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Abstract 

Image quality assessment (IQA) is an effective way to evaluate 

image/signal processes (ISPs). Here, we present a single value 

decomposition (SVD)-based IQA method to quantitatively evaluate 

morphological distortion of chessboard patterns. Incorrect ISP 

tuning parameters can create suboptimal images with artifacts on 

the edges of small text or high-frequency patterns. We reproduced 

those artifacts by using a small chessboard pattern and 

quantitatively evaluated the morphological distortion in the pattern. 

Then, we verified our method through qualitative evaluation survey 

and Pearson correlation. As a result, the score of the proposed 

method was in good agreement with the qualitative evaluation result 

and had a Pearson correlation coefficient (PCC) of 0.97. 

Introduction 
Modern digital color images are obtained by complementary 

metal oxide semiconductor (CMOS) image sensors (CIS) with color 

filter arrays (CFAs). Through CFAs, CMOS acquires several single-

color images with sparse density. This incomplete color image is 

converted to a full color image via various image/signal processes 

(ISPs). Bayer pattern is the most common CFA pattern consisting of 

2 green, 1 red, and blue pixels in successive 2×2 patches. Recently, 

several novel CFAs with non-Bayer patterns (e.g., Quad Bayer) 

have been introduced to improve image SNR under low-light 

conditions [1]. However, compared to the Bayer pattern, these 

patterns require more complex ISPs to recover the original high-

frequency information (e.g., edge direction detection process before 

correcting bad pixels or making full-color image). As a result, it 

becomes difficult to optimize these ISPs to get the most out of CIS 

hardware/software performance. Accordingly, optimizing ISP is 

becoming more and more important in the CIS industry. Image 

quality assessment (IQA) is an effective way to evaluate the image 

optimization [2]. However, most IQA methods have focused on 

image resolution, color error, or SNR [3], despite the possibility of 

structural distortions such as broken lines and zipper edges. 

In this paper, we present a single value decomposition (SVD)-

based IQA method to quantitatively evaluate the morphological 

distortion of chessboard patterns. Incorrect tuning parameters can 

create artifacts on the edges of small text or high-frequency patterns, 

so we reproduced these distortions by using a chessboard chart and 

demonstrated IQA on this chart. Our method exploits the feature that 

the images with orthogonal patterns can be well compressed by the 

SVD image compression technique. We used the compressed image 

as a pseudo reference and quantified the difference between the 

original and reference images. In addition, we enhanced the 

robustness of our method by precisely aligning the chart before the 

SVD compression. After that, we compute Pearson correlations 

coefficient (PCC) to verify that the quantitative evaluation results 

are well matched with qualitative evaluations. 

 

Method 
Generally, our method has three-step processes: image 

alignment, SVD image compression, and difference calculation 

(Figure 1). 

 

 

Figure 1. Flowchart of the SVD-based corner artifact metric. SVD, single value 
decomposition; and SSIM, structural similarity index. 

Radon transform-based image alignment 
In this step, we detect the four outer edges of the chessboard 

chart and extract the region of interest (ROI) so that all edges are 

aligned horizontally and vertically. This step is the most important 

part of our method because this pre-process can guarantee the 

robustness of this SVD-based method. SVD image compression 

converts the image into a low-rank matrix. Thus, the edges could be 

collapsed when the image has many diagonal edges. For this reason, 

the SVD-based IQA results may be more sensitive to viewing angles 

rather than image artifacts. Unfortunately, it is practically difficult 

to capture the chart in a perfectly normal angle. To deal with this 

problem, we should align the image prior to the SVD compression 

to exclude the unwanted factors. In this alignment process, we 

adopted Radon transform. 

Hough-line detection [4] and Harris corner detection [5], which 

are the most common edge/corner detections, also might be used for 

the image alignment. Hough-line transform is similar to Radon 

transform in that they convert points in spatial domain into lines in 

the Hough or Radon domain. However, Hough-line transform 

requires a hyper parameter for image binarization (i.e., threshold), 

which adversely affects the detection robustness because the optimal 

threshold varies depending on the extrinsic conditions such as 

illuminance and target color. Further, the dichotomous detection 
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contribution of pixels above the threshold could decrease the 

detection accuracy. This is because even edges in trivial places such 

as noise or bumpy sides can affect the edge detection equally with 

the other major edges if they just exceed the threshold. Meanwhile, 

Harris corner detection exploits the fact that the gradient is locally 

maximized on corners. However, this approach is not suitable for 

our applications because it has low accuracy in images with many 

distortions at the edges or corners, such as our image targets. 

 

 

Figure 2. (a) Pre-aligned image. (b) Radon transform-based edge detection. 
(c) Detected outer edges. (d) Aligned image. RT, Radon transform. 

To overcome these problems, we introduced Radon transform-

based edge detection. The Radon transform is expressed as bellows: 

ℛ𝑓(𝑡, 𝜃) = ∫ 𝑓(𝑥(𝑧), 𝑦(𝑧))𝑑𝑧
∞

−∞
 (1) 

= ∫ 𝑓(𝑥(𝑧 sin 𝜃 + 𝑡 cos 𝜃  ), 𝑦(−𝑧 cos 𝜃 + 𝑡 sin 𝜃  ))𝑑𝑧
∞

−∞

 

As shown in the equation (1), Radon transform accumulates the 

pixel values along a straight line. Accordingly, a line in the spatial 

domain appears as a peak in the Radon domain. Note that Radon 

transformation do not need such a prior process unlike the Hough 

transform, which could make our method relatively robust. The 

proposed Radon transform-based edge detection consists of 4 steps: 

1) Sobel filtering & absolute operation, 2) Radon transform, 3) peak 

detection, and 4) warping (Figure 2). Firstly, we applied the Sobel 

filter (Figure 2b(i)) and absolute operations on the x and y axes. 

Through this step, we could extract the major edges composing the 

chessboard as well as minor edges from artifacts or noise. In the next 

steps the minor edge components will be excluded. Secondly, we 

performed a Radon transformation to obtain sinogram (Radon-

domain image). In the sinogram, we could observe several the peaks 

(bright points in Figure 2b(ii)) and they were lined up. Note that the 

peaks in Radon domain is standing for a straight line in the spatial 

domain. To accurately locate the peaks, we conducted two 

preprocesses: 1) filtering out the unwanted area using a Hanning 

window and 2) blurring the filtered sinogram. Then, we found peaks 

in the sinogram as many as the number of edges in the image (Figure 

2b(iii)). In this study, we used the “peak_local_max” function in a 

python library, “skimage”. Among the detected edges, we specified 

the 4 outermost edges (green lines in Figure 2c) and calculated their 

4 intersections. Finally, we warped the corresponding ROI into a 

square shape to get an aligned chessboard image (Figure 2d). 

 

SVD image compression 
We compressed the aligned ROI by using truncated SVD. 

Through SVD, a matrix M can be decomposed as: 

𝑀 = 𝑈𝛴𝑉∗, where 𝛴 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … 𝜎𝑛) (2) 

where U and V is unitary matrix and Σ is a diagonal matrix including 

the singular values, σ. Typically, the singular values in Σ are biased 

to the first column/row. Thus, the original matrix M can be restored 

to some extent with the part of the singular values, ignoring the small 

σ. This is called truncated SVD and is used for SVD-based image 

compression. Using the truncated SVD, we compressed the original 

ROI image and use the compressed image as a pseudo reference 

image. Theoretically, we need only 2 singular values to make the 

pseudo reference image because an ideal chessboard pattern can be 

represented as a 2-rank matrix. With the 2 singular values, however, 

our IQA method would be too sensitive to extrinsic factors rather 

than the artifacts. Hence, we empirically determined the rank 

threshold to be 3 so that the pseudo reference image can be 

expressed as below: 

�̃� = 𝑈𝑡𝛴𝑡𝑉𝑡
∗, 𝑤ℎ𝑒𝑟𝑒 𝛴𝑡 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3). (3) 

 

Difference calculation 
We quantified the artifact by comparing the aligned original 

image and the pseudo reference image. In the propose method, we 

adopted the structural similarity index (SSIM) [6] between the two 

images. Practically, the calculated SSIM values had a small 

variation (approximately distributed from 0.9 to 1.0). Thus, we 

calibrated the SSIM value as below to highlight the effective range. 

𝑆𝑐𝑜𝑟𝑒 = 100 × 𝑚𝑎𝑥(0, 1 − 5(1 − 𝑆𝑆𝐼𝑀)). (6) 

 

Simulation experiment 
The objective of our IQA is to evaluate the artifact on the image. 

To achieve this, the proposed method should exclusively assesse the 

structural distortion while being insensitive to the others (mostly the 

sharpness). To verify the exclusiveness, we tested our method in a 

simulation with the various images distorted as follows: 

𝑂𝑥,𝑦(𝜌𝑆𝑃, 𝜎𝐺𝑆) = 𝑀 (𝑁(𝐼𝑥,𝑦 , 𝜌𝑆𝑃)) ∗ 𝐺(𝜎𝐺𝑆) (4) 

where 

𝑁(𝐼𝑥,𝑦 , 𝜌𝑆𝑃) = {

0, 𝑖𝑓 𝜀 < 𝜌𝑆𝑃         
255, 𝑖𝑓 𝜀 > 1 − 𝜌𝑆𝑃

𝐼𝑥,𝑦, 𝑒𝑙𝑠𝑒                   
,   𝜀~𝑈[0,1], (5) 

𝐼𝑥,𝑦 is the ideal 250×250 chessboard image, 𝑁(𝐼𝑥,𝑦 , 𝜌𝑆𝑃) is salt & 

pepper noise addition function, 𝑀(∙) is a median filter function with 
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a 5×5 kernel, 𝐺(𝜎𝐺𝑆) is the 2D Gaussian kernel with the sigma of 

𝜎𝐺𝑆, and 𝑂𝑥,𝑦(𝜌𝑆𝑃 , 𝜎𝐺𝑆) is the image distorted with the salt & pepper 

noise and Gaussian blur. By adjusting the 2 parameters (i.e., 𝜌𝑆𝑃 and 

𝜎𝐺𝑆 ), we obtained the datasets with various image blurring and 

artifact levels and measured each score of the proposed IQA method 

(Figure 3). 

 

 

Figure 3. Representative chessboard image datasets distorted according to 

the various image blurring levels, 𝜎𝐺𝑆, and artifact levels, 𝜌𝑆𝑃. 

Result and Discussion 
In order to verify the image alignment performance, we 

randomly distorted a single chessboard image 10 times and then 

calculated their IQA scores. As a result, the average score was 91.94 

and the standard deviation was 0.11. In this experiment, as shown in 

Figure 4, we conducted this repetition test under an extreme 

condition in which the images were more severely distorted than a 

practical condition. Therefore, we expect that the proposed IQA 

could show better robustness in practical tests. 

 

 

Figure 4. The results of the outermost edge detection repetition experiment. 
The green lines are the detected outermost edges. 

Using the SVD image compression technique, we obtained 

pseudo reference images from the aligned original images. In the 

original image, there were several notable artifacts such as collapsed 

edge, dirty block, blur corner, and stain (Figure 5a(i-iv, 

respectively)).  In the SVD compressed image, in contrast, the 

artifacts were well restored and the overall image sharpness was 

maintained (Figure 5b). Due to this feature, we could confirm the 

potential that the proposed IQA is mostly insensitive to the image 

sharpness. 

 

 

Figure 5. (a) Original image before SVD compression. (b) Corresponding 
image after SVD compression (pseudo reference image). SVD, single value 
decomposition. 

In the simulation study, we measured the proposed IQA score 

of the virtual images distorted with the various blurring levels, 𝜎𝐺𝑆, 

and artifact levels, 𝜌𝑆𝑃, to confirm how the two factors affect the 

IQA score (Figure 6). Overall, the score varied depending on the 

both artifact level and blurring level, and was more sensitive to the 

artifact level. The sensitivity to the artifact level was greater as the 

image was sharper (as the blurring level was low), and this 

numerical result was also seen in the actual images (please note that 

irregular artifacts in Figure 6c were more noticeable than those in 

Figure 6d even though they are distorted with the same artifact level). 

Without the artifact (at 𝜌𝑆𝑃 = 0), however, the score remained the 

same regardless of the blurring level (Figure 6a and Figure 6b). 

From this, we could infer that the SVD compression could generate 

pseudo reference images that maintain the sharpness of the original 

images, which makes our IQA invariant to the point spread function 

(PSF).  

 

 

Figure 6. (a-e) Original image before SVD compression. (b) Corresponding 
SVD compressed image. SVD, single value decomposition; and PSF, point 
spread function. 

We also verified the consistency between the qualitative score 

and qualitative evaluation. Figure 7 shows the representative test 

images and the corresponding IQA score. There were more artifacts 

in Figure 7a than Figure 7c and the resultant scores are well matched 

with the actual images. For objective verification, we conducted a 

survey with 10 images and 14 participants and calculated the PCC 

between the proposed quantitative assessment score and the mean 

opinion score (MOS; 1 (bad) - 5 (good); Figure 7). In the study, the 

PCC was calculated to be 0.97 (Figure 7d), which means that the 
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quantitatively and qualitatively evaluated scores are highly 

correlated. 

 

 

Figure 7. (a-c) Representative aligned (top) and differential (bottom) images 
and the corresponding IQA score and MOS. (d) Relation between IQA score 
vs. MOS, Calculated PCC = 0.97. MOS, Mean opinion score; and PCC, 
Pearson correlation coefficient. 

Conclusion 
We developed a robust method to assess morphological 

artifacts in a chessboard pattern. The proposed method compresses 

the test images and quantify the artifact by comparing the original 

image and the compressed images. We confirmed that the 

compressed images maintain the basic structure of the chessboard 

pattern and the sharpness of the original images. We successfully 

used this compressed image as a pseudo reference image to 

exclusively quantify the artifact of the image. Further, using Radon 

transform, we complemented the SVD image compression to 

improve the robustness of our IQA method and showed high 

correlation in the qualitative-quantitative consistency test. Therefore, 

we believe our method could be used as a helpful index for ISP 

evaluation or optimization. 
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