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ABSTRACT

Recent advances in capture technologies have increased the
production of 3D content in the form of Point Clouds (PCs).
The perceived quality of such data can be impacted by typical
processing including acquisition, compression, transmission,
visualization, etc. In this paper, we propose a learning-based
method that efficiently predicts the quality of distorted PCs
through a set of features extracted from the reference PC and
its degraded version. The quality index is obtained here by
combining the considered features using a Support Vector Re-
gression (SVR) model. The performance contribution of each
considered feature and their combination are compared. We
then discuss the experimental results obtained in the context
of state-of-the-art methods using 2 publicly available datasets.
We also evaluate the ability of our method to predict unknown
PCs through a cross-dataset evaluation. The results show the
relevance of introducing a learning step to merge features for
the quality assessment of such data.

Index Terms— 3D Point Cloud, Quality Assessment,
Feature Fusion, Support Vector Regression

1. INTRODUCTION

Recent advances in capture technologies have increased the
production of 3D content in the form of Point Clouds (PCs).
As most multimedia contents, PCs may undergo different
types of distortion introduced by several basic processing
(acquisition, compression [1, 2], transmission, visualization,
etc.), usually applied to transmit or visualize such data. To
estimate the perceptual impact of these distortions on the per-
ceived quality, subjective and objective evaluations are usu-
ally conducted. Subjective evaluation gives scores that reflect
the perception of human observers through psycho-visual
tests, while objective evaluation aims to automatically predict
the subjective scores. As for 2D images and videos [3, 4],
objective methods can be classified according to the availabil-
ity of the reference PC: Full Reference (FR) approaches that
need the reference PC, Reduced Reference (RR) approaches
that exploit only partial information from the reference PC
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and No Reference (NR) approaches that predict the quality
from only the distorted version of the reference PC. It is worth
noting that such quality prediction methods can be useful in
several applications [5, 6, 7].

Different point cloud objective metrics have been pro-
posed in the literature, e.g., the point-to-point or the point-
to-plane metrics [8]. The latter consists in projecting the
point-to-point error vector along the local normal. In [9],
the authors proposed a method based on the angular similar-
ity between tangent planes. In [10], the authors proposed a
metric called PC-MSDM by extending the well-known SSIM
metric [11], widely used for 2D images, to PC, by consid-
ering features including local mean curvature. The authors
extended that work later in [12] with a metric called PCQM,
which takes into consideration also the color information. In
[13], the authors proposed a new approach that focuses more
on the distribution of the data. They introduced a new type
of correspondence from point to distribution characterized by
its mean and covariance using the well-known Mahalanobis
distance. In [14], the authors proposed a color-focused metric
that integrates geometry information. In [15], the authors
adapted also the SSIM metric for point clouds using a num-
ber of features. In [16], the authors improved the point cloud
PSNR metrics. Interesting learning-based methods were also
proposed for 3D meshes [17, 18, 19, 20].

Contrary to the above-described metrics, in this paper we
introduce a learning-based full-reference method to predict
the quality of PCs. The proposed method is based on the
extraction and the combination of a set of features. More pre-
cisely, we consider geometrical and color attributes extracted
from the pristine PC and its degraded version. We then com-
pute the distance between the considered features and use a
Support Vector Regressor (SVR) to predict the quality of such
distorted PC. Our method is compared with state-of-the-art
metrics and the performance contribution of each considered
feature is evaluated. We also evaluated quality prediction per-
formance on unknown PC through a cross-dataset evaluation.
Our results show the relevance of introducing a learning step
to merge features for PC quality assessment.
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The remainder of this paper is structured as follows: the
proposed method is described in Section 2. Experiment re-
sults including feature analysis are discussed in Section 3,
followed by the conclusion in Section 4.

2. PROPOSED METHOD

In this paper, we design a learning-based framework to pre-
dict the quality of PCs with reference. As illustrated by Fig.
1, our method is based on two main steps: feature extraction
and feature fusion. The former aims to characterize the dif-
ference between the reference PCX and its degraded version
Y through the comparison of some attributes, while the latter
aims to derive a quality index from the features thus extracted
using an SVR model.

2.1. Feature Extraction

Several features can be considered to characterize the differ-
ence between two PCs. In this study, geometrical and color
attributes are considered since both have an impact on our
perception. Geometry-based attributes aim to capture the
structural deformations and the color-based attributes aim to
capture the color deformations. More precisely, the mean
curvature and roughness have been employed as geometrical
attributes. The latter have been computed using CloudCom-
pare software [21] with an automatic radius adjustment based
on the density of each PC. These features are employed as
follows.

Let us first define Fk as the kth considered feature with
{k = 1: Color; k = 2: Mean curvature; k = 3: Rough-
ness}. After decomposing each PC into patches of size 32 ×
32 × 1, we compute for each considered feature Fk the dis-
tance DFk(PX → PY ) between each patch PX of X and
its corresponding patch PY in Y . Several distance criteria
can be used. Here, the Mean Absolute Error (MAE) has been
employed. We then form a feature vector VFk as follows:

VFk(X,Y ) = {µDFk
(PX→PY );σDFk

(PX→PY )}, (1)

where µDFk
(PX→PY ) and σDFk

(PX→PY ) represent the
mean and the standard deviation of the patch-based distances
DFk(PX → PY ) of each feature Fk, respectively.

In addition to the above feature vectors, the mean and
standard deviation of the geometric distances between each
point of X and its corresponding point in Y are also consid-
ered. The latter are also regrouped in a feature vector noted
VG(X,Y ) (see Eq. 1).

2.2. Quality index

An SVR model is then used to predict the quality of the dis-
torted PC. More precisely, we concatenate the above feature
vectors to form a global feature vector V (X,Y ) as follows:

V (X,Y ) =


VF1(X,Y )

VF2(X,Y )

VF3(X,Y )

VG(X,Y )

 , (2)

The input of our model is the global feature vector
V (X,Y ), while its output is the predicted quality score.
We tested different kernel functions and the best result was
achieved with the Gaussian kernel.

It is worth noting that existing PC quality metrics usually
employ a function f that aims to symmetrize those metrics
(i.e. f(X,Y ) = f(Y,X)). For a given metric M , the
symmetrization function is often applied as follows:

QM(X,Y) = f(X→ Y,Y → X), (3)

where QM(X,Y ) is the quality index computed between
the PCX and its distorted version Y through the metric M .

For instance, the symmetrization function f is usually
min and max for MSE and PSNR, respectively. In this
study, instead of applying the symmetrization function that
is not necessary the optimal solution, we rather consider three
different configurations:

1. V(X,Y): The global feature vector is obtained by
comparing points and patches of X and their corre-
sponding points and patches in Y.

2. V(Y,X): The global feature vector is obtained by
comparing points and patches of Y and their corre-
sponding points and patches in X.

3. V(X,Y) and V(Y,X): The features are obtained
by concatenating the global feature vectors of the two
above-configurations.

The quality prediction capacity of our method is evaluated
through each of these configurations in Section 3.2.

3. EXPERIMENTAL RESULTS

The efficiency of our method to predict the quality of PCs
is evaluated in this section. To do so, we first describe the
datasets used and the evaluation protocol applied. Then, we
discuss the performance reached by each considered features
as well as their combination. The results thus obtained are
compared to state-of-the-art 3D PC metrics. Finally, a cross-
dataset evaluation is carried-out to show the generalization
ability of our method to predict the quality of unknown PCs.
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Fig. 1: Flowchart of the proposed 3D point cloud quality measure.

3.1. Datasets and Evaluation Protocol

In this study, two recent PC datasets are used: ICIP20 [22]
and PointXR [23].

• ICIP20 is composed of 6 commonly used point clouds
from which 90 degraded versions were derived through
3 types of compression: V-PCC, G-PCC with triangle
soup coding and G-PCC with octree coding. Each ref-
erence point cloud was compressed using five different
levels.

• PointXR is composed of 5 point clouds from which 45
degraded versions were derived through G-PCC with
octree coding for geometry compression and, Lifting
and RAHT for color compression.

The above-described datasets are split into training and
test sets N times (i.e. N folds). N corresponds to the number
of reference point clouds of each dataset and it is thus equal
to 6 for ICIP20 and 5 for PointXR. At each time, N − 1 ref-
erence PCs and their degraded versions are used to train the
model and, the rest (i.e. one reference PC and its degraded
versions) are used to test the model.

Two commonly used measures are adopted as evalua-
tion criteria: 1) Pearson Correlation Coefficient (PCC) and
2) Spearman Rank-Order Coefficient Correlation (SROCC).
Both take values on [0, 1] (absolute values), with 1 meaning
the best correlation. These correlations are computed over
each fold and the mean correlations are reported.

3.2. Feature Evaluation

Table 1 shows the mean correlations obtained for each of the
three considered configurations on ICIP20 dataset. The best
mean correlations are highlighted in bold. As can be seen,
the first two configurations obtain close correlations with a
slight difference in terms of mean SROCC. The third configu-
ration that corresponds to the concatenation of the two global

feature vectors, achieves the best performance with a mean
PCC and SROCC equal to 0.973 and 0.969, respectively. The
concatenation of all the feature vectors improves the global
performance and, it is thus retained and compared with state-
of-the art methods in Section 3.3.

Features PCC SROCC

1) V(X,Y) 0.967 0.958
2) V(Y,X) 0.967 0.965

3) V(X,Y) and V(Y,X) 0.973 0.969

Table 1: Performance comparison in terms of mean corre-
lations on ICIP20 dataset. The top mean PCC and SROCC
values are highlighted in bold.

We then compare the performance contribution of each
attribute and their combination only for the retained configu-
ration. Table 2 shows the results obtained on ICIP20 dataset.
The top two mean PCC and SROCC values are highlighted
in bold. As can be seen, all the features obtain high corre-
lations. Geometry and Color achieve the higher correlations,
while Roughness obtains the lower performance. This result
was expected since the former are usually used to estimate
the quality of such data as well as for 3D meshes [24, 19].
The overall best performance is reached after combining all
the considered features with an improvement gain in terms of
mean PCC between 1.8 to 12%.

3.3. Comparison with the state-of-the-art

Our method is here compared with state-of-the-art metrics.
Tables 3 and 4 show the results obtained for ICIP20 and
PointXR datasets, respectively.

On ICIP20 (see Table 3), the proposed method per-
forms the best with a mean PCC gain varying between 2.96
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Features PCC SROCC

Geometry 0.956 0.945
Color 0.945 0.955
Curvature 0.910 0.898
Roughness 0.863 0.828

Combination of all features 0.973 0.969

Table 2: Performance comparison in terms of mean correla-
tions for each considered features and their combination on
ICIP20 dataset. The top two mean PCC and SROCC values
are highlighted in bold.

and 10.57%. po2pointMSE and po2planeMSE obtain also
high correlations outperforming PSNRpo2pointMSE and
PSNRpo2planeMSE.

Method PCC SROCC

po2pointMSE 0.945 0.950
po2planeMSE 0.945 0.959
PSNRpo2pointMSE 0.880 0.934
PSNRpo2planeMSE 0.916 0.953
Proposed method 0.973 0.969

Table 3: Comparison with state-of-the-art methods on
ICIP20. Best result is highlighted in bold.

On PointXR (see Table 4), our method performs also the
best, followed by PSNRpo2pointMSE and PSNRpo2planeMSE.
Both po2pointMSE and po2planeMSE obtain lower correla-
tions.

Method PCC SROCC

po2pointMSE 0.887 0.978
po2planeMSE 0.855 0.942
PSNRpo2pointMSE 0.983 0.978
PSNRpo2planeMSE 0.972 0.950
Proposed method 0.986 0.983

Table 4: Comparison with state-of-the-art methods on
PointXR. Best result is highlighted in bold.

3.4. Cross Dataset Evaluation

In this section, we evaluate the generalization ability of our
method to predict the quality of unknown PCs by using
ICIP20 (PointXR) as training set and PointXR (ICIP20) as
test set. Table 5 shows the results obtained. As can be seen,

high correlations are obtained when ICIP20 is used as train-
ing set. Whereas the correlations are not high as obtained
in Section 3.3 when PointXR is used as training set. These
results can be explained by the fact that ICIP20 is composed
of PCs compressed using G-PCC and V-PCC, while PointXR
contains only PCs compressed through G-PCC. Hence, the
use of PointXR as training is more challenging since it allows
to evaluate the capacity of our method to predict the quality
of unknown PCs with unknown distortions.

Training set -> Test set PCC SROCC

ICIP20 -> PointXR 0.964 0.972
PointXR -> ICIP20 0.892 0.930

Table 5: Cross database evaluation.

4. CONCLUSION

In this paper, we proposed a learning-based method that ef-
ficiently predicts the quality of distorted PCs with reference.
After splitting the reference PC X and its degraded version
Y into patches, the mean absolute value between a set of fea-
tures (i.e. curvature, roughness and color) extracted from each
patches of both PCs are computed. Geometry distance be-
tween points of the two PCs was also considered as feature.
The resulted feature vectors are then fed as input to an SVR
model to predict the quality. The performance contribution
of each considered feature and their fusion were also ana-
lyzed through difference configurations. The best configura-
tion was retained and compared with state-of-the-art metrics
using 2 publicly available datasets. The proposed learning-
based method obtained high correlations on both datasets and
showed a good ability to predict unknown PCs.
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