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Abstract 
Over the years, various algorithms were developed, attempting 

to imitate the Human Visual System (HVS), and evaluate the 

perceptual image quality. However, for certain image distortions, 

the functionality of the HVS continues to be an enigma, and echoing 

its behavior remains a challenge (especially for ill-defined 

distortions). In this paper, we learn to compare the image quality of 

two registered images, with respect to a chosen distortion. Our 

method takes advantage of the fact that at times, simulating image 

distortion and later evaluating its relative image quality, is easier 

than assessing its absolute value. Thus, given a pair of images, we 

look for an optimal dimensional reduction function that will map 

each image to a numerical score, so that the scores will reflect the 

image quality relation (i.e., a less distorted image will receive a 

lower score). We look for an optimal dimensional reduction 

mapping in the form of a Deep Neural Network which minimizes the 

violation of image quality order. Subsequently, we extend the 

method to order a set of images by utilizing the predicted level of 

the chosen distortion. We demonstrate the validity of our method on 

Latent Chromatic Aberration and Moiré distortions, on synthetic 

and real datasets. 

 

Figure 1. Automatically ordered images (a)-(c) from the TID2013 [15] by 
their predicted Lateral Chromatic Aberration level (0, 2, 4 pixels accordingly) 
using the proposed method in this paper; the “<” sign indicates that the left 
image is less distorted than the one on the right; (d) a plot of the expected (the 

x-axis) versus the predicted image order (the y-axis). 

1. Introduction 
Evaluating the quality of an image is a vital task in the domain 

of image processing. This is crucial for measuring the performance 

of image processing algorithms, which may unintentionally damage 

image quality (e.g., a denoising algorithm can reduce the sharpness 

of the edges). While talking about image quality, often questions 

arise regarding an image’s quality assessment: like What is a good 

image? And also Why is image quality assessment so difficult? [20]. 

While the Human Visual System often provides an answer to these 

questions, it is not efficient and at times prone to subjective 

judgment.  

In order to avoid repeated evaluation by image quality experts, 

an automatic image quality procedure is essential. Image quality 

(IQ) assessment can be addressed either by absolute or relative 

measure. In the first method, a number representing the IQ of a 

single image is computed. In the second method, given two images, 

we indicate which image looks better. It should be noted that usually 

providing a relative measure is easier, as opposed to evaluating the 

quality of a single image and scoring it based on its defects. The 

reason for this is that there is no need to specify what image 

characteristics influenced the scoring. 

Along the years there were various algorithms suggested to 

crack the enigma of Human Visual System (HVS), which constantly 

aids humans in this task [10, 13]. Those studies paved the way 

towards designing an objective procedure for image quality 

evaluation [2-3, 7, 13, 22]. However, measuring the perceptual 

image quality still remains a challenge. In recent years, the interest 

in image quality metrics was renewed, with the rise of Deep Neural 

Networks (DNN). The main idea of DNN is that an image quality 

metric can be defined and evaluated on images. Subsequently, a 

DNN is constructed to associate between the image and its 

calculated quality. Recently published papers [4, 6, 8-9, 12, 18, 21, 

23] demonstrate the benefits of using DNN for IQ evaluation. These 

methods require the defining and evaluating an absolute image 

quality metric. This requires the designer to develop a metric and 

evaluate the distortion as a pre-processing step of DNN. However, 

the main challenge is that certain image distortions are ill-defined 

(though they are easy to acquire or simulate), and therefore, no 

metric exists to evaluate them. 

In this paper, we address the question of image quality 

assessment by introducing a framework for learning relative IQ. We 

look on image distortion as the degradation of the ideal image or as 

a deviation from the “perfect” image. Thus, we propose a relative-

order-preserving image quality, and bypasses the challenge of 

defining the desired distortion.  

Our method was inspired by [19], in which the semantic 

hierarchy of words, and sentences was learned. Although this 

particular hierarchy is based on the hypernymies of words, for our 

purposes, the aim is to maintain the order of images based on their 

quality. In what follows, we introduce our relative IQ method 

(subsection 2.1) and later it is extended to rank a set of images 

(subsection 2.2). Then, in section 3, we describe the construction of 

the training, validation, and testing datasets. The validity of our 

method is demonstrated through the order-preserving dimension 

reduction of two distortions: Chromatic Aberration and Moire 

(section 4). The paper concludes with a discussion of future 

directions for methodological enhancements (section 5). 

2. Proposed Method 
2.1 Ranking the Distortion of an Image Pair 

First, we introduce the relative image quality measure in 

reference to the question “given two images, A, and B as well as 

image distortion d, is image B more distorted than image A with 

respect to d”? We answer this question by defining image quality 

order with respect to the selected distortion. Subsequently, we look 

for a dimension reduction mapping from the image domain to a the 
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natural numbers, which maintain the IQ order. This mapping is later 

utilized to make order in an unseen image pair. In mathematical 

terms, we define the IQ-order of two given Regions of Interest 

(ROI) of an image as: 

Definition 1.  Let 𝑅𝐴 and 𝑅𝐵 be two registered ROIs, and let 𝑑 be 

the distortion we would like to evaluate. Then, ROI-IQ-order is 

defined as 𝑅𝐴 <𝑑 𝑅𝐵, meaning that ROI 𝑅𝐴 is less distorted than 

ROI 𝑅𝐵, with respect to 𝑑. 

Let us now extend this definition to the entire image: 

Definition 2.  Let 𝐴 and 𝐵 be two images, as well as the set of their 

registered ROIs {𝑅𝐴,𝑖}, {𝑅𝐵,𝑖}. If the following condition stands #{ i 

| 𝑅𝐴,𝑖 <𝑑 𝑅𝐵,𝑖} > #{ i | 𝑅𝐴,𝑖 >𝑑 𝑅𝐵,𝑖} then we define IQ-order as 

𝐴 <𝑑 𝐵, i.e., image 𝐴 is less distorted then image 𝐵 with respect to 

the tested ROIs, and the selected distortion. 

Next, we defined IQ-order-preserving mapping as: 

Definition 3.  Let 𝐴 and 𝐵 be two images, such that 𝐴 <𝑑 𝐵 and let 

𝑆={⟨𝑅𝐴,𝑖 , 𝑅𝐵,𝑖⟩ | 𝑅𝐴,𝑖 <𝑑 𝑅𝐵,𝑖 }𝑖=1..𝑁 be their set of ordered 

registered ROI pairs, and 𝑓:ℝ𝑛×𝑚 → ℝ a dimensional reduction 

function. We say that the mapping 𝑓 is IQ-order-preserving if for 

any ROI pair in 𝑆, 𝑓 is order-preserving. That is if ∀𝑖 
𝑅𝐴,𝑖 <𝑑 𝑅𝐵,𝑖 ⇒ 𝑓(𝑅𝐴,𝑖) < 𝑓(𝑅𝐵,𝑖). 

Now, the image quality question can be formulated with respect to 

the order-preserving mapping. 

Problem definition: Let 𝐴, 𝐵 be two images such that 𝐴 <𝑑 𝐵 and 

also let 𝑆={⟨𝑅𝐴,𝑖 , 𝑅𝐵,𝑖⟩ | 𝑅𝐴,𝑖 <𝑑 𝑅𝐵,𝑖 }𝑖=1..𝑁 be an ordered registered 

ROI pair set. The IQ-order-preserving mapping 𝑓, is found such that 

it will minimize the image quality order violation: 

(1) 𝑓 = argmin
𝑓:ℝ𝑛×𝑚→ℝ

1

𝑁
∑ 𝐸(𝑅𝐴,𝑖,𝑅𝐵,𝑖)∈𝑆 (𝑅𝐴,𝑖 , 𝑅𝐵,𝑖), 

where the loss function, 𝐸, for an ordered pair ⟨𝑅𝐴, 𝑅𝐵⟩ is defined 

as: 

𝐸(𝑅𝐴, 𝑅𝐵) = max(0, (𝑓(𝑅𝐴) + 𝜖) − 𝑓(𝑅𝐵))
2
. 

Once the optimal 𝑓 is found (see subsection 2.3 for details), given a 

pair of images we can find the less distorted image using definition 

3. 

2.2 Ranking the Distortion of Image Set  
The definition of “order” on an image pair can be extended to 

rank image sets, utilizing their distortion levels. Once the mapping 

𝑓, which minimizes equation (1), is found, it can be used to calculate 

the relative score of images. As a result, one can order a given image 

set with respect to the values of 𝑓. Specifically, for a set of images 

{𝐴𝑗}𝑗=1..𝐽, with the corresponding ROIs 𝑅𝑗,𝑖, we calculate 𝑓(𝑅𝑗,𝑖). 

Subsequently, the ranking of this set with respect to a given 

distortion is achieved by ordering the values 𝑓(𝑅𝑗,𝑖) for each specific 

ROI index (𝑖), and then calculating the median of the ranking across 

all the image patches (𝑗). 
We illustrate this procedure in the following example. We 

would like to rank four images using three patches with given 

predicted IQ values. Table 1 demonstrates all the steps of the process 

starting with (a) predicting the IQ values using some learned 𝑓 (each 

row in the matrix appearing in the first column corresponds to a 

different patch, and each column to corresponds to a different 

image), then (b) ranking their ROI’s and later (c) ranking the four 

images. We demonstrate this concept in a test-case scenario by 

ranking images with respect to Chromatic Aberration distortion in 

Figure 1. Images (a)-(c) are ordered according to their rank, and (d) 

is a plot of the expected ranking versus the predicted one (as can be 

seen the prediction, in this case, is perfect). 

Table 1: Example of ranking four images, with respect to their 

three patches 

Predicted IQ values Calculated 
Patches Ranks 

Calculated 
Images rank 

[1 2 3 4; 
4 8 9 12; 
2 3 5 4] 

[1 2 3 4; 
1 2 3 4; 
1 2 4 3] 

[1 2 3 4] 

 

2.3 Network Architecture 
In this study we design the order-preserving mapping as a Deep 

Neural Network (DNN). It comprises of a Siamese network of a pair 

of ResNet architecture [11], each performing a dimension reduction. 

Later, a loss function, which maximizes the distance between 

mismatches of the dimension reduction via the equation (1), is 

calculated (the loss is also called squared negative smoothed hinge 

loss (SNSHL) [16]). See Table 2 for the detailed network 

architecture. 

Table 2: Architecture of the IQ order-preserving network. 

Building blocks are shown in brackets (and consists of three 

consequent ReLU’s), with the numbers of blocks stacked. The 

network input is two concatenated color patches of 32×32. 

 

Layer 
name 

Output size Order-preserving Net104-layer 

slice  slice point 3 

conv1 16 × 16 × 2 7 × 7,64, stride 2 7 × 7,64, stride 
2 

conv2.x 8 × 8 × 2 
[
1 × 1,64
3 × 3,64
1 × 1,256

] × 3 [
1 × 1,64
3 × 3,64
1 × 1,256

] × 3 

conv3.x 4 × 4 × 2 
[
1 × 1,128
3 × 3,128
1 × 1,512

] × 4 [
1 × 1,128
3 × 3,128
1 × 1,512

] × 4 

conv4.x 2 × 2 × 2 
[
1 × 1,256
3 × 3,256
1 × 1,1024

] × 6 [
1 × 1,256
3 × 3,256
1 × 1,1024

]

× 6 

conv5.x 1 × 1 × 2 
[
1 × 1,512
3 × 3,512
1 × 1,2048

] × 3 [
1 × 1,512
3 × 3,512
1 × 1,2048

]

× 3 

conv1 1 × 1 × 2 1 × 1,1, stride 2 1 × 1,1, stride 2 

Squared 
negative 
smoothed 
hinge loss 

1 × 1 × 1 1 × 1,1, stride 2 1 × 1,1, stride 2 
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2.4 Accuracy Evaluation of the Predicted Order 
Measuring predicted order accuracy can be separated into two 

different scenarios: (a) for a pair of images, and (b) for an image set. 

While the first one can be evaluated as the True Positive (TP) 

percentage, the accuracy of the second is performed using 

Spearman’s correlation coefficient [14], which is widely utilized to 

detect trends in data in light of reference information. Thus, given 

two measurements vectors 𝑥, 𝑦, and their corresponding ranks, 𝑟𝑥 

and 𝑟𝑦, Spearman’s correlation coefficient is calculated as  

𝜌 =
𝑐𝑜𝑣(𝑟𝑥,𝑟𝑦)

𝜎𝑟𝑥𝜎𝑟𝑦
,  

where 𝜎𝑟𝑥, 𝜎𝑟𝑦 are the standard deviations of the rank variables. 

Subsequently, for patch 𝑖, we apply Spearman’s correlation of 

the ranks of the predicted values 𝑓(𝑅𝑗,𝑖) as well as a monotonically 

increasing sequence with equal length (resulting in a correlation 

coefficient 𝜌𝑖). The accuracy of the predicted image set ranking is 

the median of 𝜌𝑖 across all images patched. In the example above, 

the correlation coefficients of the patches ranking (middle column 

in Table 1) are [1 1 0.8], with 𝑚𝑒𝑑𝑖𝑎𝑛(𝜌𝑖) = 1. Therefore, we 

conclude that there is a monotonicity trend in the data, and that the 

predicted rank is perfect. 

3. Database Creation  
Our experimental flow consisted of the following steps: (a) 

acquiring a dataset of images for training and validation; (b) pairing 

or simulating images of the same scene, each corresponding to 

different levels of distortion, and accompanied with a predefined IQ-

order; (c) extracting ROIs which contain the desired distortion; (d) 

learning the order-preserving dimensional reduction function, 𝑓; 

and (e) executing the method on various datasets. The general flow 

is illustrated in Figure 2. 

 

Figure 2. Our experimental flow consisting of (a) acquiring a database of images 
with a chosen distortion (subsection 3.1); (b) creating pairs of images which 

each corresponding to different levels of the chosen distortion (subsection 3.2); 
(c) finding areas which correspond to high values of the distortion and cropping 
ROIs of the size 32x32 (subsection 3.3); (d) learning the order-preserving 
dimension reduction; and (e) executing it on new datasets. 

3.1 Database Acquisition 
We tested our methodology on learning to rank the Lateral 

Chromatic Aberration and Moire distortions. Since no dataset of 

pairs of images accompanied by the level of distortion was available 

for training-validation-testing purposes, we created our own dataset 

both by simulating a distortion on existing images (for Lateral 

Chromatic Aberration) and by creating synthetic images (for 

Moire). In the first scenario, we took an existing set of images (an 

ImageNet dataset [5]) as a baseline and created a pair of images for 

each image in the dataset, each with a random level of distortion. 

For the Moire case, we created images with repetitive pattern and 

then produced an image pair with different distortion levels (see 

below). After the model was trained, we tested it on a set of real 

images from the TE42.v2 chart (designed and produced by Image 

Engineering [1]). 

3.2 Distortion Simulation 

We verified the validity of the proposed order-preserving 

method on Lateral Chromatic Aberration (LCA) and Moire 

distortions (Figure 3). The LCA distortion appears when the color 

convergence point is not unique (which stems from the failure of the 

lens to focus). This effect is seen as a blur or “rainbow” edge in areas 

of contrast. The LCA dataset was constructed by distorting the 

ImageNet dataset [5], where the RGB channels of each image were 

changed with a random shift of size, i.e., ∼ 𝑈(1,5) pixel in one of 

the square’s diagonal directions. 

The Moire distortion (or aliasing) is an effect that causes 

different signals to become indistinguishable when sampled [17]. It 

occurs when repetitive patterns of high spatial frequencies exist, 

which are sampled at different frequencies. Since natural images 

usually do not depict a constant frequency which could train the 

Moire distortion, we had to create a synthetic image dataset with 

constant high-frequency patterns. Our dataset contained the 

following simulated repetitive patterns (i.e., resolution bars, 

resolution net, Siemens-star, resolution wedges, concentric rings). 

In order to simulate the Moire effect, we used an image resize with 

bicubic interpolation without an antialiasing option along with a 

randomly sampled resize factor ∼ 𝑈(1.5,10). 

 

Figure 3. Left: Image with Chromatic Aberration distortion form the TID2013 
dataset [15]; right: Resolution chart with Moire effect. Marked in red are the 
areas with the desired distortion. 

3.3 ROIs Extraction  

Once IQ-order-preserving image pair ⟨𝐴, 𝐵⟩ was created (by 

applying two random levels of the chosen distortion), the IQ-order-

preserving ROIs (size 32x32) were extracted. The ROI pairs 

⟨𝑅𝐴,𝑖 , 𝑅𝐵,𝑖⟩ were chosen as those corresponding to the maximal 

values on the error map: 𝐸𝑟𝑟𝑀𝑎𝑝 = |𝐴 − 𝐵|. We chose patches 

with a sufficient amount of distortion (we chose an ROI pair with 

𝐸𝑟𝑟𝑀𝑎𝑝 larger than 0.025% of the image area). Thus, the ROI 

location selection is content dependent, and may be effected by the 

image saliency. 

As a result, our constructed dataset for each distortion consisted of 

about six million image patches. 

4. Experimental Results  
We demonstrate the validity of the proposed method through 

learning two order preserving mappings, each corresponding to a 

different distortion (either the LCA or Moire distortions). We 

trained a DNN, described in subsection 2.3, using a dataset of 

ordered image pairs (discussed in section 3). The optimal ordering 

mapping was later used to (a) predict the IQ order of image pairs, 

and then (b) to rank registered sets of images from new datasets. 
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While the training and validation of the DNN performed well on 

synthetic data (Table 3), a question that remained was what the 

accuracy of the model is when applied to real life images. 

Unfortunately, a real-life dataset of distortions, with image rank, 

was not available. Therefore, we acquired a new dataset, which 

consisted of two tests sets of images of the TE42v2 chart [1]. One 

set depicted the TE42 chart in various LCA levels, and the other 

contained images with different Moire effects (about 13 images of 

each set were used for each distortion). Subsequently, the images 

were ranked by an independent image quality expert using his HVS. 

Later, we sampled different patches from the images using Monte 

Carlo to enrich our dataset. In order to simulate different rank tests, 

each pair was randomly cropped to a size of 150x150 pixels with the 

desired distortion. For each cropped pair, we predicted the IQ metric 

and ranked the cropped patches. The results are summarized below 

(see also Table 3). 

We also used another dataset (entitled the TID2013 dataset [15]) 

to evaluate the performance of image set ranking. This dataset 

consisted of various images, each subjected to a set of image 

distortions at various levels. 

4.1 Accuracy of Ranking Image Pair  
Our trained models gave results of 97% and 94% TP for the 

simulated test data of the LCA and Moire distortions, respectively. 

Later, we used the images of the TE42 chart for evaluating the order 

prediction of real-life scenarios. With the 13 images, we simulated 

150 different Monte Carlo experiments by sampling pairs of images 

from the test set, which contained the required distortion. For each 

cropped pair, we predicted the IQ metric and ranked the cropped 

patches. This experiment resulted in 80% and 85% TP for the LCA 

and Moire, respectively. This result indicates that, although the 

model was trained on synthetic data, it also performs well on real 

life images. 

4.2 Accuracy of Ranking Image Set 
We later turned to ranking sets of images using the 

methodology described in 2.2. Our first test was performed on the 

TID2013 dataset [15], using images created with chromatic 

aberrations (distortion marked as No. 23 in the dataset). The dataset 

contained images with chromatic aberration Levels 1–5; 

unfortunately, the levels of LCA used for the TID2013 creation were 

not specified. Based on our examination, Level 5 of LCA in 

TID2013 was more than 5 pixels (the value used in our training set) 

and therefore we did not use it in the ranking procedure.1 But since 

the images were labeled according to distortion levels, we could 

check our prediction’s accuracy against that of the expected one. 

The median ranking for the 25 image sets resulted in an accuracy 

correlation of 𝜌 = 1. Examples of order-preserving ranking can be 

seen in Figure 1 and Figure 4. We saw that the distortion level of the 

images with the airplane (Figure 1) and the woman were predicted 

perfectly, whereas for the parrot, the scoring was good, with images 

(c)-(e) receiving the same score. 

                                                                 

 

 
1 It should be noted that the ROIs were selected by calculating the 

error map as described above. 

 

Figure 4. Images (a)-(e) ordered by the rank of the predicted IQ measure from 
the TID2013 dataset and (f) inspected ROIs, chosen via the error map 
described in subsection 3.3; (g) a graph with the expected (x-axis) versus 
predicted rank values (y-axis); the accuracy correlation of those sets is 𝜌 = 0.8,1 

(from the top to bottom rows). 

Subsequently, we tested our ranking methodology on the ordered 

images depicting the TE42.v2 chart (discussed above). We 

simulated 150 image sets by sampling quadruplets of images from 

the original dataset and cropping them randomly to a size of 

150x150 pixels, depicting the desired distortion. For each cropped 

quadruplet, we predicted the IQ metric and ranked the cropped 

patches. The experiment resulted in a median accuracy of 𝜌 = 0.7 

and 𝜌 = 0.8 for LCA and Moire. We provide two examples of the 

order prediction for the two distortions in Figure 5. We see that, for 

the LCA, the predicted order was almost perfect and that for Moire, 

the order was flawless. This example demonstrates that the proposed 

methodology also works well on real life images. 

Table 3. Summary of order-preserving image quality assessment 
tests for LCA and Moire distortions, added artificially or newly 
acquired in real images. 

Test LCA Moire 

Synthetic data, test set (pairwise ordering %TP) 97% 94% 

TE42 chart (pairwise ordering %TP) 80% 85% 

TID2013 (image set ordering 𝜌) 1 N/A 

TE42 chart (image set ordering 𝜌) 0.7 0.8 

   

 

Figure 5. Example of quadruplets, ordered by rank (a-d); ROIs used for ranking 
(e); and a graph with the expectation (x-axis) versus the median predicted rank 

values (ty-axis) (f). In the first row, LCA distortion was measured with a result 
of 0.9 accuracy; in the second row, Moire was assessed with an accuracy of 1. 

5. Summary and Future Directions  
Assessing image quality is a key problem when evaluating 

image processing algorithms. The challenge can be addressed either 

by absolute or relative measurements. As the absolute metric is 

sometimes ill-defined, and can be harder to implement, a relative 
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metric can solve the problem. In this paper we suggested a relative 

method, which looks for an optimal mapping that maintains the 

order of pair of images. Namely, given a pair of images, the mapping 

returns a pair of scalars that are ordered based on IQ. Subsequently, 

we proposed extending the mechanism for ranking a set of registered 

images. The ranking was performed by ordering the images by the 

found function values. 

We demonstrated the validity of our method by constructing a 

Deep Neural Network and testing it on two distortions: Chromatic 

Aberration and Moire. The test’s accuracy on synthetic data as well 

as real data showed satisfactory results. Our test demonstrates that 

even though the training was performed on synthetic data, the results 

achieved on real data was satisfactory. Our method paves the way 

towards learning to measure a wide range of image distortions. 
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