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Abstract
Patch-based training for 360-degree images allows to sig-

nificantly reduce the complexity compared to multichannel mod-
els while maintaining good performances. Differently from multi-
channel models where multi neural networks are trained in paral-
lel to predict the score of the whole 360-degree image, a pooling
stage is required to map local qualities to the global one. This
step is often neglected by using a simple arithmetic mean, which
does not account for (i) the non-uniformity distribution of quality
and (ii) the variability among local qualities. In this paper, we an-
alyze several pooling strategies, including basic statistic methods
and adaptive pooling ones. Additionally, we propose a pooling
strategy based on scene exploration behavior relying on visual
scan-path. The performance analysis showed the benefit of using
adaptive pooling over arithmetic mean, as well as the incorpora-
tion of perceptual properties during the pooling stage. Besides,
the comparison with state-of-the-art multichannel models asserts
the effectiveness of patch-based training compared to multichan-
nel models.

Keywords: Image quality assessment, Convolutional neural
networks, 360-degree images, Perceptual quality, Adaptive pool-
ing.

Introduction
360-degree images are gaining more popularity. They are

used in several applications, ranging from social media to virtual
reality (VR). Such images enable the viewer to explore a scene
in an omnidirectional way using head-mounted displays (HMD).
This offers an immersive experience to the user, but only a portion
of the image, called viewport, is viewed at a time. It consists of
a rendered window from the sphere in a given direction based on
the yaw, pitch and roll of the user. To ensure the improvement
of quality of experience (QoE) and immersiveness, it is important
to dispose of tools allowing to assess it. The literature is rich of
objective quality metrics, but most of them address standard 2D
images and are not appropriate for immersive content, including
360-degree.

Since 360-degree images are different from existing 2D im-
ages, a few IQA models have been proposed by extending tra-
ditional 2D models such as PSNR or mean squared error (MSE)
to account for this difference. For example, PSNR-based meth-
ods like Spherical PSNR (S-PSNR) [1], weighted spherical PSNR
(WS-PSNR) [1], and craster parabolic projection PSNR (CPP-
PSNR) [2]. These metrics either are proposed for a specific pro-
jection format, like the CPP-PSNR, or are computed on the sphere
like S-PSNR. As these models do not account for perceptual as-
pects, they fail in predicting the visual quality accurately. This

motivates the use of data-driven approaches to achieve better and
accurate IQA models, and more specifically, convolutional neural
networks (CNNs).
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Figure 1: CNN models for IQA. (top) multichannel vs. (bottom)
patch-based CNN.

Image quality evaluation using CNNs has demonstrated
good performances over the past decade, especially for 2D im-
ages. For 360-degree IQA, the multichannel paradigm is usually
adopted, where multiple CNNs are used to extract features from
different regions in parallel [3, 4, 5]. The extracted features from
each CNN are concatenated and regressed to a single quality score
(see. Fig. 1 top). This allows to train and optimize the model to
the mean opinion score of the whole 360-degree image. Hence,
the model learns to fuse the different feature maps together to
predict a quality score. However, the computational complexity
induced by this paradigm is significant, and may have a negative
effect on the overall optimization of the model as it makes the lat-
ter hard to train. In addition, the concatenation of feature maps
must be guided in order to give importance to features extracted
from important regions. For instance, Xu et al. [5] used twenty
ResNet-18 [6] in parallel to extract visual features from twenty
viewports. The output from each one is then used by a graph CNN
to learn the dependencies among the selected viewports. Addi-
tionally, a subnetwork that takes equirectangular (ERP) images as
input is used to account for the global quality. The subnetwork is
composed of a VGG-16 [7] and the deep-bilinear CNN [8]. Sun
et al. [3] used six pre-trained hyper ResNet-34 [6] by combining
features from intermediate layers with later ones on each channel
separately. Zhou et al. [9] used six Inception-V3 [10] through a
shared weight strategy. The proposed model is trained to predict
the quality score in addition to the classification of distortions. By
applying the multichannel paradigm, the aforementioned models
become extremely complex in terms of trainable parameters as
well as floating operations needed. Therefore, their training re-
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quires significantly more processing resources.
In contrast, the patch-based training takes individual regions

separately. Here, a single CNN is used (see. Fig. 1 bottom) which
implies less complexity and leads to faster training. In a patch-
based IQA framework, two important aspects must be carefully
considered. The first one corresponds to patches’ selection and
extraction. This is usually performed by using some criteria such
as saliency. In the extraction of these patches, the use of radial
content (i.e. from the sphere) is highly recommended compared
to the projected one [11, 12]. This way, the geometric distortion
induced by the sphere-to-plane projection can be avoided. The
second aspect focuses on the aggregation of local qualities to a
global quality score that should account for (i) the non-uniformity
distribution of quality, and (ii) the variation among quality scores
of individual patches.

In the literature, several works adopted the patch-based train-
ing for 2D IQA [13, 14, 15, 16], and good performances have
been reported. The interest of such an approach lies in its proven
performance in various image processing tasks such as medical
imaging, image classification and recognition. Also, the quality
prediction tends to agree with the scene exploration by focusing
on prominent parts of it that are translated into patches. However,
the unavailability of mean opinion scores (MOS) for individual
patches is considered as the main issue of this approach. Exist-
ing models label all patches extracted from the same image with
the same MOS. Despite this limitation, the achieved results are
quite interesting, and could be due to the adopted pooling strat-
egy. Therefore, one may consider adopting appropriate strategies
would provide better performances.

Pooling strategies have been investigated for 2D images [17,
18, 19, 20, 21], with the aim to map quality and distortions maps
to a final score. Several strategies are considered, ranging from
basic statistics and percentile pooling to content-based and infor-
mation weighted spatial pooling. In [22] temporal pooling meth-
ods are compared for video quality assessment, where individ-
ual scores from the different frames are pooled to a single qual-
ity score of the video. It is known that quality scores pooling is
paramount in IQA frameworks, especially for patch-based CNNs.
To the best of our knowledge, there is no study featuring quality
scores pooling strategies with CNNs for IQA, either with 2D nor
360-degree images.

In this paper, we present a comparative study of pooling tech-
niques for CNN-based 360 IQA models. The considered methods
include basic statistics and adaptive pooling. To this end, a patch-
based CNN model is designed by fine-tuning ResNet-50 [6]. To
select relevant patches, a visual scanpath is used to mimic the
exploration behavior of human observers by predicting possible
visual trajectories. The latter are used to define patches locations
on the spherical content rather than the projected one. The visual
trajectories are also incorporated at the pooling stage.

Adaptive Pooling Strategies
A patch-based CNN model is basically trained on individ-

ual patches extracted from the input images. This means that the
model is trained only on these patches, without having access to
the whole 360-degree images. Therefore, N scores associated to
N patches are predicted, and mapping of these individual scores
to a single quality score is challenging. This operation must be
performed by adaptive pooling to improve the correlation with

. . .

Figure 2: Mapping of predicted local qualities SPi (per patch) to
global quality SI (per 360-degree image).

the human judgement quality. Fig. 2 illustrates the pooling oper-
ation, where for each 360-degree image I, N predicted scores S =
{Sp1 ,Sp2 , ...,Spn} corresponding to N patches P = {P1,P2, ...,Pn}
are pooled together using the function Pooling(.).

Basic Statistic Methods
Arithmetic Mean

The arithmetic mean is a straightforward method for pooling
local qualities to a global one. By simply averaging the quality
scores, the local qualities will contribute equally to the final score
as follows:

SI =
1
N

N

∑
i=1

Spi . (1)

Harmonic Mean
The harmonic mean is one of the Pythagorean means. It is

calculated by dividing the number of scores by the reciprocal of
each score Spi in S. Hence, the harmonic mean is the reciprocal of
the arithmetic mean of the reciprocals. It is known to emphasize
the impact of small scores [23] reflecting the fact that subjective
ratings are influenced by worst regions in terms of visual quality.
The harmonic mean is calculated as follows:

SI = (
1
N

N

∑
i=1

S−1
pi
)−1. (2)

Geometric Mean
The geometric mean is the third Pythagorean mean. It signi-

fies the central tendency or typical values of S by taking the root
of the product of their values, as given below:

SI = (
N

∏
i=1

Spi)
1
N . (3)
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Five-Number Summary
This method provides a description of S using various de-

scriptive statistics [24]. The five-number summary makes use of
information on (i) the location given by the median, (ii) the spread
of the scores given by the Q1 and Q3 quartiles representing the
25% and 75% percentile respectively, and (iii) the range of values
expressed by the minimum and maximum of S. Therefore, the
five-number summary is computed as follows:

SI =
min+Q1+median+Q3+max

5
. (4)

Minkowski Mean
The Minkowski pooling has been widely used for IQA [17,

25]. The P parameter emphasizes the lowest scores among S, i.e.
the highly distorted patches. To understand the influence of the
latter, we set it values to the most commonly used ones in the
literature, including 1/4, 1/2, 2, 4, 8 and 16.

SI = (
1
N

N

∑
i=1

Sp
pi
)

1
P . (5)

Percentile Pooling
The percentile pooling is considered as one of the most effec-

tive pooling methods. It is based on the fact that perceived quality
is strongly affected by the most distorted regions [18]. This is ac-
complished by considering only the quality scores from S that are
lower than a k−th percentile. In order for us to study the impact
of this latter, five percentiles are used as threshold including 5%,
10%, 20%, 25%, and 50%.

SI =
1

| S ↓ k% | ∑
i∈S↓k%

Spi . (6)

Scene Exploration Based Pooling
It is known that pooling strategies based on basic statistics

tend to have poor correlations. It is especially the case of simple
mean pooling that enforces an equal contribution of all patches to
the global quality scores. By doing so, the non-uniformity dis-
tribution of quality is not taken into account. For this reason, a
weighted mean pooling can reproduce this behavior by weighting
each local score according to the importance of the patch’s con-
tent. The estimation of these weights are usually based on per-
ceptual properties such as visual attention [26], equator-bias [27]
to incorporate the way the human gaze is biased toward the equa-
tor, making the computation of these weights handcrafted. Others
opted for data-driven based estimation of the weights by adding
subnetworks within a CNN model [13, 28].

Differently, we adopted a weighting strategy based on visual
exploration. This is motivated by the fact that quality metrics are
tuned and compared against the MOS collected by psychophys-
ical experiments. By incorporating the way observers explore a
scene before rating its quality could improve the pooling perfor-
mance. Thus, an observer explores a visual scene by focusing on
certain regions and usually not all parts of the scene. This behav-
ior can be modeled using visual scanpaths by predicting possible
visual trajectories based on head and gaze movements. As the

exploration of a scene is different from one observer to another,
we use multiple and different visual scanpaths to account for this
diversity. To do so, the scanpath model proposed in [29] is used
to predict possible visual trajectories. Ten scanpaths, composed
of eights gaze fixations for each 360-degree image I are gener-
ated. Two important information associated with each fixation
are considered as weights for each patch Pi extracted from I. The
first is the order of fixations, expressing the temporal progress of
the visual trajectory. The second is the duration, representing the
amount of time a region is likely to be focused on. The longer
the gaze, the greater the influence on the observers’ judgment.
Finally, the pooling is performed as shown by Eq. 7, with Wi is
either the fixation duration or fixation order associated with patch
Pi.

SI =
∑

N
i=1 WiSpi

∑
N
i=1 Wi

. (7)

Furthermore, to account for previous observations about the
impact of most distorted regions highly on perceived quality, we
combine the fixation-based pooling with the percentile threshold
as given in Eq. 8.

SI =
∑i∈|S↓k%|WiSpi

∑i∈|S↓k%|)Wi
. (8)

Patch-based Model
The process of selection and extraction of patches is depicted

on Fig. 3. Hence, relevant patches are obtained using the visual
scanpath discussed previously. The predicted eye fixations by the
scanpath model are considered as the center of patches. By tak-
ing the content surrounding these fixations, we extract patches
of 256× 256 pixels. Selected patches are then extracted on the
sphere in order to avoid any geometric distortions due to the
sphere-to-plane projection [30, 11]. In total, eighty patches are
extracted from the 360-degree image I. Each patch extracted from
the same image receives the MOS of the 360 image as a label.

Patches extraction

25
6Fixation points prediction

ERP-to-sphere

.. .. . . ..
.. .. ... .

.
.
. .

.
..

.. ..
256

25
6

256

Figure 3: Selection and extraction of patches.

In this paper, a patch-based CNN is designed using ResNet-
50 [6] with the ImageNet [31] weights as the base model to ex-
tract visual features from selected patches. Fig. 4 depicts its ar-
chitecture. We replaced the top layers with a regression block in
order to regress the learned features into a single quality score.
The extracted features F W×H×C where H, W , and C stand for the
height, width, and dimension, are fed to a global average pooling
(GAP) so to reduce the spatial dimensions of the extracted feature
maps and to avoid overfitting. The GAP outputs a feature vector
F ′ of size 1× 1×C that is in turn fed to a fully connected (FC)
layer with dimension of 512 followed by a rectified linear unit
(ReLU) [32] activation function and a dropout regularization [33]

IS&T International Symposium on Electronic Imaging 2022
Image Quality and System Performance XIX 395-3



with ratio of 0.2. The output of the latter is sent to a FC layer with
a single node followed by a linear activation function to deliver
the quality score SPi . The weights for the quality regressor are ini-
tialized according to the method proposed by He et al. [34]. For
the end-to-end training, we used the L2 loss function to compute
the error between predicted and target scores.

ResNet-50 Patch score
G

AP

FC (512) +  
ReLU +  

DropOut (0.2)

FC (1) +  
Linear

Input patches

Figure 4: Architecture of the adopted model including global av-
erage pooling (GAP) and fully connected layer (FC).

Experiments
Experimental Setup

We selected two benchmark 360-degree image databases,
namely OIQA [35] and CVIQ [3], to evaluate the pooling strate-
gies described previously. OIQA consists of 320 distorted images
generated from 16 pristine ones by applying five levels of JPEG,
JPEG 2000 (JP2K), Guassian blur (GB), and Gaussian white noise
(GWN). CVIQ contains 528 distorted images obtained from 16
pristine ones by applying eleven levels of JPEG, H.264/AVC, and
H.265/HEVC.

The model is trained on a server with Intel Xeon Silver 4208
2.1GHz, 192G RAM and a GPU Nvidia Telsa V100S 32G. The
batch size was set to 32 and the Adam optimizer [36] is used
with a learning rate of 1e− 4, first parameter β1 = 0.9 and sec-
ond parameter β2 = 0.999. We used the early stopping by mon-
itoring the validation loss to stop the training once no improve-
ment is observed and retain the best state of the model. Five-fold
cross-validation is performed for a complete evaluation with each
database. During training, the databases are split using the well
known Pareto principle, 80% for training and 20% for testing. To
ensure a complete separation of the training and testing sets, the
distorted images associated to the same pristine image are allo-
cated to the same set.

Results and Discussion
The performance evaluation is performed by computing the

Pearson linear correlation coefficient (PLCC) for accuracy, the
Spearman rank order correlation coefficient (SRCC) for mono-
tonicity, and the root-mean-square error (RMSE) for prediction
errors between the ground truth MOS and the predicted scores.
The provided performances are computed as the median of the
five-fold cross-validation.

We summarize the performances of all pooling strategies in
Table 1. Overall, one can notice that the widely used arithmetic
mean ranks among the worst approach on both databases, demon-
strating its weakness when it comes to quality pooling. Pool-
ing strategies accounting for the variability among quality scores
should be considered in this case, as shown by the performance
results in Table 1. One can observe that harmonic and geometric
means outperformed the arithmetic one on both databases. For in-
stance, the harmonic mean performances are approx. 0.8% PLCC,
1.0% SRCC, and 4.2% RMSE better than the arithmetic mean on

OIQA, and approx. 0.6% PLCC, 1.2% SRCC, and 4.0% RMSE
on CVIQ. The Minkowski mean and the five-number summary
did not perform well compared to arithmetic mean, a slight im-
provement can be observed with the Minkowski mean, whereas
the five-number summary did not appear to express the nature of
the variability among the local qualities scores. The percentile
pooling achieved the best performance in terms of PLCC and
SRCC on OIQA, and competitive results when combined with
fixation orders and fixation durations on CVIQ. This shows that
expressing the phenomena of perceived quality being impacted by
the most distorted content improves the final quality pooling.

In the following, we analyze closely the performance of the
Minkowski mean and the Percentile pooling. The evaluation of
PLCC/SRCC scores is given in Fig. 5 and 6, respectively. For
the Minkowski mean, one can observe a decrease in both accu-
racy and monotonicity with the increase of P. This observation
is valid on both databases, with a significant margin on CVIQ,
approximately 6% with PLCC and 10% with SRCC. As for the
Percentile Pooling, an increase of performances can be observed
with a saturation at k = 25 on OIQA and k = 10 on CVIQ, fol-
lowed by a decease of performance. Based on these observations,
the parameter for both methods should be carefully chosen, as it
is dependent on the variability and span of local qualities. In ad-
dition, the difference among OIQA and CVIQ is due to the nature
and diversity of their content, as shown in [30]. This is also de-
picted by the provided curves, where an important gap between
PLCC and SRCC values can be observed on CVIQ compared to
OIQA independently of the used pooling methods.
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Figure 5: Performance of Minkowski mean in terms of
PLCC/SRCC on OIQA (left) and CVIQ (right).
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Figure 6: Performance of Percentile pooling in terms of
PLCC/SRCC on OIQA (left) and CVIQ (right).

With the intent to show the effectiveness of the patch-based
CNN over multichannel models, we provide in Table 2 a per-
formance comparison with three state-of-the-art models. These
models adopt a multichannel paradigm using different strategies.
From the table, one can observe that patch-based CNN with a
simple arithmetic mean achieved competitive results compared to
Sun et al. and Zhou et al.. However, it scored worse than Xu et
al. (approx. 3.8% PLCC and 4.5% SRCC) on OIQA and (ap-
prox. 3.0% PLCC and 8.7% SRCC) on OIQA. When the adaptive
pooling is used, a different behavior is observed. The patch-based
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Table 1: Performance evaluation of the pooling strategies in terms of PLCC, SRCC, and RMSE. The best performance is highlighted in
bold and second-best underlined

Database OIQA CVIQ

Metric PLCC SRCC RMSE PLCC SRCC RMSE

Arithmetic Mean 0.9162 0.9017 5.8185 0.9297 0.8786 5.0537
Harmonic Mean 0.9235 0.9105 5.5685 0.9352 0.8891 4.8582
Geometric Mean 0.9200 0.9066 5.6876 0.9326 0.8841 4.9537
Five-number summary 0.9061 0.8971 6.1415 0.9233 0.8721 5.2683
Minkowski Mean 0.9196 0.9045 5.7034 0.9322 0.8833 4.9660
Percentile Pooling 0.9434 0.9340 4.8156 0.9623 0.9329 3.6790
Fixation Order 0.9063 0.8931 6.1357 0.9305 0.8787 5.0273
Percentile Fixation Order 0.9392 0.9296 4.8265 0.9621 0.9329 3.6287
Fixation Duration 0.9164 0.9028 5.8096 0.9296 0.8792 5.0564
Percentile Fixation Duration 0.9403 0.9291 4.8658 0.9625 0.9324 3.6883

Table 2: Performance comparison with state-of-the-art mutlichannel-based models

Database OIQA CVIQ

Multichannel Number (Bacckbone) PLCC SRCC PLCC SRCC

Xu et al. [5] X 20 (Resnet-18) 0.952 0.944 0.959 0.953
Sun et al. [3] X 6 (ResNet-34) 0.924 0.918 0.950 0.914
Zhou et al. [9] X 6 (Inception-V3) 0.899 0.923 0.902 0.911
Ours Arethmetic Mean 7 1 (ResNet-50) 0.916 0.902 0.930 0.879
Ours Adaptive Pooling 7 1 (ResNet-50) 0.943 0.935 0.963 0.932

model outperformed Sun et al. and Zhou et al. on both databases,
and scored slightly lower compared to Xu et al. on OIQA and
achieved the best accuracy on CVIQ. This slight difference of per-
formance could be considered as insignificant when weighted by
the complexity generated by the multichannel architecture. These
performances support the previous observation regarding the use-
fulness of adaptive pooling of local qualities on the one hand. On
the other hand, patch-based CNN is as effective as multichannel
networks, and sometimes even better if proper training techniques
are adopted.

Conclusions
In this paper, we compared various pooling strategies for

360-degree IQA using patch-based CNN with adaptive pooling.
We found that the use of a simple arithmetic mean does not ac-
count for the variability among the quality scores, and there-
fore, the correlation performance tends to drop. Adaptive pooling
strategies are seen as a good answer to cope this limitation, espe-
cially when IQA-specific characteristics are incorporated. More-
over, patch-based CNN with adaptive pooling achieved competi-
tive performances compared to state-of-the-art multichannel mod-
els. As patch-based CNNs introduce less complexity compared to
multichannel, it makes it more appropriate with an adequate train-
ing strategy for 360-degree IQA.
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