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Abstract
In this paper, we introduce FastPoints, a state-of-the-art

point cloud renderer for the Unity game development platform.
Our program supports standard unprocessed point cloud formats
with non-programmatic, drag-and-drop support, and creates an
out-of-core data structure for large clouds without requiring an
explicit preprocessing step; instead, the software renders a dec-
imated point cloud immediately and constructs a shallow octree
online, during which time the Unity editor remains fully interac-
tive.

Introduction
Over the past decade, the point cloud data format has ex-

ploded in popularity. Acquisition devices, such as LiDAR and
depth sensors, have become more accessible, and processing soft-
ware [4] and hardware options have grown in number and qual-
ity [3, 5, 23]. Today, point clouds are being used in various
fields, including medicine, archaeology [24], ecology, robotics,
and more. Users can gather their own point clouds with LiDAR
cameras built into modern smartphones or ultra-maneuverable
drones, download open-source conversion and analysis tools like
LAStools [1] and pcl [16], and view their clouds in free web-
based viewers, such as Potree [17] and plas.io [22], or in desktop
programs like Unreal Engine or CloudCompare [7].

This surge in popularity has introduced a host of aspiring
new users of point clouds who have less technical experience than
users of previous eras. These new users hail from various aca-
demic and industrial settings, and all have discovered new and
exciting ways to apply point clouds to their respective disciplines.
However, although point cloud acquisition and visualization tech-
nology has developed at a staggering pace, usability for these non-
technical users has yet to receive the attention it demands.

One specific area where usability has lagged behind the state
of the art is point cloud rendering. Once a user has acquired a
point cloud through a laser scanner or RGB-D camera, they can
choose from a wealth of rendering options for viewing it in a vir-
tual scene, but all require certain compromises.

Some provide seamless user experiences, allowing a user to
easily and quickly view their point cloud files in a 3D environ-
ment, but lag behind modern advances in rendering performance
and visual quality - specifically, many lack support for large point
clouds, which are too big be loaded fully into memory and require
an out-of-core data structure to load subsets of the point cloud dy-
namically based on camera position.

Other renderers leverage recent developments in rendering
technology and provide performant support for large clouds, but
suffer from limited user interfaces and lack support for other
graphical formats such as meshes of UI canvas elements. Ad-
ditionally, these renderers often come with hefty preprocessing
requirements, forcing users to download additional programs to
convert their clouds to specific data structures and wait a con-

Figure 1. A decimated cloud loaded for the Great Hall cloud during octree

construction

siderable amount of time for their clouds to be processed before
rendering.

In this paper, we present FastPoints, a new point cloud ren-
derer for the Unity3D platform aimed at providing a modern, us-
able experience for non-technical point cloud users. FastPoints
offers a number of benefits to user experience compared to other
large point cloud viewers and Unity point cloud renderers:

• Fully non-programmatic interface
• Integrable with standard mesh rendering pipelines
• Interactive during preprocessing
• Support for popular point cloud formats

A feature comparison of FastPoints and other state-of-
the-art renderers can be seen in Table 1. We open-source
the implementation of FastPoints at https://github.com/

eliasnd/FastPoints to gather community feedback and enable
community-driven development.

Fully Non-Programmatic Interface
State-of-the-art renderers today, while powerful, generally

require users to do some amount of programming to add their
clouds to virtual scenes, either rewriting scripts to adjust scene
parameters, downloading and running command line tools to pro-
cess point clouds, or modifying variables to point the renderer to
the user’s clouds on disk. This can present a significant barrier
to entry for non-technical users. FastPoints requires no program-
ming knowledge, and all functionality is exposed via a graphical
interface that integrates with the Unity editor.

Integrable with standard mesh rendering pipelines
Users today also want to integrate point cloud visualizations

with other types of graphics. Allowing point clouds and meshes
to coexist in virtual scenes gives users far more power to bring
their visions to life. Even in scenes without meshes, connecting a
point cloud renderer to a standard mesh rendering pipeline allows
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Figure 2. Full detail on the statue and surrounding furnishings after octree

construction

postprocessing, particle effects, and text elements to be used in
conjunction with the cloud, creating more opportunities for edu-
cators, artists, and game developers to integrate point clouds into
their work. FastPoints integrates fully with the Unity environ-
ment, allowing users to add meshes, particles, canvas elements,
or any other graphical formats to their scenes.

Interactive during preprocessing
Another impediment to the ease of use of point cloud ren-

derers is the lack of interactivity during the preprocessing step
necessary for large point clouds. Many tools require an explicit
preprocessing step, where users must install another program, run
that on their unordered point cloud, and only then load the con-
verted cloud into the renderer and visualize their cloud. While
some other tools have an implicit preprocessing step, meaning the
preprocessing is done by the same program that contains the ren-
derer, these tools usually block the renderer while the data struc-
ture is built, so users are unable to interact with the application
until this process is done. By providing interactivity during pre-
processing, a renderer can enable users to integrate point clouds
much more naturally and quickly with their workflows, incen-
tivizing more experimentation and exploration. FastPoints uses
a novel asynchronous program architecture to allow interactivity
with a downsampled version of a user’s point cloud while prepro-
cessing is performed online.

Support for popular point cloud formats
Lastly, support for popular formats vastly increases the ac-

cessibility of a modern point cloud renderer. While LAS and
LAZ files have seen a rise in popularity due to their specific de-
sign choices for storing point data, the PLY format is still very
popular as well. If a renderer provides support for some and not
others, users must seek out conversion tools that may require pro-
gramming experience or tinkering to work properly. FastPoints
supports PLY, LAS, and LAZ files natively.

Figure 3. A point cloud being added to Unity via drag-and-drop. Other point

cloud handles, stored as Unity ScriptableObjects, are visible in the Assets

pane

Prior Work
Point cloud rendering has received an impressive amount

of attention over the past decades. Of particular relevance to
this project are previous papers discussing point cloud rendering
pipelines, out-of-core data structures for large point clouds, and
point cloud support in the Unity environment.

Point Cloud Rendering
As point cloud visualization has grown in popularity, re-

searchers have identified a number of different avenues for im-
proving rendering technology.

Rendering pipelines
A large volume of work has focused on optimal rendering

pipelines for point clouds. In recent years, focus has shifted to
leveraging GPGPU methods in these pipelines. Schütz et. al.
propose a method to use compute shaders to pack per-pixel depth
and color information into 64-bit integers and eliminate redundant
fragment drawing on the final render pass [18]. Another GPGPU
method was proposed by Günther et. al. in 2013 to perform a
depth test with a busy-wait locking system and an additional early
depth test to avoid waiting wherever possible [8].

GPU point loading
Research has also been done on more efficient methods for

loading point clouds to the GPU from disk or main memory.
Schütz et. al. propose a method to progressively transfer points
from main memory to the GPU, avoiding frozen frames during
initial cloud loading, as well as a method to dynamically com-
pute and render sub-clouds based on real-time camera positions
through a combination of reprojection and repopulation of a sep-

Method Large point
cloud support

Unity
Integration

Interactive during
preprocessing

Non-programmatic
interface

Support for
LAS, LAZ,

and PLY files
pcx # ! N/A ! #

Potree ! # # # #

BA PointCloud ! ! # # #

FastPoints (our method) ! ! ! ! !
Table 1: Feature Comparison of Existing Point Cloud Renderers
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arate rendered point buffer [19].

Visual fidelity
A number of new methods have focused on increasing the

visual quality of rendered point clouds. Many of these work to
solve the surface or hole-filling problem [15], which is the inher-
ent difficulty of displaying a convincing continuous surface from
a point cloud without converting the cloud to a mesh or another
explicit surface representation. Some solutions, such as the Au-
toSplats method [2], display normal-aligned ellipsoids that can
then be rasterized to create realistic surfaces - a process known
as splatting. Other methods, such as Kashyap et. al. [12], focus
on raytracing points or splats, enabling global illumination and
other realistic lighting effects. Still others work to improve the
visual quality of particular rendering pipelines: continuous level-
of-detail allows out-of-core tree structures to be rendered without
jarring drops in resolution [21]. Research has also been done on
the effect of point cloud compression, a parallel problem to visual
fidelity, on perceptual quality of renders [11].

Octree Construction
There has also been a considerable amount of research into

efficient point cloud storage formats. One of the most popular
data structure generation tools developed in recent years is the
Potree converter, which generates an out-of-core octree from stan-
dard LAS or LAZ file types. The most recent version of the con-
verter was described in 2020 by Schütz et. al. [20] It separates
the octree construction process into an explicit chunking step - in
which it sorts points hierarchically into a number of small out-of-
core files - and a parallel indexing step, in which it loads multiple
chunks simultaneously and constructs local octrees on multiple
threads before finally stitching together a global tree.

Unity Point Cloud Support
Although Unity does not natively support most popular point

cloud formats, the engine does have a built-in point renderer for
meshes, which draws vertex data as points without incorporating
triangles whatsoever. This allows a user to programatically popu-
late a Unity Mesh object with point cloud data as vertices, but pro-
vides no GUI support or point cloud-specific rendering options.

One method that attempts to improve this support is the pcx
plugin developed by Keijiro [13]. This plugin provides drag-and-
drop support for binary little-endian PLY files, but no other for-
mats. It loads all points into main memory and renders them us-
ing Unity’s built-in mesh point renderer or a custom point shader.
While this plugin provides an intuitive user experience and sup-
port for one of the most popular and accessible point cloud for-
mats, it does have a few drawbacks. For one, the size of point
clouds it can render is limited both by a user’s RAM and GPU.
Large point clouds - like those often used in academic, medical,
or professional settings - can be 50GB or larger in size, far larger
than the main memory available on most platforms. Addition-
ally, the shader implemented by this plugin loads the entire point
cloud to GPU memory regardless of camera position, meaning
point cloud sizes are also limited by GPU memory, and camera
positions that lead to many points mapping to a single pixel slow
rendering considerably.

Another method, developed by Simon Fraiss in his Bache-
lor’s Thesis [6], provides support for the Potree 1.7 point cloud

format [17]. This method is able to offer a number of advantages
due to the Potree format’s hierarchical octree structure, including
frustum culling, level-of-detail rendering, and support for clouds
much larger than main or GPU memory with little to no latency
even on mid-tier hardware. The most noticeable drawback of this
method is the hefty preprocessing requirement: the plugin itself
provides no drag-and-drop support and requires point clouds to be
converted into the Potree 1.7 format via a separate preprocessing
step - which can take hours for large clouds - before they can be
loaded into Unity.

Program Structure
FastPoints introduces a novel program structure and a num-

ber of innovations to avoid some of the limitations of existing
point cloud rendering solutions. We prioritize seamless user ex-
perience, immediate interactivity, support for popular point cloud
formats, and tight integration with the Unity environment.

To support seamless user experience, we integrate our plugin
with Unity’s built-in asset pipeline to allow for drag-and-drop im-
porting of PLY, LAS, or LAZ files, three of the most popular un-
structured point cloud formats. Once a cloud has been imported,
we provide immediate interactivity by uniformly downsampling
the cloud and rendering the result. This gives users a rough ap-
proximation of their implemented cloud while further preprocess-
ing is performed.

After the initial downsampling step, we generate an out-of-
core octree using the Potree Converter 2.0 described by Schütz et.
al. in 2020 [20]. During this time, the Unity environment and
the initial downsampled cloud remain fully interactive, allowing
users to position their point clouds in larger scenes or continue to
work on other aspects of their project.

Once the octree is fully generated, we discard the decimated
point cloud and traverse the octree, dynamically loading points
based on the camera position each frame.

The program structure is illustrated in Figure 4.

Implementation
Our tool utilizes a C# plugin for interfacing with Unity as

well as a native C++ plugin for most hefty IO operations and in-
teraction with C++ conversion tools.

File Importing
For file importing, we utilize Unity’s asset pipeline to sup-

port drag-and-drop importing of unordered point cloud PLY, LAS,
or LAZ files. When a file is added, the plugin initializes a han-
dle object for IO operations that can be passed to the C++ side of
the plugin, which then starts conversion and octree construction
operations.

Immediate Low-Resolution Rendering
Once the handle asset has been initialized, the program be-

gins point cloud decimation. This uniform downsampling step
requires iterating over the entire point cloud and thus has time
requirements that are roughly linear with respect to point cloud
size. To minimize the amount of time this step takes, we spawn
multiple threads to subsample different chunks of the point cloud
simultaneously and leverage the speed of modern SSDs. Since
the time required for octree construction scales with cloud size as
well, this subsampling step is consistently a small fraction of the
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Figure 4. Our overall program structure. Point clouds are imported; then,

if no octree has been constructed previously, the cloud is decimated for im-

mediate rendering on the main thread and a new thread spawns to construct

the octree. Once the tree is done, the decimated cloud is discarded and the

octree is rendered in its place.

total processing time, and usually finishes in a matter of seconds
even for clouds with hundreds of millions of points.

One consideration with this step is the difference in perfor-
mance between point cloud formats. While both PLY and LAS
files can be iterated over and parsed quickly, LAZ files require a
point-wise decoding to parse position and color attributes. This
causes a significant time increase in decimation, but since this de-
coding is also necessary for octree construction from LAZ files,
the total time for decimation remains a small proportion of the
overall preprocessing time.

File Conversion
While the Potree Converter supports LAS and LAZ files out-

of-the-box, it lacks support for PLY files. To address this, we

include an additional conversion step for PLY files, using LAS-
tools’ las2las program to create temporary LAS files that can be
used with the Potree Converter then cleaned up after the octree
is constructed. This means processing times are longer for PLY
files than LAS or LAZ files, but due to our program architecture,
the decimated cloud is fully interactive for the duration of this
additional conversion phase as well.

Octree Construction
Once the initial decimated cloud and conversion phase are

done, an octree is constructed by the Potree Converter described
in Schütz et. al. 2020 [20]. First, the point cloud is sorted into a
number of out-of-core chunks; then, the chunks are read back and
converted into local octrees in parallel; finally, the local octrees
are stitched together into a global octree that is written to a single
file. This process is shown in Figure 5.

After construction is complete, the resulting files are linked
to the created Unity asset, allowing the entire asset to be trans-
ferred between Unity projects seamlessly without loss of access
to the original point cloud.

Octree Rendering
Once the entire octree is written to disk, the original deci-

mated cloud is cleared from memory, and the octree skeleton is
used to render points from the generated structure using the cur-
rent camera position. The full rendering pipeline is shown in Fig-
ure 4.

To avoid slowing the main thread during octree traversal, we
create a separate traversal thread that walks the tree and checks
each node’s visibility. If a node should be rendered, the traverser
checks if its points are loaded from disk. If they are, the node
is added to a queue of nodes to be rendered; if not, the node
is marked and its points are asynchronously loaded into a Unity
ComputeBuffer object allocated directly on the GPU. Conversely,
if a node has points loaded but is not visible in the frame, its points
are discarded to free GPU memory. Once the tree is fully tra-
versed, the newly populated node queue is sent to the main thread.

The main thread executes its work in the Unity per-frame
Update and OnRenderObject methods. Each frame, the main
thread sends frustum and positional camera information to the
traverser thread, fetches the most recently sent node queue, and
iterates through the queue. For each node, it performs a draw call
directly with Unity’s DrawProceduralNow method, avoiding the
overhead of creating GameObjects for each node and allowing
more direct access to Unity’s rendering pipeline. The rendering
pipeline is illustrated in Figure 6.

Evaluation
Of our stated objectives - seamless user experience, imme-

diate interactivity, and support for popular point cloud formats -
only time to interactivity is directly quantifiable. To evaluate this,
we measure the time taken by point cloud decimation on three
clouds of different sizes.

We tested decimation on three point clouds: a 51 million-
point NEON cloud [14], a 222 million-point cloud of the Great
Hall in University of Rochester’s Rush Rhees Library collected
by Michael Jarvis [10], and the Oplontis 14 cloud of 989 million
points also from Michael Jarvis’s collection [9]. All tests were
run on a 14” Macbook Pro 2021 with an M1 Pro CPU and 16GB
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Figure 5. Octree construction pipeline, as described by Schütz et. al. The imported file is first sorted into a number of out-of-core chunk files, each representing

a node in the global tree. The chunks are then indexed in parallel, creating local octrees, whose points are written to an additional file. Finally, the octrees are

stitched together into a global tree, and the entire structure is written to an additional file.

RAM. Each cloud was decimated to 1,000,000 points in the deci-
mation phase. The results can be seen in Table 2.

As expected, the decimation time requirements remained
low in all three cases. While the measured times do not perfectly
fit a linear time complexity, the requirements in each case were
far less than the preprocessing requirements for generating a full
out-of-core data structure. The full time requirements for each
cloud in PLY format can be seen in Table 3.

In addition to the increased time requirements for LAZ files,
on large point clouds we also observe significantly higher decima-
tion time requirements for PLY files than LAS files. This is due
to the initial load requirements of PLY files being significantly
below those of LAS files, but the per-point reading time after the
initial load being considerably faster for the latter.

We can also evaluate the interactivity of our solution by
tracking frames per second (FPS) during conversion and octree
construction. With a single camera orbiting the decimated Rush

Rhees Great Hall cloud - consisting of 1 million points in its dec-
imated state - we find on the same 14” Macbook Pro that the
FPS never drops below four hundred, leaving plenty of render-
ing power for whatever other objects a user would want to add to
their scene during this time. The FPS over time can be seen in
Figure 7.

Future Work
One advantage of the choice of Unity as a development plat-

form is that it offers a robust suite of tools for extending FastPoints
and improving the plugin in a variety of ways.

One intended expansion for FastPoints is the integration of
the GPGPU rendering pipeline described by Günther et. al. [8]
This would allow more points to be rendered per frame with-
out overloading the GPU, meaning an octree with less granularity
could see the same performance as more granular ones currently
in-use in the application. These shallower trees would have lower

Cloud Points Decimation Time (PLY) Decimation Time (LAS) Decimation Time (LAZ)
NEON 51,161,407 1469ms 2670ms 3186ms

Great Hall 222,708,159 8611ms 7068ms 17.81s
Oplontis 989,305,017 47.74s 18.58s 96.03s

Table 2: Decimation times for three clouds in PLY, LAS, and LAZ formats
Cloud Points Decimation Time Conversion Time Octree Construction Time
NEON 51,161,407 1469ms 7888ms 29.91s

Great Hall 222,708,159 8611ms 1m03s 2m54s
Oplontis 989,305,017 47.74s 4m50s 10m40s

Table 3: Processing times for three clouds in PLY format. In all cases, the initial decimation procedure is significantly faster than
the processing as a whole
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construction times and would decrease the time needed until the
full point cloud is interactive.

Due to Unity’s powerful compute shader support, this could
be implemented with the current rendering pipeline by replacing
each node’s draw call with a compute shader call that renders the
node’s points to a render texture, performing early z-culling and
busy-waiting as described in the original paper. The final ren-
der texture would then be combined with the currently-rendering
camera’s color and depth textures to display the point cloud in
context and with proper z-culling with the rest of the scene.

This shallow tree structure could be enhanced by the inclu-
sion of progressive rendering as described by Schütz et. al. [19]
This would allow significantly more points to be sent to the GPU
without wasting as much rendering power, even when some points
loaded to the GPU get clipped or occluded. The reproject-fill-
prepare loop described in the paper would allow points to be
reloaded from disk only as needed while the majority remain in
GPU memory between frames.

Other planned features include adaptive point sizing, specifi-
cally for the initial decimated cloud, as well as point blending and
eye dome lighting.

Additionally, while the primary focus of this tool thus far has
been user experience and high-level design, we hope to extend the
tool with a more performant low-level interface to enhance the
speed and flexibility of the project even further. Specifically, the
tool currently interfaces with LAStools on the native side to han-
dle cloud decimation and PLY conversion. While this performs
extremely well for decimating and processing LAS and LAZ files,
results with PLY files could be improved. For instance, the PLY-
to-LAS conversion step could be avoided completely with an im-
plementation of the Potree Converter method that supports PLY
files. Additionally, LAStools’s PLY reader is designed to parse
LAS attributes such as bounds that are unnecessary for the deci-
mation step of our program; a custom implementation of a PLY
reader could significantly reduce the time needed for subsampling
PLY files.

More research could also be done in the sampling method
for the initial decimated cloud. While uniform sampling was

chosen for this application to maximize subsampling speed, one
could imagine point clouds that are ordered such that uniform
sampling results in unevenly distributed points in the decimated
cloud. While none of the clouds we tested had this issue, if this
becomes an issue in the future, it could be handled by a spatially-
constrained random sampler.

Conclusion
In this paper, we present FastPoints, a new point cloud ren-

dering plugin for the Unity development platform. This plugin
offers constant interactivity, seamless user experience, support for
massive, unordered clouds in popular formats, and tight integra-
tion with the Unity development platform. To achieve this, we
introduce a novel architecture thxat uses an initial subsampling
step to provide an immediately interactive estimation of the point
cloud’s geometry as well as integrated conversion and octree con-
struction processes that proceed without blocking the Unity edi-
tor.
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