different geographical locations
or demographic subgroups, and perform comparative analysis for
various outcome measures (e.g., cost, survival rate).
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A comparison of pathway pairs (i.e., pathway variants) is
often conducted by measuring topological similarities in their
graph representations (Figure 1 (Top)). The Markov property-
based (first-order dependency) network is mainly used to model
a pathway and portrays a compact and intuitive representation.
However, it does not show complete trajectories (i.e., treatment
histories) and thus often presents the wrong impression about the
treatment process. Therefore, this paper adopts the higher-order
network [15] to represent a CP, in which a trajectory of a treatment
sequence appears as a node (Figure 1 (Bottom)).

A higher-order network invariably has a more complex struc-
ture than a first-order network. Therefore, we created the Clini-
cal Pathway Visualization system (CPViz) to handle the increased
complexity. Given many CPs to compare, CPViz compares dis-
tances between all pairs and offers interactive functionalities to
explore similar and dissimilar treatment patterns between a given
pair of pathways. As an example, we describe how CPViz is used
to conduct a comparative analysis of ten US Department of Veter-
ans Affairs (VA) antidepressant pharmacotherapy treatment path-
ways for an Operation Enduring Freedom (OEF) and Operation
Iraqi Freedom (OIF) cohort diagnosed with major depressive dis-
order (MDD) [12].

Background and Related Work
This section briefly describes how clinical pathways can be

represented as higher-order networks. Also, we discuss previous
studies focusing on visualizing clinical pathways and events. Fi-
nally, we conclude the section with a review of existing work re-
garding higher-order network visualization.

Background: Higher-Order Network for Clinical
Pathways

A network, G = (V,E), is a graph with vertices, V , as ob-
jects and edges, E, as links between objects. In a first-order net-
work representation of a CP, V is a set of single treatment steps
(e.g., taking 50 mg of an antidepressant daily for 2 months). In
a higher-order network representation, v ∈ V may represent a se-
quence of treatment steps (e.g., starting with 25 mg of an antide-
pressant daily for 2 months, followed by increasing the dose to 50
mg and continuing for 3 months). Formally, an nth-order node, v,
denotes a path through (s1, ...,sn−1,sn), where si is the i-th step
in the path. Although a node can represent a sequence of steps,
all other properties can be considered the same as the first-order
network. For example, a path from one node (h, i) to the next
node j (i.e., steps h–i) is denoted as (h, i)→ j, and its transition
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Figure 1. A CP is represented in two different network types: first-order network (top) and higher-order network (bottom). The first-order version denotes a

single treatment step as a node, and the treatment transitions as edges. The higher-order version represents a sequence of treatment steps as a node and the

dependencies of the treatment steps as edges.

probability is

P((h, i)→ j) =
W ((h, i)→ j)

∑n W ((h, i)→ n)
, (1)

where W (i→ j) is the sum of connections i→ j found in the data.

Visual Analytics for Clinical Data
Most previous studies on visualizing clinical pathways and

clinical events focused on summarizing large-scale electronic
health records (EHRs) as flow-based visualizations to highlight
frequent patterns of clinical events [7, 9] to aid decisions for fu-
ture health care plan [5,8]. Perer et al. [9] preprocessed EHR data
to extract and map information to hierarchical standard clinical di-
agnosis codes and detect frequent patterns from the pre-processed
data using Sequential PAttern Mining using a bitmap representa-
tion (SPAM) [1]. The visualization interfaces based on Sankey
Diagrams represent the frequent pathway events with which users
explore paths of interest in detail. Guo et al. [7] introduced a
visual analytics system that aligns clinical pathways based on dy-
namic time wrapping and segments into more detailed stages to

help illustrate the disease progression in the context of a care plan.
DecisionFlow [5] analyzes disease progress and outcomes in EHR
by aggregating patients at each stage of the disease. It was also
designed to handle varying sequences of events. DecisionFlow vi-
sualizes the aggregated symptoms and their average development
time for the patients in color-coded paths using Sankey Diagram
visualization.

Higher-Order Network Visualization

To the best of our knowledge, only a few works exist on the
visualization of higher-order networks. Processing a rich set of
information and complex dependencies in higher-order networks
are major obstacles to pattern discovery and interpretation. HoN-
Vis [14] delivered a significant contribution in this area. With a
global shipping network as an example, it demonstrated how an
interactive exploration of higher-order networks could help a de-
cision process. Multiple coordinated visualizations allowed users
to quickly identify patterns of interest and the formation and evo-
lution of higher-order dependencies. HOTVis [10] proposed a
dynamic graph visualization algorithm that utilizes higher-order
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Figure 2. Exploration of higher-order dependencies (treatment sequences) in a CP using CPViz. The dominant sequences from MIN:C2 and MIN:C2-4 to

THE:INCREASE are shown. The graph on the bottom-left, part of a first-order network, shows difficulty tracing the sequences.

graphical models of causal paths in temporal data based on time
slices. The generated time-aware static visualizations of tempo-
ral graphs can highlight patterns in the underlying temporal data.
CCVis [6] also utilized a higher-order network construction algo-
rithm to extract the critical sequences that lead to different tran-
sition probabilities. Their algorithm extracted the critical activ-
ity sequences to describe students’ online learning behavior pat-
terns. In addition, multiple coordinated views provide an effective
overview of vast amounts of behavioral data and detailed compar-
isons of individual student behaviors.

Design Requirements
The overall goal of exploring and comparing CPs repre-

sented as higher-order networks is to visualize complex de-
pendencies and identify similarities between multiple CPs. To
achieve the goal, multiple requirements should be achieved. We
had many discussions with domain experts, such as clinicians and
health services researchers. As a result, we identified four design
requirements below.

• R1. Exploring Higher-order Networks: The visualization
system should support the effective exploration of higher-
order networks. It should reduce the visual clutter issue as
complex in the structure of a higher-order network. Also,
it should support discovering important higher-order depen-
dencies.

• R2. Identifying Salient Patterns: The visualization sys-
tem should support finding salient nodes (treatment or a se-
quence of treatments) and specific treatment patterns (e.g.,
aggressive or conservative).

• R3. Finding (Dis)Similar CPs: The visualization system
should enable users to find (dis)similar CPs. Given a set
of CPs, the system should provide the similarities of all CP
pairs.

• R4. Comparing CPs in-depth : Given the similarity of all
pairs, the visualization system should be able to perform a
deep comparative analysis of the selected pair. Users need
to know how they are (dis)similar to each other, such as dif-
ferent dependency patterns.

Antidepressant Pharmacotherapy CP Model
Antidepressants are medications prescribed to treat

MDD [4]. Pharmacotherapy (pharmacology) is the treatment of
a disorder or disease with medication. Antidepressant pharma-
cotherapy consists of acute therapy until the best clinical response
or remission (usually 6 to 12 weeks) and continued therapy for
an additional 4 to 6 months to prevent relapse. In some cases,
for recurrent or persistent disability, maintenance therapy is
continued for months or years. There are many different types of
medications used to treat depression. To select a drug, doctors
consider several factors [2]. Our pathway model was designed to
represent three aspects of pharmacotherapy sequences: dosage,
ramping up/down of dosage, and duration of dosage. Based
on this model, we developed a nomenclature for each step in a
pathway using intuitive labels. For example, SUB:INCREASE
means to ramp up to subtherapeutic dosage, and THE:C4-9
means to continue the current therapeutic dosage for 4–9 months.
To include different antidepressant medications in the same
pathway, we converted all medications into Fluoxetine-equivalent
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Figure 3. The matrix view visualizes edges—intersections between rows and columns are displayed as squares in a 2D layout. Also, it shows edge weights

and the in/out-degrees of target and source nodes.

doses. Table 1 shows all the labels we use for the study.

Similarity Measure
We define the distance metric between two CPs using their

topological similarity and the fraction of patient cases that fall
on nodes and edges. Let M be a square matrix, and let mi j be
the value of the ith row and the jth column that represents the
transition probability of edge (vi,v j).

We compute the distance between two pathways using ran-
dom walks. More specifically, we randomly select first-order
nodes from each pathway using the proportions of their occur-
rences in data as initial probabilities. Then we produce random
walks up to ten in length by traversing the network using the tran-
sition probability matrix, M. Formally, the distance between path-
ways A and B is defined as D(A,B).

D(A,B) = 1−S(A,B) (2a)

S(A,B) =
∑

NAB
i AiBi√

∑
NAB
i Ai

2
√

∑
NAB
i Bi

2
(2b)

Here, D(A,B) is the distance between the two pathways, A and
B, defined as one minus the similarity of two pathways, S(A,B),
where S(A,B) is the cosine similarity between the two vectors de-
rived from random walks on pathways A and B. Two vectors with
the same number of dimensions, denoted by NAB, are the union
of the random walks on the two pathways A and B. This is the
number of unique paths generated by a random walk at least once
in path A or B. Ai and Bi represent occurrences where i-th path
is sampled at A and B, respectively. S(A,b) measures how similar
two pathways are by comparing the overall topology by compar-
ing the sampled random walk representing the local topology.

To place all distances among stations in a global context, an
embedding space has been created by applying kernel PCA onto
a matrix where each row corresponds to pairwise distances to all

Table 1. Labels used to denote treatment steps in a CP

Label Description
MIN Minimum dosage
SUB Subtherapeutic dosage (below 20 mg)
THE Therapeutic dosage (20–40 mg)

BMAX Below max dosage (40–60 mg)
MAX Max dosage (60–80 mg)

INCREASE Increase dosage
DECREASE Decrease dosage

C2 Continue for 2 months
C2-4 Continue for 2–4 months
C4-9 Continue for 4–9 months
C9+ Continue for 9+ months

other stations from the given station. We tested various kernels,
including linear, poly, RBF, sigmoid, and cosine. We then com-
puted Spearman’s correlation between D(A,B) and the euclidean
distance within each embedding space, where a larger correlation
value means better similarity. As a result, the sigmoid kernel was
selected to create the embedding space.

Functional Aspects of CPViz
At a high level, CPViz provides two types of visual analytic

functionalities: exploration of a single CP and comparison of mul-
tiple CPs. The first is to shift treatment sequences that involve
steps of interest (e.g., all treatment sequences starting from step
MIN:C2 to step MAX:INCREASE). The second is to understand
how multiple CPs can be identified and grouped as similar CPs
and study how a given pair of CPs are similar or dissimilar.

Exploration of a Single Pathway
For browsing a given pathway, CPViz places a first-order net-

work version of the pathway over the higher-order version (Fig-
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Figure 4. A heat map that represents similarities between all pairs of stations calculated by random walks (Left). 2D embedding space where all stations are

placed, preserving their pairwise distances from the others (Right). The map is created using the random walk distances and kernel PCA (Right).

ure 1). Users can select steps of interest on the first-order net-
work, where steps are nodes, and the complete pharmacother-
apy sequences (i.e., paths or sequences of steps) that include
the selected steps are shown in the higher-order network. Fig-
ure 2 shows an example in which steps MIN:C2, MIN:C2-4,
MIN:C4-9, and MIN:C9+ are selected. We can see the two
nodes, MIN:C2 and MIN:C2-4, have fourth-order dependencies
ending THE:INCREASE and the connected paths and intermedi-
ate higher-order nodes are visualized. This significantly decreases
the visual clutter issue and efficiently extracts traces from the se-
lected nodes to the highest-order nodes (R1). To aid clinicians in
interpreting these paths, CPViz uses three different colors to de-
note the type of the last step in the node. The dark pink represents
nodes with an increase in dosage, the green represents a decrease
in dosage, and the yellow represents a continuation of the same
dosage. The radius of a node is proportional to the number of
cases found in the data. The thickness of the edge indicates the
weight of the edge. We also adopted a force-directed layout [3],
which brings together nodes with mutual connections to better
track paths of interest (R1 and R2).

Comparison of Multiple Pathways
Given many pathways, CPViz offers another visual analytic

capability to compare pathways at two levels. First, it shows sim-
ilarities of all pairs of pathways by a grid-based heat map and
places all pathways in a 2D embedding space so that clusters of
similar pathways can be detected (see Figure 4). Second, when
users select a square on the heat map, CPViz provides an in-depth
comparison of two selected pathways by visualizing the common
and unique edges (see Figure 5).

When comparing two pathways, CPViz displays a pathway’s
edges in a matrix, which we call the matrix view. As shown in
Figure 3, a square located in the ith row and the jth column is
an edge coming out of the ith node from the vertically arranged
nodes and going into the jth node from the horizontally arranged
nodes. The color of a square represents the edge weight, with the
minimum value colored in white and the maximum value in dark
red. Additionally, CPViz adds an in-degree histogram (number of
incoming edges) on the top and an out-degree histogram (number

of outgoing edges) on the right side. This helps identify hub nodes
(nodes with a large neighbor) and outliers (R1 and R2). The col-
oring scheme for histogram bars is the same as in Figure 2. To aid
visual analytics, CPViz shows labels as a tooltip when the mouse
hovers over a node, even though the tooltip is not shown in this
paper. For edges, it shows tooltips that contain the source nodes,
target nodes, and edge weights.

The matrix view is also used to compare two pathways.
Given a set of pathways, CPViz illustrates all pairwise similari-
ties in a heat map, which is shown as a lower-triangular form in
Figure 4 (a) showing a displacement of each pathway that pre-
serves their similarities with all other pathways (R3). The colors
of the squares indicate similar scores. The dark blue means that
the pair is relatively similar, while the white color does a dissim-
ilar pair. The grey squares are pairs of the same HoNs. Also, it
shows the similarity metric and projection to a 2D space in Fig-
ure 4 (b). The similarity measurement is explained in Section of
Similarity Measure below.

Once a user selects a pair of pathways, three matrix views
are displayed: two for each chosen pathway and the third for their
combined view. The third view displays the union edges from
both pathways for comparative analysis in depth (R4), as shown
in the rightmost view in Figure 5, in which the red squares repre-
sent the edges of the first pathway, and the blue squares represent
the edges of the second pathway. The outlined squares indicate
the edges that appear in both pathways. The histograms show the
in-degree and out-degree values of the combined node-set. A his-
togram bar for a node that appears in both pathways is split by a
black line to indicate the separate portions from each pathway.

Results
For the case study using CPViz, we collected data from

OEF/OIF veterans with MDD from ten different VA facilities. We
used data between January 1, 2006, and January 1, 2020, from the
VA’s Corporate Data Warehouse [11]. After processing data based
on the labels in Table 1, we constructed pathways as higher-order
networks. We conducted two types of tasks using CPViz: (1)
identification of correct pharmacotherapy sequences and (2) vi-
sual comparative analysis of multiple pathways to highlight clini-
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Figure 5. CPViz for comparative analysis of two CPs. Three matrix views for the selected pair A (left) and B (center), and the combined view of A and B (right).

cal differences.

Identification of Pharmacotherapy Sequences
Figure 2 illustrates CPViz identifying all pharmacotherapy

sequences that start with the minimum dosage. It only shows
paths of higher-order nodes that span through four first-order
nodes following MIN:START: MIN:C2, MIN:C2-4, MIN:C4-9,
and MIN:C9+ from the CP of a facility in Georgia (station ID
508). As illustrated, the three paths that lead to an increase of
the antidepressant to a therapeutic dosage (THE:INCREASE) are
highlighted. A closer investigation shows that no such path exists
through MIN:C9+ nor MIN:C4-9 (R1 and R2). In other words,
if a patient stays at the minimum dosage for more than 4 months,
it is less likely that the patient will ramp up to the therapeutic
dosage. In contrast, a network of Markovian dependency (i.e.,
first-order) fails to expose this pattern. To highlight this issue,
the bottom-left corner of Figure 2 shows a part of the first-order
version of the CP in which we can find paths to THE:INCREASE
from both MIN:C4-9 and MIN:C9+.

Visual Comparative Analysis (Most Similar Pair)
The heat map shown in Figure 4 (a) shows the all-pairwise

similarity scores of the ten pathways (R3). We selected the pair
with the highest similarity: station ID 508 of Georgia and sta-
tion ID 565 of North Carolina. The rightmost matrix view shows
few common edges at the upper-right area where the higher-order
nodes are placed, but it shows many common edges around the
lower-left area where the lower-order nodes are placed. Further-
more, we observed the same pattern in most pairs, which suggests
that the difference in patterns is slight at the beginning of treat-
ment, but the difference increases as treatment sequences move
toward the end of the treatment step.

Visual Comparative Analysis (Least Similar Pair)
Next, we select another pair of pathways with the smallest

similarity score: station ID 508 of Georgia and station ID 589
of Missouri. Figure 6 illustrates the matrix view that compares
the two pathways. As can be seen from the low similarity score,
CPViz exposes very few common edges between the two path-

ways. Most of all, CP 589 has noticeably more higher-order nodes
and edges than CP 508. A closer examination reveals that the two
pathways differ (R4). We call out three regions in the matrix view
to highlight the differences.

In region (1), the edges of CP 589 (blue) run diagonally up-
wards, whereas no such edges are found in CP 508 (red). This
means that many lower-order nodes progress into higher-order
nodes in CP 589. In other words, there are more unique paths
that include higher-order ones in CP 589 than in CP 508. Region
(2) shows that CP 589 has two target nodes with high in-degree
values: BMAX:INCREASE and MAX:INCREASE, whereas the
same nodes in CP 508 have small in-degree values. In region
(3), some edges (paths) range from minimum and subtherapeu-
tic dosage treatments to below max and max dosage treatments.
This means that CP 589 has more aggressive treatment sequences
(i.e., ramping up to maximum dosage and bypassing therapeutic
or subtherapeutic dosages) than ones in CP 508.

Conclusion
Unlike pathways represented in the Markovian property

(first-order network), pathways of higher-order networks portray
both partial and complete histories because the nodes provide the
actual trajectories of treatment sequences. However, they are of-
ten too complex to comprehend. CPViz offers interactive visual
analytic functionalities for higher-order networks to facilitate the
exploration of a single pathway and the comparison of multiple
pathways. We demonstrated that CPViz captured some treatment
sequences from a higher-order CP, which was infeasible with first-
order networks. We also showed that CPViz exposes heterogene-
ity in the prescription of antidepressants across different pathways
by mapping and visualizing dependencies of connections between
treatment sequences.
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Figure 6. Matrix view comparing pathways of two VA facilities: station ID 508 from Georgia (red squares) and station ID 589 from Missouri (blue squares). The

view shows that CP 589 has longer treatment sequences and more aggressive paths that increase dosage to the maximum dosage and bypass the therapeutic

dosage.
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