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Abstract
The field of image and video quality assessment has enjoyed

rapid development over the last two decades. Several datasets
and algorithms have been designed to understand the effects of
common distortions on the subjective experiences of human ob-
servers. The distortions present in these datasets may be synthetic
(applying artificially computed blur, compression, noise, etc.) or
authentic (in-capture lens flare, motion blur, under/overexposure,
etc.). The goal of quality assessment is often to quantify the loss
of visual “naturalness” caused by the distortion(s). We have re-
cently created a new resource called LIVE-RoadImpairs, which
is a novel image quality dataset consisting of authentically dis-
torted images of roadways. We use the dataset to develop a no-
reference quality assessment algorithm that is able to predict the
failure rates of object-detection algorithms. This work was among
the overall winners of the PSCR Enhancing Computer Vision for
Safety Challenge.

Introduction
After AlexNet [1] achieved state-of-the-art (SOTA) per-

formance on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [2], Deep Neural Networks (DNNs) have
emerged as dominant computing architectures for various con-
ducting computer vision tasks such as detection and semantic seg-
mentation of objects [3] [4], faces [5] [6], medical images [7] [8],
etc. Such networks are often pre-trained on large datasets of an-
notated images, such as ImageNet, or adapted to smaller datasets
using transfer learning. Most of the images in these datasets are
of reasonably good quality.

With regards to image quality, the success of the Structural
Similarity index (SSIM) [9] and other image quality prediction
models has led to the creation of a variety of subjective quality
datasets directed towards different aspects of image integrity, in-
cluding natural images impaired by synthetic [10] [11] and au-
thentic distortions [12] [13], 3D images [14] [15], VR images [16]
[17], and HDR images [18] [19]. These datasets are particularly
valuable since they embody the subjective quality experiences of
human observers.

While the experience of subjective quality is often regarded
as “pre-cognitive,” the role of “quality” in task-specific imaging
modalities, such as medical imaging, is tied to the usefulness of
the image for completing the task, which may be strongly af-
fected by its quality. The role of image quality as it affects the
performances of object detection DNNs is less clear, since they
are not designed to mimic human observers, and so, may not be
affected by quality degradations in the same way. For example,
while DNNs can surpass human performance on object-detection

benchmarks, human observers have been shown to be more robust
to image degradations than DNNs [20]. Further, recent evidence
has also suggested that using high-quality images to train DNNs
on visual recognition tasks may not result in optimal performance
on images encountered in practice [21].

In other words, for object-detection DNNs trained on high-
quality images, distorted images constitute a domain shift, which
often leads to a loss in performance. This is particularly true of the
kinds of real world “authentic” distortions that typically arise dur-
ing the image capture process, which can include complex com-
binations of blur, noise, shake, poor exposure, compression and
mode. This is especially true of images taken in disaster-response
situations, like those that were the focus of the PSCR Enhancing
Computer Vision for Safety Challenge. Images captured in such
situations may suffer from the effects of bad weather, low-light,
potentially rapid camera/object motions, and the limitations of the
camera. The ways these distortions may combine and interact to
create new distortions makes this task especially challenging.

The first contribution of our work is a novel dataset called
LIVE-RoadImpairs, which consists of images of roadways dis-
torted by authentic capture distortions. We used the YOLOv3
DNN [4] as a representative SOTA object-detection system, using
which we obtained ground-truth “failure rates.” The second con-
tribution of our work is a no-reference quality model that is able
to predict the failure rate of the SOTA object-detection algorithm.
Such a model has the potential to be used to guide improvements
to the quality of the images input to object-detection algorithms,
or to aid training of the detector to be “distortion-aware”, or sim-
ply to ascribe confidence scores to the detection outcomes.

The rest of the paper is organized as follows. In Section , we
describe previous work on understanding the effects of distortions
on the performances of computer vision algorithms. In Section ,
we describe the key features of the LIVE-RoadImpairs dataset.
In Section we describe a new failure-rate assessment algorithm.
Finally, in Section , we study and discuss the performance of our
algorithm.

Related Work
The effect of distortions on the performances of computer

vision algorithms has been a topic of interest in recent years. For
example, Quality Labeled Faces in the Wild (QLFW) [22] dataset
consists of faces of images subjected to five different distortions.
Similarly, the noisy MNIST (n-MNIST) [23] dataset consists of
images of handwritten digits subjected to noise, motion blur, and
reduced contrast. Dodge et al. [24] conducted an evaluation of
pre-trained object detection models on distorted images, analyz-
ing the impact of synthetically generated noise, blur, compression,
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and reduced contrast on performance. Similarly, Vasiljevic et al.
[25] evaluated the effects of blur on the performance of DNNs,
noting that by fine-tuning networks on blurry images, their ro-
bustness to blur was improved. The benefits of fine-tuning and
of retraining models on synthetically distorted images has been
studied in [26].

ImageNet-C [27] was the first benchmark dedicated to an-
alyzing the robustness of image classification networks against
corruptions of input images. It contains ImageNet images cor-
rupted by noise, blur, motion, weather, and brightness variations,
all of which were also synthetically applied. ImageNet-C in-
spired the development of the Robust Object Detection Bench-
mark, consisting of similarly constructed PASCAL-C, COCO-C,
and Cityscape-C datasets [28]. A similar resource for face recog-
nition is also available, which consists of images from the La-
belled Faces in the Wild (LFW) [29] dataset that have been sub-
jected to several distortions, including noise, blur, contrast, etc.,
and occlusions on parts of the face, such as the eyes, nose, and
mouth. [30].

Early work on task-specific quality models either analyzed
linear detectors of objects against noisy backgrounds [31] [32], or
conducted contrived tasks such as detecting nylon beads in radio-
graphic images [33]. A comprehensive study of human detection
performance on a non-trivial task in the presence of image degra-
dations was conducted in [20]. This work compared the object de-
tection performances of humans and deep networks. The authors
found that the performance of human observers was significantly
more robust to image degradations than of deep networks. In a
similar vein, the NIST-LIVE X-Ray IED image-quality dataset
[34] is a basic tool for evaluating the threat detection performance
of trained bomb technicians when viewing security images of
varying quality. This dataset was used to develop QUIX [35],
which is a suite of algorithms that can predict bomb technician
performance based on image quality.

A key feature of all the above work is that the available
datasets consist of pristine images that have been artificially sub-
jected to idealized, synthetic degradations. While synthetic dis-
tortions allow for systematic analyses of detection performance
by varying the “strengths” of distortions, neither these analyses,
nor models built on them, can be effectively applied on images
with authentic distortions, which typically occur at the capture
stage and often consist of complex combinations of multiple co-
incident distortions that are difficult or impossible to effectively
model. What is needed are datasets of task-specific images that
have been naturally distorted as they are normally acquired, pro-
cessed, and stored. Here, we attempt to bridge this gap by build-
ing a dataset of authentically distorted images containing objects
to be detected. Using this resource, we also develop an algorithm
that is able to predict the performance of a SOTA deep object de-
tection network on distorted image data.

Dataset
LIVE-RoadImpairs is an image dataset that includes com-

mon impairments affecting images capture by cameras on the
roadway. The images are in JPEG format and have a resolution of
3840 horizontal pixels by 2160 vertical pixels. The images were
obtained by first recording video with an iPhone 8 in 4K mode at
24 FPS. Then, frames were extracted from the video which exem-
plify various impairments occurring while driving.

The dataset consists of 789 images and the composition by
impairment type is listed in Table 1, where the “High” and “Low”
columns list the number of images that exhibit high and low levels
of severity of each impairment respectively. This classification
was performed by human visual inspection.

Table 1: Number of images of each distortion category in the
RoadImpairs dataset

Category Quantity High Low
Pristine 172 - -

Out of Focus 91 - -
Night 164 - -

Oncoming Headlights 65 - -
Oily 111 - -

Motion Blur 113 45 68
Direct Sunlight 38 13 25

Rain 108 19 89
Snow 102 1 101

Each image in the dataset suffers from at least one impair-
ment type, except for the “pristine” labeled images which were
deemed to be without impairments. However, images are often
affected by multiple simultaneous impairments, that combine to
create complex composite distortions that are difficult to model.
For example, a single image may contain “rain” and also be “out
of focus.” The “oily” distortion was created by applying a thin
layer of plant oil to the camera lens (a blend of golden Jojoba
and Moroccan Argan oils). This was used to simulate the effects
of residual oil left by fingerprints on improperly handled camera
lenses.

Since the impairment categories were assigned manually,
there was some subjectivity in the process. We labelled an image
as having an impairment if that impairment was visually notice-
able on the image. For example, a car facing the camera may have
had its headlights on, but we only reported “oncoming headlights”
if the image recorded an artifact because of these headlights, such
as a halo effect or lens flare.

In addition to the impairments, we also assigned one of five
metadata “types” to the image: “clear,” “night,” “oily,” “rainy,”
and “snowy.” These metadata types describe the conditions un-
der which the images were taken and are not necessarily the
same as their impairment classifications. For example, the im-
age, “rainy 11,” was captured on a rainy day, but it is classified as
“pristine” since there were no observable impairments.

Computer Vision Task
The object detection task embodied by the LIVE-

RoadImpairs dataset is to identify roadway related objects un-
der various conditions and distortions. The object detection al-
gorithm that we used was the popular YOLOv3 network with
fixed weights pretrained on ImageNet. The inferenced outputs
of YOLOv3 are bounding boxes around putative detected objects,
and predicted labels denoting the most likely classes the detected
objects fall into, as quantified by a generated vector of class prob-
abilities.

To combine object detection and object classification per-
formance, we created a scalar “accuracy score” to describe
YOLOv3’s performance on a particular image. This score mea-
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sures the Intersection over Union (IoU) between the ground-truth
bounding boxes and the bounding boxes proposed by YOLOv3.
It also includes the class likelihood for the true class, regardless
of whether that class is predicted as the most likely. The contri-
butions from each object are weighted by the relative size of the
true bounding boxes. The final accuracy score of an image x with
N objects, each of class ci is as follows:

S =
N

∑
i=1

wi(IoUρ

i × p(yi = ci | x)1−ρ ), (1)

where the weight factor is given by

wi =
Areai

∑
N
n=1 Arean

, (2)

where Areai is the area of the true bounding box of object i.
For simplicity, we used ρ = 0.5. The accuracy score is a

number between 0 and 1, where 0 means zero overlap and/or zero
predicted likelihood, and 1 means the predictions were exactly
correct. This number indicates how well the object detector per-
formed on an image. The failure rate on the image is then

FR = 1−S. (3)

To facilitate learning a quality model, we annotated two non-
overlapping subsets of RoadImpairs - a training set of 172 images,
and a test set of 50 images. The distributions of images by impair-
ment in the train and test sets are listed in Table 2. “H” and “L”
denote images that exhibit high and low severity of some of the
impairments.

Table 2: Number of images of each category in the Training
and Test sets

Training Test
Category Quantity H L Quantity H L
Pristine 35 - - 7 - -

Out of Focus 26 - - 6 - -
Night 26 - - 10 - -

Oncoming 11 - - 3 - -Headlights
Oily 26 - - 8 - -

Motion Blur 37 17 20 6 4 2
Direct Sunlight 10 3 7 4 1 3

Rain 26 10 16 11 3 8
Snow 17 1 16 6 0 6

When constructing the training and test sets, we ensured that
the images contained at least one object. We annotated the images
using the online resource MakeSense [36], and only labeled road-
related objects, viz., “car,” “truck,” “motor bike,” “bicycle,” “stop
sign,” and “fire hydrant.” We generated a ground-truth accuracy
score on every image by performing inference using YOLOv3.
These two sets were then used to train and test a model that maps
a RoadImpairs image to an estimated accuracy score.

Failure Rate Assessment
Log-Gabor Features

No-Reference (NR) Image Quality Assessment (IQA) typi-
cally involves measuring the deviation of a given test image from
“natural” statistical behaviour. This is achieved by transforming
the image such that the transform coefficients of natural images
are expected to exhibit regular statistical properties, except when
they are distorted. Measuring the loss of statistical naturalness is
the bases of the most successful NR IQA models that predict hu-
man impressions of visual quality. A divisive normalization trans-
form (DNT) applied to bandpass (wavelet) image coefficients is
the basic processing flow for these kinds of NR IQA models.

While the bandpass-DNT approach has perceptual relevance,
the “viewer” in our case is a machine, and not a human. There-
fore, we posited that using a processing flow that reflects how
deep networks represent images would lead to better performance.
While the exact parameters of deep neural networks vary greatly,
it has been commonly observed that filters in early layers resem-
ble bar- and edge-detectors, or more explicitly, bandpass filters
resembling Gabor functions. The log-Gabor function whereby
the Gabor filtering is applied in the log-frequency domain is also
a commonly-used model. Log-Gabor filters have also been suc-
cessfully used for NR IQA, as for example in IL-NIQE [37].

Since the source images were captured at 4K resolution, we
downsampled them to 720p. This substantially reduces the com-
putational burden of our algorithm.

Following the notation from [37], consider a filter bank of NJ
filters, corresponding to N center frequencies and J orientations.
A 2D log-Gabor filter can be expressed in the frequency domain
as

Gn j(ω,θ) = exp
(
− log2(ω/ωn)

2σ2
r

)
exp

(
−
(θ −θ j)

2

2σ2
θ

)
, (4)

where ωn is the n-th central frequency and θ j is the j-th orien-
tation. We constructed a log-Gabor filter bank using the same
parameters as in [37]:

• N = 3 center frequencies, J = 4 orientations
• Minimum wavelength λmin = 2.4
• σr =− log(0.55)
• Multiplication factor µ = 1.31
• Center frequencies ωn = 1/(λmin ×µn) for n = 0,1, . . .N −

1.
• Orientations θ j = jπ/J for j = 0,1, . . .J−1

Each test image was convolved with this filter bank to obtain
a set of subband log-Gabor coefficients. Each subband was parti-
tioned into non-overlapping blocks of size 50× 50, then the real
and imaginary parts of the coefficients were collected into two-
dimensional vectors. A parametric Bivariate Generalized Gaus-
sian Distribution (BGGD) model was fit to these vectors to obtain
best-fit mean µ , covariance matrix Σ, and shape parameters α ,
using the moment-matching method [38]. The probability density
function of a BGGD is given by

f (x; µ,Σ,α) = K exp
(
−1

2

(
(x−µ)TC−1(x−µ)

)α
)
, (5)

where

K =
α

πΓ(1/α)∗21/α
√

det(C)
, (6)
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and

C =
21−1/α Γ(1/α)

Γ(2/α)
Σ. (7)

In practice, we observed that the measurements of the cor-
relation between the real and imaginary parts were very low, so
we did not include it as a feature. In all, we collected five qual-
ity aware features - means, variances, and shape parameter, from
each patch, i.e.

f = [µ0,µ1,σ
2
0 ,σ

2
1 ,α]T . (8)

The features from all of the subbands of each 50×50 patch
were concatenated, to obtain a 60-dimensional quality-aware fea-
ture vector for each patch.

Object Occurrence-Based Weighting
Incorporating visual attention information in the form of

saliency maps appears to slightly improve the performance of im-
age quality algorithms that predict human judgments of image
quality [39]. In this vein, when viewing distorted images, ob-
servers’ quality judgments tend to be more heavily affected by the
worst-quality regions in an image [40], especially when they de-
grade salient objects. Hence, spatial pooling methods that assign
higher weights to more distorted regions tend to perform better
[41]. However, when machine vision algorithms process images
to detect objects, the worst distorted region may not be the most
salient. For example, an image of a car may suffer lens flare high
above in the sky from the sun. As a result, the sky would be
the worst-distorted region, but the car’s image may remain unaf-
fected, likely leading to reliable detection. Therefore, when eval-
uating machine vision performance against distortion, it is natural
to consider assigning larger distortion weights on regions that are
more likely to contain objects.

Since object saliency is closely-related to object detection,
SOTA deep-learning based saliency models are susceptible to
similar losses in performance due to distortions as object detec-
tion models. Indeed, we have found that classical saliency meth-
ods that do not use deep-learning usually fail in the presence of
distortions. So, we instead utilized a simple data-driven algorithm
to estimate an “object-occurrence prior” (OOP), which quantifies
the likelihood of a region in the image falling within an object.
We term this a “prior” since it is estimated once from the training
set and then is applied on all the images in the training and test
sets. More formally, the value of the OOP at each pixel location
i, j is

OOP(i, j) = P(pixel(i, j) ∈ ob ject) . (9)

To obtain the OOP, we used Kernel Density Estimation
(KDE). At each pixel, we computed the proportion of times that
it lie within a bounding box. Then, we used a Gaussian kernel
with σ = 50 to smooth these “empirical” estimates, and normal-
ized them to sum to 1. The map was then resized to obtain the
OOP of each 50× 50 patch in the 720p image as the sum of the
OOP values of all pixels within that patch. Hence, the size of
the patch in the OOP map must be chosen appropriately. Let sp
denote the OOP of a patch p in an image, and fp denote its 60-
dimensional feature vector. Then, the object occurrence-weighted

Table 3: Mean Ground Truth and Predicted Accuracy Scores
on RoadImpairs

Impairment Type Accuracy Score
Mean Ground Truth Mean Prediction

Pristine 0.84 0.75
Out of Focus 0.39 0.43

Night 0.45 0.44
Oncoming 0.43 0.41Headlights

Oily 0.78 0.60
High 0.67 0.52Motion Blur
Low 0.90 0.59Motion Blur
High 0.56 0.40Direct Sunlight
Low 0.87 0.60Direct Sunlight

High Rain 0.06 0.56
Low Rain 0.59 0.64

High Snow - 0.28
Low Snow 0.71 0.58

feature vector of the image is obtained as a weighted average of
the patch-level feature vectors:

f = ∑
p

spfp. (10)

Support Vector Regressor
We used a Support Vector Regressor (SVR) to model the re-

lationship between the object occurrence-weighted feature vec-
tors and the accuracy scores. The kernel used was the radial basis
function (RBF), and L2 regularization was applied to avoid over-
fitting. The regularization parameter was obtained by optimizing
performance on the test set. Therefore, this SVR functions as
a mapping between an image’s object occurrence-weighted log-
Gabor features, and a number that represents how well YOLOv3
is expected to perform on that image.

On the test set, the SVR achieved a mean error of 0.26, with
38% of images scoring within ±0.2. We then used the SVR to
obtain an estimated accuracy score for every image in the LIVE-
RoadImpairs dataset. Since the output of an SVR is an unbounded
real number, we clipped all predicted values to the range [0,1].

Analysis of Results
We examined two ways to evaluate the efficacy of our quality

model. First, we analyzed the test set results by impairment type.
Second, we provide the average predicted accuracy score for each
impairment type on RoadImpairs as a whole, and demonstrate that
the results conformed to our understanding of the distortion types.

We examined the test set by measuring the differences be-
tween a predicted accuracy score and the mean true accuracy
score for each impairment type. We preface these calculations
involving the test set with an explanation. There are more fac-
tors than just impairment type and severity that affect how well
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an object detection system performs. These include the distances
of objects from the camera, and the complexity and commonness
of each object’s form. When navigating a roadway, the presences
and locations of objects can be arbitrary, and a lack of any objects
does not necessarily mean that an object detection algorithm has
failed. Our method of analyzing distortion resilience focuses on
the image impairments and without accounting for the position-
ing, form, or other natures of the objects in the image.

Yet, this aspect of the problem becomes important when an-
alyzing the test set because the true accuracy scores heavily de-
pend on the positioning of objects in the test images. Averaging
the true accuracy scores over each impairment type yields a stable
estimate of how well the object detector performed.

We calculated the mean true accuracy score of each of the
13 impairment types, then computed the absolute differences be-
tween the predicted accuracy scores and the mean true score,
for its associated impairment. For images with multiple impair-
ments, we found the differences between the predictions and each
true mean score. Using these differences, we computed percent-
age differences corresponding to each of these 61 absolute differ-
ences. Finally, we aggregated over the test set to obtain a Median
Percentage Difference (MPD) score of 18.8%. We used the me-
dian to mitigate the adverse effect of a small number of outliers
(3 out of 61 data points).

In addition, we observed that almost 48 of the predicted
scores, or 78.7%, were within 30% of the mean true score. We
believe this to be a fairer assessment of the test set results than
simple mean error, since “accuracy” and “failure rates” are aggre-
gate phenomena, i.e., at the scale of sets of images, rather than of
individual images.

We also examined the efficacy of the predictions over the
entire RoadImpairs dataset by comparing the average predicted
scores for each impairment, as tabulated in Table 3. Intuitively,
we should expect pristine images to earn higher average accuracy
scores than images distorted any impairment type. This was the
case, and the average pristine score was 0.106 higher than the
second-highest impairment type (low direct sunlight). Further,
high severity impairments should lead to lower accuracy scores
than low severity impairments, on average. This was also satisfied
by every impairment type that contains a High/Low distinction.

Conclusion
We constructed LIVE-RoadImpairs, a publicly available

dataset of authentically distorted images of roadways, with anno-
tations describing the imaging conditions and impairments. We
also labelled a subset of the image data with failure rates. Fur-
ther, we created an object occurrence-aware no-reference quality
model that predicts the failure rate of YOLOv3, which is a popu-
lar SOTA object detection algorithm. In the future, we expect that
the use of better saliency prediction models and more sophisti-
cated DNNs may improve the performance of task-specific image
quality models.
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[38] E. Gómez, M.A. Gomez-Viilegas, and J.M. Marı́n, “A multivari-
ate generalization of the power exponential family of distributions,”
Communications in Statistics - Theory and Methods, vol. 27, no. 3,
pp. 589–600, 1998.

[39] X. Min, G. Zhai, Z. Gao, and K. Gu, “Visual attention data for
image quality assessment databases,” in 2014 IEEE International
Symposium on Circuits and Systems (ISCAS), 2014, pp. 894–897.

[40] A.K. Moorthy and A.C Bovik, “Visual Importance Pooling for Im-
age Quality Assessment,” IEEE Journal of Selected Topics in Signal
Processing, vol. 3, no. 2, pp. 193–201, 2009.

[41] A. K. Venkataramanan, C. Wu, A. C. Bovik, I. Katsavounidis, and
Z. Shahid, “A Hitchhiker’s Guide to Structural Similarity,” IEEE
Access, vol. 9, pp. 28872–28896, 2021.

Author Biography
Abhinau K. Venkataramanan received his B.Tech. degree in Elec-

trical Engineering from the Indian Institute of Technology, Hyderabad,
India, in 2019. He is currently pursuing his M.S. and Ph.D. degrees in
Electrical and Computer Engineering at the University of Texas at Austin,
TX, USA. In the past, he has worked as a research intern at Carnegie
Mellon University and as a summer intern at Facebook, Inc.

Marius Facktor received his BS in computer engineering from the
University of Wisconsin (2019) and his MS from the University of Texas
(2021). He now works as a computer vision engineer at a medical tech-
nology company.

Praful Gupta received his M.S. degree followed by Ph.D. in elec-
trical and computer engineering from The University of Texas at Austin,
Austin, in 2017 and 2021, respectively. He is currently working as an
Applied Scientist with Camera software team at Amazon Lab 126. His
research interests include image and video processing, machine learning,
and computer vision.

Al Bovik (HonFRPS) is the Cockrell Family Regents Endowed Chair
Professor at The University of Texas at Austin. He will receive the 2022
IEEE Edison Medal “for pioneering high-impact scientific and engineer-
ing contributions leading to the perceptually optimized global streaming
and sharing of visual media.” Previously he received the a Technology and
Engineering Emmy® Award, the RPS Progress Medal, the IEEE Fourier
Award, the OSA Edwin Land Medal, and the 2015 Primetime Emmy®
Award.

334-6
IS&T International Symposium on Electronic Imaging 2022

Image Quality and System Performance XIX


