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Abstract
This paper presents a set of developments for the design of

a user-centric framework for perceptually efficient streaming of
360-degree edited videos. First, we introduce a software for an-
notation of regions of interest (RoI) in 360-degree videos with the
goal of creating datasets for the training of machine learning-
based visual attention computational models and for performance
evaluation studies. Based on this software, we designed a subjec-
tive experiment to evaluate its usability and to create a dataset of
annotated 360-degree videos. Then, to showcase an application
of this dataset, we present a preliminary comparative analysis be-
tween saliency maps generated by a well-known visual attention
computational model and RoI maps created from the dataset. Fi-
nally, we describe our efforts to investigate 360-degree video edit-
ing techniques that can improve the user’s quality of experience
(QoE). In particular, we show some preliminary results on a sub-
jective experiment designed to evaluate perceived QoE, expressed
in terms of “comfort” and “presence,” for 360-degree videos that
were statically edited (that is, off-line editing). The particular
editing technique focuses on RoI alignment in the same scene (i.e.,
intra-scene alignment of distinct RoIs) for purposes of reducing
the users’ head movements. We look at both instantaneous (i.e.,
“snap-change”) and gradual rotation editing, and we present the
mean opinion scores (MOS) for the different cases, in different
video categories.

1. Introduction
Recent advances in digital video coding and the prolifer-

ation of sensors embedded in devices such as cell phones and
head-mounted displays (HMDs) have allowed the development
of technologies and applications of virtual reality (VR). Watch-
ing 360-degree videos on such devices has become quite popular
due to the feeling of “immersion” experienced by users, as they
can explore the scenes in all possible directions. However, be-
cause 360-degree videos demand significantly higher bandwidth
than traditional 2D videos, their streaming over the current Inter-
net infrastructure has become a great challenge, since the average
bandwidth of residential connections worldwide is far below the
minimum transmission rate required for 360-degree videos. In
fact, today only about 50 countries have residential Internet con-
nections that support the minimum average bandwidth required to
stream 2K video resolution [1], which means that immersive mul-
timedia applications are still inaccessible to most Internet users
around the world [2]. Consequently, in recent years, the design of

adaptive bit rate (ABR) algorithms for 360-degree video stream-
ing has received considerable attention because it is considered a
key technology enabler for immersive applications over the Inter-
net [3].

To date, most efforts in designing ABR algorithms have fo-
cused on dealing with the time-varying and limited nature of end-
to-end Internet bandwidth through careful request of video frame
qualities (translated into bit rates) compatible with the instanta-
neous bandwidth of a connection. Moreover, because no user is
able to visualize the whole sphere at any given time instant, a
number of techniques have been proposed to prioritize the request
of portions of the sphere (i.e., regions of a video frame) the user is
most likely to watch for a certain time period into the future over
the viewport of an HMD. In this way, not only can bandwidth be
saved, but also the client’s buffer is not unnecessarily filled with
data that never get to be watched. To support this task, the concept
of partitioning a video file into “chunks” of fixed time duration,
and each video frame into a set of “tiles,” has been instrumental,
since each chunk (associated to a set of consecutive tiles) can be
encoded independently and stored on servers for later retrieval via
DASH (Dynamic Adaptive Streaming via HTTP) [4, 5, 6]. As a
result, a significant body of research has been done on short-term
prediction, not only of the available bandwidth of a connection,
but also of the user’s viewport directions, among other features,
that collectively provide a rich set of information that the ABR
algorithm can exploit to deliver the best possible viewing experi-
ence to the end user [7, 8, 9].

While research on the issues mentioned above is certainly
key for streaming 360-degree videos at the highest possible qual-
ity, most current approaches seem to assume that 360-degree
videos are a single, continuous shot recorded by an omnidirec-
tional camera. It turns out that, similar to 2D videos, the creation
of 360-degree video content is expected to evolve and become a
sequence of shots separated by cuts, as dictated by content pro-
ducers and film directors, as a tool to guide the viewers’ attention
along the course of a story. However, editing 360-degree video
content with the goal of creating a coherent narrative is more
challenging, as viewers have partial “control of the camera” and
the freedom to explore the scene. Due to this, some filmmakers
have argued that the (story telling) editing of 360-degree content
should be guided by estimates of which areas of the content are
more salient or perceptually important to the user [10, 11, 12]. By
doing so, the user is more likely to follow the intended narrative
without missing important plots, at different parts of the sphere,
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across successive cuts along the time. Furthermore, if editing is
done skillfully, it can help reduce any discomfort or “cybersick-
ness” symptoms, while improving (or at least not decreasing) the
feeling of “presence” or immersion.

Finding areas of a video frame that are perceptually impor-
tant to a user requires understanding how visual attention works.
Visual attention is a feature of the human visual system (HVS)
that aims to reduce the complexity of scene analysis. It can
be divided into bottom-up and top-down mechanisms that, com-
bined, define which areas of the scene are considered relevant
and therefore should be attended. The analysis of how humans
perceive scenes is generally studied through subjective saliency
maps, which are usually considered the ground truth of HVS.
But due to the difficulty of using such maps in practical appli-
cations, several computational models of visual attention have al-
ready been proposed, which are generally classified as bottom-up,
top-down, or hybrid [13, 14, 15]. However, despite being a very
active area of research, the design of visual attention computa-
tional models for 360-degree videos is still incipient, with most of
the available models focus on estimating the saliency in the view-
port area alone [16]. Although such efforts are important, there
is still a need for computational models that identify “regions of
interest” (RoI) in the whole 360-degree video, since their identifi-
cation can help general content editing. For example, depending
on the content, there can be multiple RoIs in a scene, and each of
them can lead the viewer to different “paths” along the underly-
ing story. This knowledge can be creatively exploited by content
creators, or it can be used to improve narrative control over the
viewers across successive scene shots.

In the latter case, if content edition takes into account the es-
timated RoIs across the whole sequence of scenes, then a rich set
of information can be stored at content servers to be later fetched
by the ABR algorithm, via DASH, for optimal decision-making
regarding the request of video tiles. For instance, metadata such
as the coordinates and number of RoIs in the video (as chosen by
a movie director), along with time stamps of the scene cuts, could
help the ABR algorithm to request, in advance, the video tiles that
should be viewed by the user in consecutive scene cuts according
to the intended narrative of the content creator. To accomplish
that, ideally, the user’s RoI on a given shot should be aligned
to the next (intended) RoI in the next scene cut. Such an action
would not only maintain, with high probability, the user’s atten-
tion on the intended region of the sphere, but it would also de-
crease head movements and, consequently, excessive discomfort
or “cybersickness” [17]. To accomplish that, the user’s history
of viewport coordinates would generally be needed for short-term
prediction of future head movements, and such predictions could
guide the request of future video tiles, considering the aforemen-
tioned metadata.

Considering the issues and challenges just described, we
present in this paper some of our current efforts in developing
a user-centric framework for perceptually efficient streaming of
360-degree edited videos. The basis of this framework is the de-
velopment of a hybrid bottom-up and top-down visual attention
computational model that can estimate RoIs in the complete 360-
degree video. In particular, we target the identification of seman-
tic context in video scenes that generally work as main drivers of
attention, such as people, animals, vehicles, etc. Then, the esti-
mated RoIs are to be used in the development of different strate-

gies of video editing, particularly focusing on the alignment of
RoIs, as described previously. The performance of each of these
editing strategies will be evaluated with respect to their impact on
overall quality of experience (QoE) of the end user. For that, a
number of subjective experiments are being planned and carried
out with the goal of understanding the user response to differ-
ent editing strategies, considering the different dimensions that
form the overall QoE when viewing 360-degree videos, such as
“comfort,” “presence,” and “cybersickness”, to name a few. Fi-
nally, the information derived from the proposed video editing
strategies will serve as input to a new edition-aware ABR algo-
rithm that aims to exploit the editing information and other meta-
data transmitted via DASH for the decision-making process, so
that the highest possible QoE can be delivered to end-users under
bandwidth-constrained connections.

In this paper, in particular, we focus on presenting some pre-
liminary results in the development of our framework. First, we
introduce the 360RAT software to recognize RoIs in 360-degree
videos, described in Section 2. This software was developed with
the main goal of creating datasets with annotated RoIs in differ-
ent 360-degree videos. Such datasets can be used in the training
of machine learning-based visual attention computational models
or in performance evaluation studies. With this purpose in mind,
we describe in Section 3 a subjective experiment in RoI anno-
tation designed to create a dataset based on a set of 360-degree
videos, and to evaluate the usability of our annotation tool. Based
on this dataset, we showcase in Section 4 a preliminary compar-
ison analysis between saliency maps, as generated by the Cube
Padding computational model [18], and RoI maps created from
the dataset. Finally, we present our efforts to investigate edit-
ing techniques in Section 5. In particular, we present preliminary
results on a subjective experiment designed to evaluate QoE, ex-
pressed in terms of “comfort” and “presence,” when users watch
360-degree videos that were statically edited (that is, when editing
is done offline). The editing technique focuses on the alignment of
RoIs in the same scene (that is, the RoIs are not in different scene
cuts). We look at instantaneous (i.e., “snap-change” [17, 19]) and
gradual rotation editing, and we present the mean opinion scores
(MOS) obtained for the different cases, in different video cate-
gories.

2. Annotation Tool for Regions of Interest
Given that viewers have the freedom to explore a 360-degree

video in all possible directions, content producers and directors
agree that it is critical to establish a suite of techniques that allow
viewers to explore a scene without missing the intended story-
line [10, 20, 17]. Therefore, in some way, viewers need to be
guided through the content by directing their attention to a spe-
cific regions of interest (RoI) on the sphere, as the underlying
story unfolds over a succession of shots and cuts. Consequently,
careful alignment of the shots and sophisticated video process-
ing techniques will be needed because content manipulation can
degrade QoE, reduce presence, cause cybersickness or decrease
comfort [19, 21]. Hence, to produce an enjoyable immersive ex-
perience, filmmakers and content producers must understand how
viewers watch 360-degree videos and interact with the content
(i.e., how viewers choose their own RoI on a scene), so they can
manipulate the scene to attract the viewers’ gaze.

To help filmmakers and content producers in the task of
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Figure 1: 360RAT visual interface.

defining RoIs in scenes or understanding viewer RoIs on a given
content, we have developed the software 360RAT. The goal of
360RAT is to make it easy to perform frame-by-frame annota-
tions on 360-degree videos by allowing users to i) mark multi-
ple RoIs in each frame of a video and ii) semantically classify
the annotated RoI. As such, 360RAT can also help create an-
notated video datasets for the study of different aspects of 360-
degree videos through machine learning algorithms. 360RAT is
implemented in Python, using OpenCV, PyQT5, and the IDE Vi-
sual Studio Code. The software can be downloaded from https:
//github.com/MyllenaAPrado/360RAT and is available under
a General Public License.

Figure 1 shows the main 360RAT interface. After loading
a 360-degree video, the first frame of the video is shown in the
main Equirectangular View window. A slider below this window
allows the annotator to play the video or examine each frame in-
dividually. The annotator can then begin the process of choosing
RoIs for video frames by positioning the slider in the first frame
of the video and selecting an initial RoI by clicking the button Set
Init RoI. Then a new screen appears asking the annotator to as-
sign a “semantic class” to the selected RoI. For this, we adopted
Microsoft’s coco classes [22]. On the right-hand side of the in-
terface, there are tools to visualize and adjust the selected RoI. In
particular, the Perspective View field displays the Field-of-View
(FoV) of the selected RoI, which helps the annotator to better vi-
sualize the selected area. The sliders found below the Perspective
View allow a finer adjustment of the RoI size and position.

Since a given RoI may encompass multiple frames, 360RAT
allows automatic annotation of an RoI over a set of N consecutive
frames (e.g., a car moving down a road). For this annotation, the
user must first select an RoI in the initial frame and then navigate
through the following frames (using the slider below the Equirect-
angular View window) to choose a future frame N where the same
RoI is visible. The software then performs a linear interpolation
between the central coordinates of these two RoIs to compute the
coordinates of the N − 2 RoIs in the intermediate frames. How-
ever, since the adopted method for defining the coordinates of the
intermediate RoIs does not perform well under movement dis-
continuities, the annotator must make sure that the first and last
RoIs are relatively close in space and that the movement does not
contain any discontinuities (e.g., start at the right-hand side of
one frame and continue to appear on the left-hand side of another
frame). Then the annotator can save the set of consecutive RoIs
by clicking on the Save Composite RoI button. Finally, in ad-

dition to these features, 360RAT performs traditional operations
such as Delete, Edit, and List saved RoIs. All information about
the RoIs, for the complete video, is saved in a comma-separated
values (CSV) format.

3. Subjective Annotation Experiment
An annotation experiment was carried out to evaluate the use

of 360RAT software. In this experiment, participants annotated a
benchmark dataset of uncut 360-degree videos of 60 seconds us-
ing 360RAT software. Eleven videos containing moving objects
and a clear storyline were chosen. Of the 11 chosen videos, eight
were taken from the University of Texas at Dallas dataset [23],
one from the V-Sense Director’s Cut dataset [24], and two were
acquired from a Brazilian VR producer (CaixoteBR) 1. The ex-
periment was divided into two sessions, indicated as “group 1”
and “group 2” in Table 1, which contains a list of the chosen
videos, their original dataset or source, spatial resolution, frame
rate, and time interval of the original content used in the experi-
ment. The annotation experiment had the goal of testing 360RAT
and creating a dataset of annotated 360-degree videos. Nine par-
ticipants took part in the experiment, and their ages ranged from
23 to 50 years, with 2 being female and 7 being male. They were
all researchers in the area of Computer Science and Electrical
Engineering with different levels of familiarity with 360-degree
videos. After a training phase, participants were asked to use
360RAT to annotate RoIs in the chosen set of videos according
to the following rules:

• Only one RoI per frame could be selected to represent the
most important area (or object) in the frame, considering
the video storyline;

• All video frames should contain exactly one RoI;
• The size of the RoI should include the chosen object/area in

the best possible way. By default, the maximum RoI size
was set to around 1/4 of the viewport, but this size could be
adjusted using the sliders on the right side of the interface;

• When selecting an RoI, the participant should assign an ap-
propriate semantic class to that RoI.

Figure 2 shows a sample of the data collected for the video
“Closet Set Tour.” Based on this dataset, we created RoI maps to
investigate their relationship to a computational saliency model,
as described next.

4. Comparative Analysis of a Saliency Com-
putational Model

To showcase one possible application for the use of 360RAT
software, this section presents a comparison analysis between RoI
maps, created from the annotation experiment using 360RAT,
with saliency maps computed according to a computational vi-
sual saliency model. The goal of this comparison is to quantify
the similarity between the RoIs annotated by the experiment par-
ticipants and the salient areas of the videos, as predicted by the
chosen computational saliency model. To perform this compari-
son, we built RoI maps from the annotated videos by executing
the following steps:

1. First, we created difference maps between the reference

1http://caixotexr.com/projects/brasilia-360/
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Table: Properties of the dataset of 360◦ videos used in the experiment.

Group Video Name Dataset Resolution Frame Rate Interval (60s)
1 Ben-Hur Chariot Race UTD [23] 4320 × 2160 24 00:00 – 01:00
1 Closet Set Tour UTD [23] 4320 × 2160 29 00:07 – 01:07
1 FPV Race Drone Car Chase UTD [23] 4320 × 2160 29 02:11 – 03:11
1 New York City Drive UTD [23] 4320 × 2160 30 00:12 – 01:12
1 UTD Campus walk UTD [23] 4320 × 2160 29 00:00 – 01:00
1 Wingsuit over Dubai UTD [23] 4320 × 2160 29 00:00 – 01:00
2 Dubstep Dance UTD [23] 4320 × 2160 29 00:00 – 00:30
2 Blue Angels Jets UTD [23] 4320 × 2160 29 01:00 – 01:30
2 Partnership India V-Sense [24] 4320× 2160 30 01:41 – 02:11
2 Amizade Brasília 360◦ 4320 × 2160 30 00:42 – 01:12
2 Park Brasília 360◦ 4320 × 2160 30 00:00 – 00:30

Figure 2: Yaw (θ ) and pitch (Φ) values of annotated RoI for the video “Closet Set Tour” by each experiment participant Ai, (1 ≤ i ≤ 9).

frames and the annotated ones, which consist of frames
where only the RoI has non-zero values;

2. Then, we created binary maps from these difference maps,
with pixel values inside the RoI given a value ‘1’, and pixel
values outside the RoI given a value ‘0’;

3. Lastly, RoI maps were created by applying a Gaussian filter
(σ = 50) on these binary maps.

To compute the saliency maps, we use the Cube Padding
saliency computational model [18], which is designed specifically
for 360◦ videos. Cube Padding is a state-of-the-art model that is
based on a convolutional neural network (CNN) architecture. It
extracts spatial and temporal features and feeds them into a CNN
and a Long Short-Term Memory (LSTM) architecture. For this
analysis, we use the architecture “as is,” pre-trained with the orig-
inal authors’ dataset. Figure 3 shows examples of RoI maps and
predicted saliency maps for two videos. To compare RoI maps
with saliency maps, we used three performance metrics [25]: Judd
Area under the curve (AUC_Judd), cross-correlation (CC), and
similarity (SIM). Metric values closer to ‘1’ indicate a closer
agreement of the maps. Table 2 shows the results of our evalu-
ation. Notice that the annotated RoIs are in good agreement with
the saliency maps generated by the Cube Padding saliency model.
This result is interesting and indicates that there is a relationship
between importance and saliency for 360 videos.

5. Subjective Experiment on User Experience
for a Set of Static Video Editing Techniques

To lay the ground for the development of editing techniques
that will work integrated with our ABR algorithm, in this section,
we present some preliminary results of a subjective experiment

Figure 3: Comparison between RoI maps and saliency maps pro-
duced by the CubPadding360 model for “Ben-Hur Chariot Race”
and “Closet Set Tour” videos.

that we designed to understand the user response, measured in
terms of “presence” and “comfort,” to a specific set of static video
editing strategies. As introduced by Dambra et al. [19], the idea
of static editing reflects the fact that the editing is made offline at
video creation time, that is, any changes to a given edited video
would require the creation of another video file, as opposed to
dynamic editing where it happens at runtime. In particular, we are
interested in the editing that aligns RoIs to achieve the so-called
“match on attention” [10], as a way to control the user’s attention
on the underlying story and diminish head movements motivated
by searches for other RoIs. Unlike Dambra et al. [19], however,
we first consider intra-scene RoI alignments, that is, when editing
occurs in the same scene and not across scene cuts. This is the
case, for instance, when there are multiple RoIs in the same shot,
and a director wants to drive the user’s attention to a specific RoI
within the same scene, departing from another one.
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Table 2: AUC_Judd, CC, and SIM values between saliency
maps predicted via Cube Padding and RoIs maps created from
the subjective experiment for videos in both Groups 1 and 2.

Group Metrics
AUC_Judd CC SIM

1 0.8258 0.5203 0.8411
2 0.8603 0.6009 0.8412

In our experiments, two specific types of editing were con-
sidered: “instantenous” (that is, the so-called snap changes [26])
and “gradual” editing. Instantaneous editing aims to align a given
RoI with another different RoI in the following video frame. In
gradual editing, a yaw rotation of the scene is performed gradu-
ally, at constant speed, to bring the intended new RoI to a given
direction aligned with a previous RoI. To mitigate cybersickness,
we introduce the effect of “fade-in fade-out,” as proposed by Far-
mani et al. [27]. From each original video, we created one video
with instantaneous editing and four videos with gradual editing,
each with a specific angular speed of camera rotation: 10 degree/s,
20 degree/s, 40 degree/s, and 60 degree/s, respectively. All videos
were 30 seconds long, and the videos were selected in such a way
that they all had the beginning of the gradual editing at the 14th
second, with the fading effect lasting 1 second. Static editing was
manually implemented using Adobe Premiere.

As far as video content is concerned, we selected videos
based on the nature of the observed camera movement. This is be-
cause camera motion can affect viewer attention and transform the
motion of moving objects, as discussed by Nasrabadi et al. [23].
Therefore, we focus on the acceleration of the camera movement
in the scene, and we defined three video categories: “fixed,” if
the camera is static; “steady,” when no significant acceleration of
camera motion occurs in most of the video; and “dynamic,” if
otherwise. Two videos fitting each of these three categories were
selected, and we did not limit the number of moving objects in
the scene. In the experiment, each subject evaluated a total of 36
videos: six original videos, each associated with the five static
editing techniques described above. To avoid bias in attention,
audio was removed from all videos.

To carry out the subjective experiment, we developed an
evaluation platform called Mono3602 that consists of a web ap-
plication that presents a scoring interface for videos displayed in
an embedded 360-degree video player. Since it is a web appli-
cation, it can be easily installed on any HMD. The interface was
designed to be flexible enough to be tailored to new experiment
designs. Figure 4 shows a snapshot of the subjective evaluation
interface, together with a diagram containing the key information
collected by the Mono360 application. All subjective experiments
followed the ITU P.919 recommendation [28], and participants
reported their comfort and presence scores using a 5-level rating
scale. Additionally, we collect information on head movement
and demographic data. The experiment was carried out on two
HMD devices in two parts. First, we used the Oculus Rift HMD
with 40 participants (60% female, 0% nonbinary, 55% first-time
VR technology user, 35.6 years old on average (14.0 standard de-
viation)). Then we used the Oculus Quest HMD with 23 par-
ticipants (43% female, 0% nonbinary, 60% first-time user of VR

2https://gitlab.com/gpds-unb/mono360

Figure 4: Example of the Mono360 interface for subjective eval-
uation. In the bottom: the type of data gathered from users.

technology, 29.6 years old on average (7.0 standard deviation)).
Figure 5 presents the mean opinion score (MOS) values for

each of the six videos, averaged over all types of editing. We
notice that comfort and presence appear to be slightly inversely
related: the higher the comfort, the lower the presence (and vice-
versa). Despite the small number of video samples, this detected
behavior seems to add to the balance of evidence that favors the
existence of a negative correlation (or inverse relationship) be-
tween presence and comfort, as discussed by Wheech et al. [29]
when treating cybersickness as a “constellation” of discomfort
symptoms.

Figure 5: Mean Opinion Score (MOS) values for “presence” and
“comfort” for each video content and over all editing types.

Figure 6 contains the MOS values for presence and comfort
for each type of editing, grouped according to each video cate-
gory: fixed, steady, and dynamic camera motion. In the case of
comfort, the steady and fixed categories present a slightly higher
MOS value than the dynamic one. This is a reasonable result to
expect because the dynamic movement of the camera makes it
difficult for the user to focus on any RoI or on any aspect of the
scene. Moreover, in most categories, there is a slight decrease in
comfort as the angular speed of gradual editing increases. Con-
sidering that the editing was done offline, the higher the angular
speed, the higher the chances that the user misses an intended
RoI and feels disoriented, making it difficult to maintain focus on
any aspect of the scene. In the case of presence, the MOS values
do not change much across all editing types in each video cate-
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gory, which indicates that the editing type does not have much
impact on the viewers’ experience of presence. It is interesting
to note that the MOS values for the fixed category is lower than
the MOS values for the steady and dynamic categories, indicat-
ing that the user feels less immersed in the content when there is
no camera motion. However, since we only used two videos in
each category, this result may be affected by the video content it-
self. More studies are needed to confirm this result. As previously
mentioned, these are preliminary results of a major investigation
which aims to deliver a user-centric framework for perceptually
efficient streaming of 360-degree edited videos.

Figure 6: MOS values for each editing type and video category.

7. Conclusions
This paper presented a set of developments towards the de-

sign of a user-centric framework for perceptually efficient stream-
ing of 360-degree edited videos. First, we introduced a tool for
annotation of regions of interest (RoI) in 360-degree videos that
allows the creation of datasets for the training of machine learning
visual attention computational models and for the use in perfor-
mance evaluation studies. Based on this tool, a subjective exper-
iment was designed to evaluate the usability of the software and
to create a dataset of annotated 360-degree videos. This dataset
was then used to create RoI maps that were compared to saliency
maps generated by the Cube Padding visual attention computa-
tional model. The saliency maps were found to agree well with
the RoI maps, indicating that there is a relationship between the
importance given by users to specific points in the scenes and the
saliency regions detected by the model. Such findings encour-
age further investigation of the automatic detection of RoI in 360-
degree videos for use in advanced video editing techniques. Fi-
nally, we presented preliminary results on a subjective experiment
designed to evaluate the users’ QoE in terms of comfort and pres-
ence when they are exposed to a specific set of static editing tech-
niques (i.e., off-line editing) applied to different video categories
regarding camera motion. Specifically, we investigated intrascene
RoI alignment with the goal of reducing the user’s head move-
ments. We considered both instantaneous (i.e. “snap-changes”)
and gradual rotation editing, under different angular speeds. Pre-
liminary results indicate that comfort and presence appear to be
slightly inversely related: the higher the comfort, the lower the
presence (and vice versa). Regarding the editing type, the users’
comfort is reduced as the angular speed of gradual rotation in-
creases, and the users’ experience on presence seems to be not

affected by the editing type.
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