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Abstract
Computational modeling frequently generates sets of related

simulation runs, known as ensembles. These simulations often
output 3D surface mesh data, where the geometry and variable
values of the mesh are changing with each time step. Comparing
these ensembles depends on comparing not only geometric prop-
erties, but also associated field data. In this paper, we propose
a new metric for comparing mesh geometry combined with field
data variables. Our measure is a generalization of the well-known
Metro algorithm used in mesh simplification. The Metro algo-
rithm can compare two meshes but doesn’t consider field vari-
ables. Our metric evaluates a single variable in combination with
the mesh geometry. Combining our metric with multidimensional
scaling, we visualize a low dimensional representation of all the
time steps from a set of example ensembles to demonstrate the
effectiveness of this approach.

Introduction
Numerical simulations are used to simulate physical phe-

nomenon or predict the behavior of prototype devices before they
are manufactured. The simulations considered in this work con-
sist of 3D data produced over time. At each time step, the simu-
lation will compute a 3D mesh1 and the field variables associated
with the nodes of the mesh. Field variables can be either scalar
or vector. Scalar variables might include quantities such as tem-
perature or pressure and vector variables might include quantities
such as velocity or acceleration.

When analyzing numerical simulation data, practitioners of-
ten want to compare one simulation to another or understand how
a given simulation evolves over time. Typically this is done by
simply viewing a set of simulations and comparing them at each
time step. This approach quickly becomes infeasible, however,
when the analyst has to consider hundreds or thousands of time
steps.

In this paper, we present a visualization approach to assist
in understanding numerical simulation data by quantifying time
step comparisons using a mesh distance. Most of the previous
work in mesh distance comes from the field of mesh simplifica-
tion [5, 10, 8, 9, 11]. In this field, the goal is to simplify an ex-
isting mesh, typically for use in computer graphics and visualiza-
tion scenarios. The simplified mesh should represent the original
mesh as accurately as possible but have fewer nodes and edges.
In order to evaluate the simplified mesh, a mesh distance is re-
quired. Simplified mesh distance typically does not use field vari-
ables [4, 20, 19], but there are some exceptions [18, 17]. There

1It should be noted explicitly that in this work we are concerned with
surface meshes, not volumetric meshes.

are also metrics which consider visual quality that we do not con-
sider [1]. Of the algorithms that incorporate field variables, our
generalization of the Metro algorithm [5] is most similar to the
algorithm described in the work by Roy et al., 2004 [18].

Our use of a mesh distance is where the similarity of our
work to the work in mesh simplification ends. Our end goal is not
mesh comparison, per se, but rather the visualization and compar-
ison of multiple time steps in a numerical simulation. Therefore,
we use the mesh distance to produce a pairwise distance matrix.
The pairwise distance matrix is then used with a dimension re-
duction algorithm known as multidimensional scaling [3]. Other
algorithms that use pairwise distance matrices could also work,
for example Isomap [21] or t-SNE [23]. Finally, the resulting di-
mension reduction is used as the basis of a visualization in a web
application called Slycat [7].

Slycat comes from the field of ensemble visualization [12,
13]. Ensemble visualization explores the visualization of data not
from a single numerical simulation, but from multiple runs (an
ensemble) of numerical simulations. The goal of ensemble visu-
alization is to understand not only a given simulation but also the
context of that simulation within the wider scope of multiple sim-
ilar simulations. Since our metric can be used just as easily on an
ensemble of numerical simulations, it can also be used for ensem-
ble visualization. Other algorithms in the field of ensemble vi-
sualization include iso-surfaces [2], topological analysis [14, 15],
and comparative analysis [16] (among others). None of these al-
gorithms are particularly similar to our approach.

Slycat is a system which provides a web server, a database,
and a Python infrastructure for remote computation (on the web
server). The user is not burdened with installation/updates and the
only requirement is the presence of a Slycat supported browser
(e.g. Firefox). In addition, Slycat supports management of mul-
tiple users, multiple datasets, and access control, therefore en-
couraging collaboration while maintaining data privacy. Slycat
is implemented using HTML5, JavaScript, and Python. Slycat is
open source (github.com/sandialabs/slycat). It is anticipated that
an open-source version of our mesh distance software will also be
released.

In this paper, we describe our approach in detail. We discuss
in detail the algorithms we use to represent the simulation time
steps and describe the Slycat user interface. We consider compu-
tational cost and demonstrate our system using a dataset obtained
from a numerical simulation of a punch impacting a metal plate.

Although we use specific algorithms in this paper, it is im-
portant to note that the user interface is completely decoupled
from the chosen algorithms. Alternative or new algorithms can
be easily substituted for the algorithms described.
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Algorithms
We use a few different algorithms to produce our

time step visualizations, including our generalization of
the Metro algorithm. We use the Python trimesh li-
brary (https://trimsh.org/index.html) to implement our
metric, and the Python library sklearn (https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.MDS.html)
to implement multidimensional scaling. In this section we
provide details for the algorithms.

Metro
Metro is an algorithm for comparing two meshes proposed

by Cignoni et al. in 1998 [5]. Metro computes the approxima-
tion error between two mesh surfaces. We start by defining the
distance e(p,S) between a point p and a surface S:

e(p,S) = min
p′∈S

d(p, p′), (1)

where d(p, p′) is the Euclidean distance between two points p and
p′. Next, we define the maximum distance Emax(S1,S2) between
surfaces S1 and S2:

Emax(S1,S2) = max
p∈S1

e(p,S2). (2)

We also consider the variations

Emean(S1,S2) =
1
n ∑

p∈S1

e(p,S2), (3)

which we call the mean distance, and

ERMS(S1,S2) =

√
1
n ∑

p∈S1

e(p,S2)2, (4)

which we call the root mean square (RMS) distance. In all
cases, n is the number of samples considered in the computation.
These distances are not symmetric since there exist cases where
E∗(S1,S2) 6= E∗(S2,S1), with ∗ representing max, mean, or RMS.
Thus they are not metrics in the strict sense. However, the Haus-
dorff distance

EH(S1,S2) = max (E∗(S1,S2),E∗(S2,S1)) (5)

is two-sided, as is the integral distance

E∫ (S1,S2) =
1
|S1|

∫
S1

e(p,S2)dS, (6)

where |S1| is the area of the surface S1.
Once one of the variations in Equations (2)-(4) has been

computed, it is no more effort to compute the other two, so we
generally report all three values. Further, we typically report the
Hausdorff distance in Equation (5) based on the three variations.
These distances can be also extended to give signed values for
orientable surfaces, but we do not use such distances in this work.

Metro with Field Data
The Metro algorithm can be extended to consider both mesh

geometry and field data by supplementing the distance e(p,S′) in

Equation (1) with distances

e f (p,S) = e(p,S)+ ∑
i∈F

di( fi(p), fi(p′))

=

[
min
p′∈S

d(p, p′)
]
+ ∑

i∈F
di( fi(p), fi(p′)),

(7)

where F is the set of field variables, fi(p) is the ith field value at
point p, d( fi(p), fi(p′)) is the Euclidean distance between field
values at p and p′, and p′ is the argument p′ ∈ S which achieves
the minimum in Equation (1). We then denote the distance be-
tween surfaces S1 and S2 including field variables using

E f (S1,S2) =

√
1
n ∑

p∈S1

e f (p,S2)2. (8)

Note that the new distance e f (p,S) can be computed for
minimal additional cost once the point p′ is located according to
Equation (1). Also note that different combinations of field vari-
ables can be easily computed in case the user is interested in a
visualizing a particular quantity or group of quantities.

Metro Extension Notes
The Metro equations and our extension describe a variety of

possible algorithms. While the “best” variation might depend on
circumstances, we can make a few observations about our choices
and why they are most likely to work well for our application to
numerical simulation data.

First, we have chosen the RMS extension in Equation (8),
even though we could have also used the max or mean equiva-
lents by using Equations (2) or (3). The RMS extension was cho-
sen in the hopes that it would be most compatible with the field
variables. In other words, while it might make sense to compare
mesh geometry by using a max metric as given in Equation (2), it
probably doesn’t make sense to compare two fields using a max
metric. Thus, we compare our mesh fields using the underlying
RMS metric for the geometry with the analogous RMS metric for
the fields. Of course, the various metrics could be combined arbi-
trarily, and in fact other potentially more suitable field data met-
rics could also be used. We chose the RMS metrics because they
are the most generic cross-compatible combination. It should also
be noted that our choice of di in Equation (7) is also arbitrary, but
is a similarly safe option since the Euclidean metric transitions
well between field variables that maybe scalars or vectors.

Second, there is no reason to assume that the geometry and
field data have similar scaling. To avoid having one or the other
take on an unnatural importance, we by default scale both the ge-
ometry and the field variables to lie in the range [0,1]. This is not
mentioned explicitly, but is used in the examples. However, it is
optional and other scaling possibilities could be easily substituted.
In fact, field variables could be weighted according to user exper-
tise and expectation, either in scale or in the actual computations
in Equation (8). Again, however, we use the simplest case and
assume equals weights.

Third, it is worth noting a connection between mesh simplifi-
cation [5, 10, 8, 9, 11] and metric mesh computation. In particular,
when you compute a mesh simplification, you typically compute
local metrics in order to decide how to simplify a mesh [8, 9, 11],
and that some of these metrics involve field variables [17]. Since
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computing metrics can be costly (as will be discussed following),
it might make sense to perform a mesh simplification in conjunc-
tion with and/or prior to computing our mesh metric. We haven’t
explored this idea here, but it could potentially lead to much faster
algorithms.

Finally, a caveat. Any metric is an attempt to reduce po-
tentially complex information to a single value for the purpose
of comparison. Our metric is attempting to combine both geom-
etry and field variables together to produce a meaningful value.
In the examples following we demonstrate that the metric works
well in the context of numerical simulation data, but we make no
claims about general applicability. In the case of numerical simu-
lation data, it can be expected that simulations do not vary greatly
from one time step to the next and that even within ensembles
we should have comparable fields and geometry. While the met-
ric would still be computable in a general situation, it would not
be expected to produce meaningful results if the geometries and
fields were vastly different. The limits of the algorithm’s abil-
ity to perform in general settings would be an interesting topic to
explore in future work.

Multidimensional Scaling
After computing a pairwise distance matrix using the mesh

distance we use classical multidimensional scaling (MDS) [3] to
provide a 2D visualization of the time steps in a simulation. Each
entry of the pairwise distance matrix contains the dissimilarity be-
tween two time steps in the simulation ensemble. After applying
multidimensional scaling we obtain 2D coordinates in a reduced
space, where each time step is assigned a 2D coordinate. These
coordinates are used to produce a visualization that is displayed
in the central pane of the user interface, as shown in Figure 1. To
compute the MDS coordinates, suppose we have a surface mesh
dataset {Si}. We compute a pairwise distance matrix

D =

E f (S1,S1) E f (S1,S2) · · ·
E f (S2,S1) E f (S2,S2) · · ·

...
...

. . .

 , (9)

where E f (Si,S j) gives a distance between mesh i and mesh j ac-
cording to Equation (8).

Now we use the MDS algorithm to compute coordinates for
the distance matrix D. The first step in MDS is to double center
the distance matrix, obtaining

B =−1
2

HD2H, (10)

where D2 is the component-wise square of D, and H = I−11T /n,
n being the size of D. Next, we perform an eigenvalue decomposi-
tion of B, keeping only the two largest positive eigenvalues λ1,λ2
and corresponding eigenvectors v1,v2. The MDS coordinates are
given by the columns of V Λ1/2, where V is the matrix containing
the two eigenvectors v1,v2 and Λ is the diagonal matrix contain-
ing the two eigenvalues λ1,λ2.

As with the metric itself, we again note that our choice of
MDS as a dimensionality reduction algorithm is somewhat arbi-
trary. Other popular algorithms for dimensionality reduction in-
clude Isomap [21] and t-SNE [23], both of which could be used
in place of MDS. We use MDS because it is the simplest such

algorithm, converging to a unique solution (up to repeated eigen-
values) without requiring additional parameters (neither of which
is true for Isomap or t-SNE). In addition, although it would be
interesting to compare the results of the different reductions, our
metric is fundamentally a method for comparing simulation mesh
data, not a method for dimension reduction. We therefore use the
simpler MDS algorithm for our initial investigation.

Computational Costs
The main computational cost of the Metro algorithm is the

identification of the closest point p′ on S2 to a point p on S1. The
cost depends on the surface area of S1 and the number of faces on
S2 [5]. Once p and p′ are identified, the additional cost for consid-
ering field variable data is constant. In our implementation of the
Metro algorithm, we considered various approximations, both in
terms of sampling the surfaces and computing the closest points.
We considered combinations of vertex sampling, edge sampling,
and face sampling while also considering approximations to p′

in Equation (1) using nearest vertex values, nearest face values,
and reverse sampling. We conducted a comparison of the accu-
racy of the various options using our punch-plate dataset. Finally,
we used the embarrassingly parallel nature of the calculation to
simultaneously compute blocks of the full pairwise distance ma-
trix2. These comparisons will be described in further detail in the
Example section.

User Interface
The user interface for our mesh visualization tool is centered

around the use of the parameter space model in Slycat [6]. To ac-
commodate 3D visualization, a 3D viewer was added using vtk.js
(https://kitware.github.io/vtk-js/index.html). The 3D viewer al-
lows interactive visualization of the surface mesh data.

The full interface consists of two large panes and a variety
of controls, some of which open additional panes. The interface
is shown in Figure 1. The controls are arranged above the cen-
tral pane, which is used to display the MDS dimension reduction
coordinates, where each point represents a surface mesh and the
points are arranged so that proximity reflects mesh distance. The
lower pane contains a metadata table, where each row corresponds
to a point in the central pane. Points selected in the central pane
will be highlighted in the metadata table and vice versa.

The 3D viewer is linked to the plots displayed in the central
pane and is fully interactive. The mesh can be rotated and scaled,
and can be colored according to any of the metadata provided.
Further, multiple 3D views can be opened simultaneously and
synchronized according to viewpoint. The viewers themselves
can be organized arbitrarily within the central pane by the user.

Finally, the contents of the central pane can be altered to
display any data provided when the visualization is created, in-
cluding metadata and additional MDS computations. In fact, we
provide multiple versions of the MDS calculations by computing
mesh distance matrices for each field variable separately. The user

2It is worth noting that computing the pairwise distance matrix scales
O(n2) with the number n of meshes in our dataset. Thus using a pairwise
distance matrix is a fundamentally slow approach. For our initial investi-
gation, however, we are more concerned with the usability of mesh metric
comparison itself. Large gains in speed might be obtained by more clev-
erly computing sets of metric pairs and/or reducing the meshes, topics we
leave for future consideration.
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Figure 1. User Interface. Shown here is the user interface for the mesh distance visualization. The central pane contains the coordinates from the MDS

calculation. Each point is selectable and can be tied to a 3D viewer showing the original surface mesh associated with that point. The lower pane provides an

interactive table giving metadata for the time steps visualized (each row in the table corresponds to a point in the central pane). Finally, controls are provided

in a toolbar which allow the user to color by different metadata variables, show alternate reductions, and perform various other functions (data export, figure

adjustment, and so on).

can then select the MDS coordinates according to whatever field
variable is of interest. The points displayed in the central pane
can be colored according to any variable provided as metadata,
for example statistical averages or deviations.

Examples
When analyzing numerical simulations, there are two major

considerations. First, we want to be able to compare not only
mesh geometry, but other properties including location, orienta-
tion, field variable values, and potentially even mesh resolution.
To ensure that our metric is capable of distinguishing between
mesh objects having these differing characteristics, we studied the
algorithm on a toy dataset consisting of ellipsoids with various lo-
cations, orientations, sizes, shapes, and resolutions.

Second, we want to ensure that the metric calculation runs
in a reasonable time but still gives good accuracy. For this study
we compared the computational cost and accuracy for different
approximations compared to the full calculation. The approxi-
mations we considered all attempted to increase the speed of the
closest point calculations between two meshes. We considered re-
duced sampling strategies such as vertex only sampling and sam-
pling size, as well as approximations to closest point calculations
including nearest vertex and nearest face values. We compared
these strategies to the calculation using full vertex/edge/face sam-
pling and exact closest point calculation.

To examine the behavior of the mesh metric using different
sampling strategies and closest point approximations, we used an
ensemble of simulations for a punch-plate system. We used this
same system to examine the behavior of the metric and MDS vi-
sualization when using field variable values. Finally, we consid-

ered an additional canister-plate system to compare the mesh only
metric with mesh with field value metric calculations.

Toy Data
Our toy data consists of ellipsoids constructed with different

mesh properties held fixed and others varied. We generated seven
datasets. Each dataset consisted of 30 randomly generated ellip-
soids. For location, we generated spheres with the same shape
and resolution, but randomly distributed between three clusters.
For orientation, we generated ellipsoids of the same shape and
resolution, but randomly distributed between three distinct ori-
entations. For size we generated differently sized spheres; for
shape we generated ellipsoids with different major and minor axis
lengths; and for resolution, we generated spheres of the same size
and shape, but with different resolutions. Finally, we generated
a dataset with randomly mixed combinations of location, orienta-
tion, size, shape, and resolution. In all cases, the metric visual-
ization distinguished between the varied parameter. We show the
results for the orientation data in Figure 2, the resolution data in
Figure 3, and the mixed dataset in Figure 4. The results for size,
shape, and location are not shown due to the fact that the 3D mesh
viewer automatically translates and scales the object in the viewer
so that size, shape, and location are indistinguishable (although
in those cases the MDS scatter plot still reveals the three clusters
embedded in the data).

Accuracy and Speed
To test the metric algorithm performance using differ-

ent sampling strategies and closest point approximations, we
used an ensemble of numerical simulations generated with
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Figure 2. Ellipsoid Orientation Data. The results of the metric visualization using ellipsoids with the same geometry and mesh resolution, but with orientation

generated to cluster into three groups. The three clusters were discovered by the metric/MDS calculation. The cluster on the bottom left is the ellipsoids oriented

end-on; the cluster on the top corresponds to the ellipsoids oriented at an angle; and the cluster on the right corresponds to the ellipsoids oriented left to right.

Figure 3. Sphere Resolution Data. The results of the metric visualization on spheres with three distinct resolutions. In this case, the metric separated the three

clusters into two groups. On the left side of the scatter plot are the spheres with higher resolutions and and the right are the spheres with very low resolution.
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Figure 4. Ellipsoid Data. The results of the metric visualization on a random combination of ellipsoids of different sizes, shapes, resolutions, locations, and

orientations. Although there were many random variations, the metric nevertheless managed to co-locate similar shapes, orientations, and resolutions in the

scatter plot. It should be noted that the two groups of ellipsoids (one on the upper left and one in the center) are in fact separated in the reduced dimensional

layout because they are different sizes. They appear to be the same size because the mesh rendering software scales the objects automatically in the pinned

windows.

Sierra/SolidMechanics (Sierra/SM) [22], a Lagrangian, three-
dimensional code for problems with large deformations and non-
linear material behaviors. This ensemble was created to explore
the effects of changes in simulation parameters on material frac-
turing. The modeled object is a punch impacting a metal plate
under various conditions, such as different punch velocities, ma-
terial properties, or plate thicknesses. For each run, the ensemble
consists of 8 inputs and 38 outputs (12 scalar results and 16 vari-
ables changing over time). The full ensemble is 15K runs, with
about a terabyte of data. For our parameter study we used a very
small subset of 5 randomly selected runs with 42 time steps each,
giving a dataset of 210 total time steps.

We first examined the effect of reduced sampling on the
accuracy of the results. We measured accuracy by comparing
against the full sampling strategy, consisting of all vertices, mid-
points of edges, and a random selection of samples from the mesh
faces. For each reduced sampling strategy, we computed the
Frobenius norm of the difference between the pairwise distance
matrices computed using the reduced sampling strategy and the
full sampling strategy. The results are shown in Figure 5. For our
reduced sample sets, we first used vertex sampling, followed by
edge sampling, followed by face sampling. For a typical mesh in
this dataset, there were 12k vertex samples, 150k edge samples,
and remaining samples randomly taken from the mesh faces. Thus
the 25k sample dataset would contain half vertex samples and half
edge samples, and the 200k sample dataset would contain all the
vertex and edge samples plus 37k face samples.

Next we compared different closest point approximations
when computing the metric distance in Equation (1). We com-
pared our approximations to the standard exact calculation, which
computes for each sample p ∈ S1 the closest point on the surface
S2, thus approximating the distance e(p,S) in Equation (1). We
tried three different approximations: first using the nearest vertex

in S2 to p ∈ S1; next using reverse sampling, a variation using the
nearest vertices in S1 to a random sample on S2 (including faces);
and last using nearest faces, which determines nearest faces on S2
as containing the nearest vertex on S2 instead of the faces within a
bounding box around p ∈ S1. Note that the nearest faces method
is much faster than the standard implementation, but is not guar-
anteed to identify all the nearest faces from S2. If it does identify
the correct faces, however, the results are identical. We show the
results of our approximations in Figure 6(a).

Our study indicates that the nearest faces approximation can
use vertex sampling (the smallest possible sample size) and still
obtain the most accurate results. It is also the fastest version of the
algorithm. Using the full dataset, we can compute the mesh met-
ric pairwise matrix in anywhere from 29 hours and 49 minutes us-
ing 8 processors to 2 hours and 28 minutes using 128 processors.
This is done in an embarrassingly parallel manner by splitting the
full pairwise distance matrix into submatrices. We show how the
algorithm scales with number of processors in Figure 6(b).

Simulation Data
We provide examples from two simulation ensembles to

demonstrate the use of our metric on real-world data. Both en-
sembles are parameter studies from impact simulations. The first
ensemble is from the punch-plate simulation used previously to
understand the speed and accuracy of our algorithm. The second
is a canister-plate ensemble, where the effects of different initial
position and angle are examined when a canister strikes a plate.

Punch-Plate
The punch-plate data consists of 10 simulations, each with

20 time samples (every 50th time step over 1000 steps). In Fig-
ure 7(a), we superimpose all of the time steps for the 10 runs of the
punch ensemble. The points are color-coded by time step, transi-
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(a) (b)

Figure 5. Sampling Study. Here we compare the effect of varying the number of samples used to compute the mesh metric. On the left (a), we compare a

baseline sampling strategy taking 250k samples (labeled VEF) with reduced sets of samples. For the reduced sample datasets, we computed the geometric

mesh metrics max, mean, and RMS in Equations (2)-(4), as well as the geometric field variable metrics based on stress for the punch-plate dataset. On the

right (b), we show that the algorithm’s time requirement scales linearly with number of samples.

(a) (b)

Figure 6. Approximation Study. Here we compare the effect of different closet point approximations used to compute the mesh metric. On the left (a), we

compare the nearest vertex, reverse sampling, and nearest faces approximations to the exact calculation. For each approximation, we computed the geometric

mesh metrics max, mean, and RMS in Equations (2)-(4), as well as the geometric field variable metrics based on stress for the punch-plate dataset. (Note that

the Exact and NF curves are overlapping.) On the right (b), we show how the embarrassingly parallel version of the algorithm scales with number of processors.
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tioning from blue to white to red as time increases. Highlighting
the final time steps (larger dark red points), a shared pattern can
be seen across all runs, in which they all begin at the origin, curve
up to the right, peak at a sharp transition, dip down to the left,
then end with a rise, also to the left. Most runs end along the up-
ward slope on the left, though two stand out as being anomalous.
To understand what distinguishes these two, we pull up the sur-
face meshes for all of the final runs and compare them, as shown
in Figure 7(b). The runs that finish together on the left are all
the simulations where the punch has penetrated the plate. The
two anomalous runs are those where the punch has failed to pene-
trate. (It should be noted that the visualization can also be colored
and/or filtered by simulation so that the user can identify specific
simulations.)

An additional point of interest occurs at a discontinuity in
the timelines. In Figure 8, we examine the surface meshes for
two runs, focusing on the time steps immediately before and after
the reversal. We’ve overlaid arrows on the image to highlight the
time sequence of the points. In both cases, the Von Mises stress
increases until the point of transition (the red coloration of the
post), then sharply drops off once a chunk of the plate has started
to separate as a plug.

These two examples demonstrate that patterns can be used
to reveal events and other transitions, reducing the number of sur-
faces that the user needs to visually inspect.

Canister-Plate
The canister data has 124 simulations, each with 25 consec-

utive time steps. In Figure 9(a), we show all of the time steps for
the 124 runs of the simulation. In this example, we see very dif-
ferent patterns from those observed in the punch-plate example.
Here the runs do not follow a single pattern, but instead represent
differences in the angles of the canister’s initial position and that
of the plate. In Figure 9(b), we look at a subset of runs for a pitch
angle of 45 degrees. We see that the clock angles of 90 and 180
degrees generate patterns that are almost mirror images of each
other. Similar patterns can be seen with other combinations of
pitch and clock angles.

Using the trajectory visualization technique for the punch-
plate data (Figure 8), we show a typical trajectory for a canister-
plate simulation in Figure 10. In the case of the canister-plate
data, the trajectory proceeds from the upper left corner of the re-
duced dimensional space to the lower right, where the canister
experiences maximum overall Von Mises stress as it bounces off
the plate. The trajectory then curves back to the center of the scat-
ter plot, where the canister experiences high local stress causing
the lid to open. It is interesting to note that the canister experi-
ences a similar state and stress both as it first traverses the center
of the scatter plot and during the final moments of the simulation.
This can be seen using the 3D viewer, as shown for both cases in
Figure 10.

Metric Comparisons
The punch-plate data can also be used to illustrate some of

the properties of our mesh metric and it’s behavior using field
variables. First, it is interesting to observe the difference between
the max, mean, and RMS options using geometry alone, as shown
in Figure 11.

Second, we look at the effect of using a field variable on the

mesh metric. The field variables associated with the punch-plate
data are primarily involved with measuring the stress in the plate.
In Figure 12, we show the metric visualization considering both
geometry and Von Mises stress.

Discussion
Comparing time steps using mesh data from numerical sim-

ulations is a very difficult problem for a variety of reasons. First,
mesh data is not uniform in either space or underlying dimension.
For example, objects modeled by a mesh in a numerical simu-
lation will very often change in shape and orientation from one
time step to the next, and hence the number of vertices, edges, and
faces in the mesh will change as well. Second, mesh data encodes
not only geometry but also field data described by both scalar and
vector quantities of interest. Third, mesh data is “big,” because
all of the encoded 3D geometric and field information must often
be recorded at a high resolution over many time steps to obtain
good simulation results. Fourth, we desire to analyze ensembles
of simulations rather than just one simulation at a time. Finally,
the metric comparisons must be presented in a usable form for
scientists and engineers for interpreting the results of their simu-
lations.

Our proposed metric for mesh comparison attempts to ad-
dress all of these difficulties and provide a visualization tool for
ensembles of simulations. We demonstrated using the toy data
that the underlying metric can differentiate between shape, ori-
entation, and even mesh resolution. We demonstrated that the
metric can be extended to include field variables as desired, and
compared the results using data from a punch-plate simulation. A
particular strength of this approach is that we can tailor our analy-
sis by considering different field variables and geometric metrics,
all of which can be computed simultaneously.

In future work, we will investigate the effect of different sets
of field variables on the quality and information content of the
visualizations. For example, we could obtain multiple layouts of
simulation snapshots by allowing the user to select specific sets of
variables and view side-by-side comparisons between the result-
ing visualizations.

An additional future avenue of investigation, especially
given that we are studying time series data, would be the algorith-
mic consideration of periodic data, for example spinning objects
or data with some rhythmic undercurrent (such as a heart beat).
Although this could be addressed by incorporating time as an ad-
ditional axis in the scatter plots (making them 3D), it might be
better to use an additional time based term in the metric itself.

In practice, our biggest challenge was computational ex-
pense, which we addressed by comparing different approxima-
tions for speed and accuracy using the punch-plate data and using
parallel implementations. In the future, we would like to further
speed up the algorithm and process larger ensembles and greater
numbers of time steps.

Our mesh metric can be used as a stand-alone tool, but it is
far more useful to an actual analyst as a part of a visualization
system. To that end we developed a 3D viewer for the time step
data and incorporated the comparisons into Slycat as an end-user
visualization system. This system supports rapid investigation of
simulation ensembles.
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(a) (b)

Figure 7. Punch Timestep Evolution. On the left (a), we simultaneously view all time steps from all runs in the punch ensemble. The points are color-coded

by the time step, with earliest time step in dark blue and the final time steps highlighted and colored dark red. The initial time steps are all superimposed at the

origin. Following time steps curve up and to the right until there is a discontinuity, after which the sequences reverse direction and curve back and to the upper

left. All but two simulations have their final time step along this final vertical section. (It should be noted that the visualization can also be colored and/or filtered

by simulation so that the user can identify specific simulations.) On the right (b), we have retrieved the surface models for each of the final time steps. Note that

the punch has failed to penetrate the plate in the two unusual runs.

(a) (b)

Figure 8. Punch Trajectories. On the left (a), we show how the trajectory for a mid-range punch velocity appears using our mesh metric with the Von Mises

feature. Each point represents a time step in a particular simulation selected using a given (mid-range) punch velocity. The points are colored according to

timestep, where blue represents the initial time step and red is the final time step. Following the points from blue to red, the trajectory proceeds from the lower

left to the upper right as the punch strikes then breaks through the plate. It is interesting to observe that while the MDS coordinates are computed without regard

to the time steps, the trajectory is nevertheless preserved, since it is related to the Von Mises field values as the punch impacts then punctures the plate. A

similar pattern is observed using a higher punch velocity on the right (b).

(a) (b)

Figure 9. Canister Timestep Evolution. On the left (a), we simultaneously view all time steps from all runs in the canister ensemble. Here the pattern reflects

differences in the parameters around the angle of the can and the angle of the plate. On the right (b), we have filtered the angles, revealing that the 90 and 180

degree clock angles generate patterns that are mirror images of each other.
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Figure 10. Canister Trajectory. Here we show the trajectory of a single canister-plate trajectory in the reduced dimension scatter plot. The trajectory proceeds

from the upper left of the scatter plot to the lower right, passing through the center as the end of the canister bounces off the plate. The Von Mises stress is

highest on the lower right as the canister fully contacts the plate then lower as the trajectory continues back to the center of the scatter plot, where the canister

again bounces off the plate, this time causing the lid to open.

(a) (b) (c)

Figure 11. Metric Geometric Behavior. Here we compare the effect of using max, mean, or RMS to compute the mesh metric, as defined in Equations (2)-(4).

On the left (a) we show the max metric, in the middle (b) we show the mean metric, and on the right (c) we show the RMS metric. In all cases, the five simulation

runs in the punch-plate data can be easily distinguished as trajectories in the scatter plot. They originate at the same point (same initial conditions), and diverge

depending on punch velocity. For the max metric (a), the trajectories diverge in a waterfall pattern. For the mean metric (b), the points follow an oscillating

pattern, most likely corresponding to the vibration of the plate when struck by the punch. For the RMS metric (c), the points diverge from the moment the punch

strikes the plate.
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Figure 12. Metric Field Variable Behavior. Here we show the effect of a field variable on the mesh metric, in particular the Von Mises stress on the plate in

the punch-plate data. Although the five simulation trajectories are still discernible (see Figure 11), they are now grouped according to whether or not the punch

actually makes it through the plate.

Conclusion
Surface mesh output from numerical simulations is often of

primary interest to scientists. As the number of time steps and
simulations increase, however, scientists cannot reasonably ex-
amine each mesh individually. We have developed a mesh metric
to compare time steps and provide an abstraction using dimension
reduction to simultaneously visualize all the time steps in a sim-
ulation ensemble. Our representation allows scientists to analyze
large collections of surface mesh time steps from multiple simu-
lations simultaneously. Our metric provides not only comparison
based on geometry, location, and orientation, but also scalar and
vector field variables.

Further, the results of our calculations have been integrated
into an interactive web application using the Slycat framework.
This application lets scientists easily view and interact with both
the abstract representation of the data as well as examine each
time step in detail. Observations can be bookmarked and shared
between collaborators.

Together our metric, dimension reduction, and interactive in-
terface enable analysis of numerical simulation surface mesh data
on a scale previously unavailable.
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