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Abstract 
While slow motion has become a standard feature in 

mainstream cell phones, a fast approach without relying on specific 

training datasets to assess slow motion video quality is not 

available. This manuscript proposes a fast and generalized no-

reference objective metric based on temporal loss in modulation 

transfer function (MTF) to evaluate interpolated slow motion mode 

in mobile phones. First, a standard chart embodying slanted edges 

is used to capture a slow-motion video. Second, the edge spread 

function is extracted from a region of interest in individual slow 

motion frames. Third, the line spread functions and MTFs are 

calculated. Finally, reference and interpolated frames are 

identified. Sharpness loss in slow motion mode is quantified by the 

MTF area difference between minimum interpolated frame and 

reference frame MTF scores. The proposed approach is evaluated 

in simulated and experimentally captured slow motion videos. In 

experiments, slow-motion videos are captured by moving mobile 

phones mounted on a motorized linear stage apart from the test 

chart at a constant speed while keeping the test chart still. The 

proposed MTF scores of several mainstream cell phones are 

analyzed and compared.  

Introduction 
Slow motion videos are those captured at a rate much higher 

frame rates, that is 120 frames per second (fps), and playbacked at 

normal speed, that is 30 fps, by time-stretching so that time appears 

to be slower than a human observer can perceive. Nowadays slow 

motion has become a standard feature in mainstream mobile phones 

and is considered a performance metric for mobile phones. Mobile 

image sensors typically support up to 240 fps recording frame rate. 

In order to achieve a higher frame rate, which is larger than 1000 

fps, the captured video speed is often computationally upscaled by 

2x or 4x using frame interpolation algorithms. Interpolated frames 

are estimated from reference frames along with the temporal 

distance to consecutive frames. The interpolation process introduces 

sharpness loss in the interpolated frames. Figure 1 illustrates the 4x 

interpolation that produces 120 fps interpolated slow motion videos 

from 30 fps captured videos. In recent years, numerous methods 

have been demonstrated for video interpolation, including optical 

flow [1], deep neural network [2], and motion estimation and 

compensation [3, 4]. To assess the performance of each method as 

well as the whole slow motion mode in terms, a quantitative metric 

for efficiently evaluating the interpolated video quality is highly 

desirable. Unfortunately, conventional video quality metrics are 

designed for normal speed videos and thus suffer from providing 

reliable results for slow motion videos [5].  

In this study, we aim to solve the problem of slow motion video 

quality metric by proposing a general approach based on temporal 

MTF evaluation for mobile phones. The goal of this method is to 

provide an objective measurement of slow motion video quality 

without relying on specific training datasets and full-reference 

frames. Our approach could be used as an easy and efficient baseline 

score for further evaluation of slow motion video quality. 

 

Figure 1: Schematic of interpolated slow motion mode in mobile phones. 

Related work 
The current video quality assessment (VQA) of normal speed 

videos is primarily focusing on data-driven approaches, which 

include the training and evaluation phase. As shown in Figure 2, 

firstly, a dataset relevant to real use cases with different quality 

losses is collected in the training phase. Secondly, expert or non-

expert observers are invited to score the quality of the videos in the 

dataset. Thirdly, the subjective scores from all observers are pre-

processed and then normalized to the range of 0 to 100 or 1.0, with 

the score of 100/1.0 for perfect video. Meanwhile, objective metrics 

are utilized to extract quality features of the videos in the dataset. To 

evaluate quality artifacts, widespread human perception based 

objective metrics including Visual Information Fidelity (VIF) and 

Detail Loss Metric (DLM) [6] are adopted. Finally, a machine-

learning such as Support Vector Machine (SVM) or deep-learning 

model is then used to map the objective quality metrics to subjective 

scores. In the evaluation phase, the trained model is used to evaluate 

a video after the same objective metrics are extracted. The accuracy 

of data-driven approaches heavily depends on the training dataset. 

When a video is not included in the training dataset, the assessment 

score may be far from human evaluation results. Another limitation 

of data-driven approaches is the cost to conduct experiments to 

obtain reliable subjective scores. Furthermore, subjective 

experiments are time-consuming due to the need for human 

observers. Thus, classical data-driven approaches, such as Video 

Multimethod Assessment Fusion (VMAF) are complex and hard to 

generalize to widespan of videos due to the use of a limited number 

of distorted videos (e.g., 300) in the training phase [7]. 

Alternatively, pixel-based metrics, such as mean square error 

(MSE), peak signal-to-noise ratio (PSNR), or structural similarity 

index (SSIM), can be utilized to evaluate slow motion mode in 

mobile phones. There are two major limitations of these pixel-based 

metrics: (i) a full-reference video with the same frames as slow 

motion video is required and (ii) the motion blur level scores, which 

is one of the important quality factors when assessing a slow motion 
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video, cannot be correlated well with the aforementioned objective 

metrics. 

 

 

Figure 2: Example flowchart of data-driven VQA approach (adapted from 
VMAF [7] ). 

Proposed approach 
 

We seek fast and efficient slow motion video quality 

assessment metric based on temporal MTF loss. We propose an 

objective metric that does not require full-reference (ground truth) 

which is often hard to obtain. Our approach relies on the sharpness 

loss which can be quantified by means of degradation in the MTF 

over the video sequences.  

Different metrics in different frequency ranges, such as 

MTF50/MTF30/(normalized MTF area) can be used to quantify the 

sharpness loss in interpolated slow motion frames. The peak 

normalized MTF area is relatively insensitive to oversharpening 

compared to MTF50/MTF20 owing to the integral over all 

frequencies up to Nyquist rate (0.5 c/p). Therefore, we used the 

normalized MTF area metric to quantify the image sharpness. The 

MTF area score can be expressed as follows:  

 

𝑀𝑇𝐹𝐴𝑟𝑒𝑎 = ∫ 𝑀𝑇𝐹(𝑓)𝑑𝑓
0.5

0

  

 

where 𝑓  denotes the frequency in units of cycles/pixel (c/p). The 

sharpness loss is then defined by the difference of MTF scores 

between the reference and interpolated frames. This can be referred 

to as MTF loss:  

 

𝑀𝑇𝐹𝑙𝑜𝑠𝑠(%) = 100
𝑀𝑇𝐹𝐴𝑟𝑒𝑎𝑟𝑒𝑓 − min [𝑀𝑇𝐹𝐴𝑟𝑒𝑎𝑖𝑛𝑡]

𝑀𝑇𝐹𝐴𝑟𝑒𝑎𝑟𝑒𝑓
 

 

where 𝑀𝑇𝐹𝐴𝑟𝑒𝑎𝑟𝑒𝑓 and 𝑀𝑇𝐹𝐴𝑟𝑒𝑎𝑖𝑛𝑡 denote the MTF area 

calculated from MTFs of the reference frame and interpolated 

frames, respectively. min [] operator denotes the minimum MTF 

area among the interpolated frames. It should be noted that MTF 

loss is calculated using consecutive reference frames and 

interpolated frames from those reference frames. Therefore, MTF 

loss metric do not require full-reference compared with other 

objective video quality metrics such as PSNR, SSIM, and VIF. 

Methods 

Synthetic slow-motion video generation 
To obtain slow motion reference frames, a synthetic slanted 

edge image is generated. Then, a blur kernel that mimics the effect 

of the camera optics is applied. A diffraction-limited point spread 

function (PSF) corresponds to camera lens f/2.0 at 550 nm 

illumination is calculated to be as the blur kernel. After the 

convolution, Gaussian noise with variance of 0.0001 is added. 

Figure 3 shows the snapshots from generated images. The reference 

video sequence is generated by circularly shifting blurred reference 

frames from left to right at a 5px/frame speed. Synthetic slow-

motion video is then generated using deep learning-based frame 

interpolation algorithms developed by Jiang et al. [2]. The network 

input is fed by the generated reference video sequence. The input 

video speed is upscaled by 4x, interpolating 3 frames in between 

reference frame sequences.  

 

 

Figure 3: Synthetic slanted edge frame generation. Blurred frames are 
generated using a diffraction-limited airy disk kernel corresponding to f/2.0 at 
550 nm illumination wavelength. Additive Gaussian noise with var = 0.0001 is 
also added. The slanted edge angle is 5°.  

Experimental setup 
 

 

Figure 4: (a) Schematic of the Slow-motion video capturing setup.  (b) Side-
view of the experimental setup. Two LED light sources at 5600 K illuminates 
the test chart at 45° angle. The mobile phone is mounted atop of the 
motorized linear stage which is translated at a constant speed during the 
video capturing. 
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Figure 4 depicts the experimental setup schematic used for 

capturing slow motion videos for temporal MTF analysis. A test 

chart (TE261, Image Engineering) consisting of a tilted 

checkerboard background and low contrast slanted edges 

surrounded with gray patches is used for MTF evaluation. Two 

daylight light-emitting diode (LED) floodlight with 5600 K color 

temperature is placed at 45° angle with respect to test chart normal. 

To improve the illumination uniformity, LED floodlights are 

bundled with softboxes. The illuminance at the chart surface is 

measured by a light meter as 416 lux. The tested mobile phone is 

held by a phone holder mounted on top of a motorized linear stage 

which can control the speed and displacement. The stage is placed 

134 cm away from the test chart. This distance is more than 100x of 

camera module lens focal length to ensure measurements are not 

limited by printing MTF. Slow-motion videos are captured by 

translating mobile phones at a constant speed of 1 m/s while keeping 

the test chart still. 

 

 

Figure 5: Temporal MTF e-SFR analysis flowchart. Slow motion videos 
recorded in mp4 format are first pre-processed. Identified ROI image is 
registered at each video frame followed by cropping horizontal and vertical 
edge patches. Horizontal and vertical e-SFRs are calculated using ISO12333 
standard algorithm and averaged. Normalized MTF area is calculated at each 
frame and then the MTF loss score is quantified after identifying reference and 
interpolated frames.  

Temporal MTF analysis framework 
Mobile phones save the recorded slow motion videos in mp4 

format. We first preprocessed video frames to extract horizontal and 

vertical slanted edge patches from an identified region of interest 

(ROI) image located at the chart center. To do so, images are read 

from video files on Python. At each video frame, the corresponding 

ROI image is registered using 2-dimensional cross-correlation. 

Then, pre-defined horizontal and vertical edge patches are cropped. 

MTFs from both horizontal and vertical slanted edge patches are 

calculated using the e-SFR slanted-edge algorithm complying with 

ISO12333 standards. The MATLAB implementation of this 

algorithm named “sfrmat4” by Burns et al. is available open-source 

[8, 9]. Edge patches are fed into the algorithm in RGB color space 

which is later to be converted to luminance channel using default 

color channel weights. The calculated horizontal and vertical edge 

MTFs are then averaged. We refer to this averaged MTF as MTF, 

unless otherwise noted. Peak normalized MTF area from each MTF 

plot is then calculated and temporal MTF area plot is extracted. 

Finally, the MTF loss score is calculated using reference and 

interpolated frames.  

Simulation Results 
We first evaluated the simulated slow-motion videos described 

in the methods section. Figure 6a shows cropped ROIs from 

reference and interpolated frames. The sharpness loss in the second 

interpolated frame is more obviously perceived among the others. 

The interpolated frame ESFs have broadened profiles resulting in 

lower MTF profiles. The analyzed MTF area plot shows that the 

most blurred image frame is the interpolated frame 2 which is 

consistent with the visual observation. The MTF loss is calculated 

as 14%. These results indicate that MTF loss could be used as a 

metric to evaluate the sharpness loss in slow motion videos. 

 

 

Figure 6: MTF loss evaluation of simulated slow motion videos. (a) Cropped 
slanted edge ROIs from simulated slow motion video frames. Reference 
frames are generated using parameters in Figure 3. Three frames are 
interpolated between the adjacent reference frames. Calculated (b) Edge 
spread functions and (c) MTF plots. (d) Temporal MTF area plot for the total of 
33 frames (9 reference and 24 interpolated frames). 

Experimental Results 
Next, we experimentally evaluated temporal MTF loss using 

two flagship mobile phones referred to as phone A and phone B. 

Phone A can achieve 7680 fps at 720p resolution by 4x interpolation 

from video frames captured at 1920 fps. Phone B can achieve 960 

fps at 720p resolution by 2x interpolation from video frames 

captured at 480 fps. Figure 7 shows the experimental results 

obtained by these phones. The ESF plot from phone A has ringing 

artifacts due to oversharpening which be easily seen in 

corresponding MTF plots. Interestingly, the MTF difference 

between reference and interpolated frames is very small leading to 

a lower MTF loss score of 1.2%. In contrast, phone B has smaller 

ringing artifacts but still has software sharpening. MTF differences 

are much more obvious and overall MTF loss is 10%. This 

demonstrates that phone B has more than 8x worse slow motion 

video quality performance than that of phone A. We further 

speculate that such a large performance difference could be caused 

by video capturing frame rate differences. Phone A has a 4x higher 

video capturing frame rate, thus is less likely to be affected by 

motion blur. 

Conclusion 
We reported an MTF-based objective video quality assessment 

metric for interpolated slow motion videos captured by mobile 

phones. Our approach relies on temporal sharpness loss between the 

reference and interpolated frames. MTF area difference score is 

defined to quantify this sharpness loss. We simulated interpolated 

slow-motion videos and analyzed the sharpness loss. In 

experiments, we evaluated two flag-ship mobile phones, 

respectively phone A (7680 fps, 720p, 4x frame rate interpolation) 

and phone B (960 fps, 720p, 2x frame rate interpolation). We 
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demonstrated interpolated frames have inferior sharpness compared 

with reference frames. The experimental results show consistency 

with the simulations. Phone B has 8 times more sharpness loss 

compared with Phone A. We speculate that high-speed video 

capturing could reduce the sharpness loss in interpolations. 

Our approach could be further extended to use other objective 

quality metrics including noise. Since MTF only quality metrics do 

not correlate well with human perception, human visual system-

dependent metrics including contrast sensitivity function in both 

spatial and temporal domain could be integrated. Speed-dependent 

motion blur effect can be also investigated. Furthermore, our study 

is limited to one-dimensional translation. Various motion effects 

including transverse and rotation could be also investigated in future 

studies. 

 

Figure 7: MTF loss evaluation of experimentally captured slow motion videos 
by two flagship phones. From left to right, calculated ESF, MTF, temporal MTF 
Area, and averaged MTF plots. Error bars in averaged MTF come from the 
MTF variation across multiple video frames. 
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