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Abstract
Video conferencing has become extremely relevant in the

world in the latest years. Traditional image and video quality
evaluation techniques prove insufficient to properly assess the
quality of these systems, since they often include special pro-
cessing pipelines, for example, to improve face rendering. Our
team proposes a suite of equipment, laboratory scenes and mea-
surements that include realistic mannequins to simulate a more
true-to-life scene, while still being able to reliably measure im-
age quality in terms of exposure, dynamic range, color and skin
tone rendering, focus, texture, and noise. These metrics are used
to evaluate and compare three categories of cameras for video
conference that are available on the market: external webcams,
laptop integrated webcams and selfie cameras of mobile devices.
Our results showed that external webcams provide a real image
quality advantage over most built-in webcams in laptops but can-
not match the superior image quality of tablets and smartphones
selfie cameras. Our results are consistent with perceptual eval-
uation and allow for an objective comparison of very different
systems.

Introduction
The idea of video calling has existed as a technical challenge

for over a century and it became more popular in the mid to late
1990s [1] [3]. The last couple of years have been signed by the
Covid-19 pandemic and video conferencing has become essential
for many people around the globe forced to stay at home. We
are now relying on video calls to communicate with colleagues,
clients, family and friends more than ever before and the use of
videoconferencing systems in online learning and teaching has
become increasingly important [2]. Video calls have different
challenges associated to them [5] [4]; the presence of at least one
person, multiple subject distances to the camera and challenging
mixed lighting conditions with different dynamic ranges. Exist-
ing researches [11] aim to automatically improve the quality of
videoconferencing systems but the exhaustive evaluation of image
quality is always a complex task and cannot be fully represented
by traditional measurements, such as the ones done on Deadleaves
or Modulation Transfer Function (MTF) charts. Combining sub-
jective and objective image quality assessment methodologies is
mandatory to perform a robust benchmark. Since the process-
ing pipeline of video conferencing cameras may include specific
features, such as face detection for Auto-Focus (AF) or Auto-
Exposure (AE), building representative user cases laboratory set-
up for objective evaluation is extremely important to improve the
accuracy of the camera benchmark. There exist a number of well
known methods [14] [6] [7] to evaluate the subjective video qual-

ity [8] [9] [10]. Our methods is based on perceptual rulers of
image quality attributes and, since conditions on a natural scene
can vary from session to session, a direct comparison to known
references is always performed to inform the analyst’s evaluation.

Objective
Our main goal is to obtain reliable and meaningful scenes

that allow for the evaluation and classification of cameras aimed
to video conferencing under representative user cases. The mea-
surements and their interpretation should be enough to charac-
terize the cameras on the following general attributes: expo-
sure, color, texture, noise, focus, and artifacts. Each of these at-
tributes is divided into sub-attributes, for example, color is divided
into Color Rendering (CR), White Balance (WB), Color Shading
(CS), among others. The static and temporal capabilities of many
of these sub-attributes are evaluated and an aggregate score is cal-
culated from them. A global score is computed based on each
attribute’s score, and it serves as an overall quality indicator for
the device under test. The challenge of evaluating these devices is
related to their very different attributes, such as different resolu-
tion, sensor sizes, and fields of views (FoVs) that cause different
levels of distortion, perspective deformation and subject anamor-
phosis.

Methodology
The image quality attributes, relevant for the user experience,

branch out from the general ones described on our objectives. For
example, exposure can be divided into target exposure on sub-
ject’s face, dynamic range, and contrast. We built scenes with
charts and elements that allow us to measure the defined attribute
properties. These scenes are divided into perceptual scenes or
laboratory scenes. On perceptual scenes, models act in a prede-
termined fashion in an especially designed room, to have a re-
peatable and comparable evaluation between shooting sessions.
These scenes are evaluated against predefined guidelines, but are
always shot alongside other known reference cameras, to be able
to spot any problem not coming from the device itself. The labo-
ratory scenes are shot only with the device under test using a sub-
set of Analyzer, DXOMARK’s solution for camera image quality
testing [17]. After the scene elements are set up, framing is per-
formed either at a fixed distance to the chart or by a predefined
frame. Different lighting scenarios can be run while recording
video, to measure, in addition to static attributes, the capacity of
the device to adapt to different light changes and other temporal
attributes. The device is set on a firm base, such as an adjustable
table or a tripod. The videos are recorded using the default camera
application of the operating system used and no special features
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are turned on unless specific software or settings are requested.

Scene description
The scenes have been defined with the purpose of covering

the most of use cases and can be categorized as follows:

• Personal: the cameras have to work at close distance
(<60cm) and offer a FoV optimized to fill a large area in
the frame with the user’s face.

• Huddle room: the cameras have to work well at a medium
distance (60cm to 3m) and offer a wide field of view, so
everyone close to the camera is captured

• Conference room: the cameras have to work well at a large
range of distances (60cm to >5m) and offer a wide field of
view with people close to the lens but a narrower field of
view with people further away.

In the following Sections we will introduce the laboratory set-ups
and the perceptual scenes used in the protocol. Measurements
are performed over all the laboratory scenes and are used along-
side the perceptual evaluation to aggregate a score for each of the
tested image quality attribute.

Laboratory scenes
Laboratory scenes are carefully setup by DXOMARK’s

technical team to guarantee high repeatability between shooting
sessions, to be able to fairly test and compare different devices.
Five scenes contain a single test chart and three scenes contain at
least one realistic mannequin. Scenes’ frames and their respec-
tive names are shown in Figure 1 and Figure 2. The used lighting

Figure 1. Laboratory scenes that include a single test chart.

systems in the DXOMARK laboratories are listed in Table 1 and
they are systematically tested to guarantee the color temperature
of the lamps used. The illuminance levels of each scene are cali-
brated in the center of the image frame before every session, and
the lights are set to provide a uniform illumination on the region
of interest of the scene.

Figure 2. Laboratory scenes that include at least one realistic mannequin.

Laboratory lighting conditions

Name Color temperature Reference

Light
Panel

2700K to 6500K KinoFlo Celeb 250

LED 2700K Philips MASTERSpot
GU10 5.5W 927 25D

TL83 3000K Philips MASTER TL5
HO 49W/830

TL84 4000K Philips MASTER TL5
HO 49W/840

D65 6500K Philips MASTER TL5
HO 49W/865

Three realistic mannequin heads can be used, a fair-skin
male, a dark-skin female and an Asian fair-skin female (Figure 3),
on future references we will be calling them Eugene, Diana and
Sienna, respectively. On the mannequin, we perform a lightness

Figure 3. Dark-skin (Diana), Asian-skin (Sienna) and fair-skin (Eugene)

realistic mannequins.

measurement to evaluate target exposure and we use an Artifi-
cial Intelligence (AI) algorithm trained over hundreds of labelled
images to estimate the details preservation. The skin tone of the
mannequins is an accurate metamerism with real skin, but it does
not possess the exact power spectral density of human skin, and it
cannot be used to evaluate the color and white balance accuracy
of the device. For this reason, we added the ColorChecker® in
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the presence of a face. We compare the results of these labora-
tory scenes with perceptual ones, shot with multiple devices, to
validate their relevance to characterize image quality in a labora-
tory setting. For each measured metric, we developed a series of
thresholds, based on user preference data, that define acceptable
quality levels and assign them a quality score. The detailed mea-
surements and evaluation methodology performed on laboratory
scenes are described in Section ”Laboratory measurements”.

Perceptual scenes
Perceptual scenes are shot to reproduce real-life use cases

that cannot be reproduced in the lab. Each scene is staged to have
natural movements from the people in them, while being simi-
lar between shooting sessions. Each time a new device is tested,
at least two known devices are shot simultaneously, to provide
a point of reference to the perceptual analysis. These reference
devices are often chosen to be of similar characteristics of the De-
vice Under Test (DUT) in terms of price range, FoV and the use
cases they claim to cover. Each scene includes a deep skin person
and a fair skin person, each of them may change between shoot-
ing sessions, but are normally the same for a given device under
test and its references.

Duo Backlit
This scene reproduces a back-lit conference room, on chal-

lenging lighting conditions. The composition of the scene allows
for evaluation of white balance, skin tone rendering, bright and
dark area preservation, as well as noise and detail preservation on
the subject. Halfway through the video, a deep skin tone model ar-
rives, challenging the AE to properly expose the room and the two
individuals, the Auto-WB (AWB) to keep the right colors on the
scene and the AF stability. The movement on the scene may also
cause local losses of texture due to compression, increase noise
on moving objects or show processing artifacts, such as ghosting.
This scene is framed on the horizontal FoV, using markers on the
walls of the room.

Figure 4. Duo Backlit scene storyboard and shooting conditions.

Large room
This scene reproduces a large conference room, on typical

conditions. It is used to evaluate external webcams and it is re-
placed by ”single conference room” scene in the case of laptop
integrated webcams or selfie cameras. The composition of the
scene allows for evaluation of white balance, skin tone render-
ing, bright and dark area preservation, as well as depth of field
and detail preservation on the subjects. Throughout the video, the
fair model enters the scene and walks toward a screen showing
the following chart. On the chart we can evaluate attributes, such
as legibility, color rendering, and bright clipping. This scene is
framed at fixed distances. The camera is aligned with the center
of the table and the monitor, the distance between the camera and
the monitor is 4m and the deep model sits 1.25m from the camera.
Since the dynamic range of the scene may vary with the FoV, at
least one reference with a similar FoV is shot.

Figure 5. Large Room scene storyboard and shooting conditions.

Single Conference Room
The scene represents a small conference room, where users

tend to be close to the camera. The model moves the head chal-
lenging the AE and AWB that are based on face detection algo-
rithms. The movement on the scene may also cause local losses of
texture due to compression, increase noise on moving objects or
show processing artifacts, such as ghosting. Additional to expo-
sure, skin tone rendering, details and noise on the subjects, other
elements on the scene help evaluate quality on non-human sub-
jects: the painting on the wall helps with color rendering and de-
tail preservation. The whiteboard behind is scribbled with text
and graphs of different colors, to evaluate legibility and color ren-
dering of fine details. This scene is framed on the horizontal FoV,
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using the painting on the walls of the room.

Figure 6. Single conference room scene storyboard and shooting condi-

tions.

Small room
The scene represents a small conference room, where users

tend to be close to each other. The deep and the fair models are
separated by 60cm on the horizontal axis and 60cm on the opti-
cal axis. Additional to exposure, skin tone rendering, details and
noise on the subjects, other elements on the scene help evaluate
quality on non-human subjects: The painting on the wall and the
cards on the table help with color rendering and detail preserva-
tion. The whiteboard behind is scribbled with text and graphs of
different colors, to evaluate legibility and color rendering of fine
details. This scene is framed on the horizontal FoV, using markers
on the walls of the room. For devices with narrow FoVs, the fair
model may lean on the table, so that their face is fully visible.

Sofa
The scene represents a living room during an informal video

call. The saturated colors of the wall and the sofa challenge white
balance and color rendering. The position of the models and the
sofa will make anamorphosis and other perspective deformations
evident. This scene is framed on the horizontal FoV, using mark-
ers on the left wall and the right door of the room. Both heads of
the models should be within the central horizontal thirds.

Laboratory measurements
Measurements are performed on different elements of all the

laboratory scenes. The measurement values are then transformed
into a score by comparing them with a certain specification value;
if the measurement is within an acceptable range, the score is the
maximum possible for that condition. Out that range, the score
decreases until it reaches a failure point, beyond that, the score is
the minimum for that condition. Laboratory scenes are classified
by the illuminance Eν level used to shoot them: bright light, in-
door and low light, these separations are based on the illumination

Figure 7. Small Room scene storyboard and shooting conditions.

Figure 8. Sofa scene storyboard and shooting conditions.

conditions typical to those use cases:

• Bright light: Eν ≥ 500lux
• Indoor: 500lux > Eν ≥ 100lux
• Low light: 100lux > Eν

Exposure
The exposure attribute is measured on Portrait Timing-Color

and Duo HDR (Figure 2). The evaluated metrics are static target
exposure, temporal exposure, and entropy. The target exposure of
a region of interest (ROI), is measured on the mannequin’s fore-
head as the average Lightness (L*) in the CIELAB (L*a*b*) color
space. L*=0 yields black whereas L*=100 is white. The temporal
exposure is evaluated by 4 metrics on the ColorChecker®: end
lightness, overshoot, oscillation time and convergence time. The
Figure 9 explains the four concepts. Entropy is a single-value
metric computed from the composite HDR chart (Duo HDR) that
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Figure 9. Illustration of convergence time, oscillation time, overshoot, and

stability on a transition from 200lux to 26lux.

measures the local contrast preservation and represents the quan-
tity of information contained in it. The HDR chart is set to have
+2EV and +4EV illuminance difference with Eugene’s face. The
value for entropy is given in bits, and the maximum possible value
for an 8-bit video camera is 8 bits. The entropy of a given crop
of an image is given by computing its histogram and using the
formula:

Entropy = ∑
K

hist (K) log2

(
1

hist (K)

)
(1)

where hist is the histogram of the gray levels and K the gray level
(from 0 to 255). In the context of the HDR measure, entropy is
computed using a grayscale of 63 gray patches.

Color
The color attribute is measured on the Portrait-Timing-Color

scene and its attributes are Color Rendering (CR), Static White
Balance (SWB), Temporal Color Rendering (TCR) and Tempo-
ral White Balance (TWB). Color rendering and white balance are
calculated in the L*a*b* space, and are defined as the difference
between the color coordinates a∗S,and b∗S measured on the Col-
orChecker® of the video, and the reference values a∗R,and b∗R, us-
ing the formula:

∆ab∗ =
√(

a∗R −a∗S
)2

+
(
b∗R −b∗S

)2 (2)

The reference values consider the D65 lighting condition and a
scoring system, defined by acceptable ranges in the L*a*b* space,
takes into account all the different lighting conditions. The mag-
nitude of the metric ∆ab∗ is not enough to quantify if the color
rendering or white balance will be pleasant to a user, the angle of
the deviation (representing the hue shift from the nominal color)
is as important. For example, a white balance ∆ab∗ towards the
yellow will give a pleasant, warm, feeling to the scene, but a simi-
lar deviation towards pink will feel unnatural. Our scoring system
takes this into account, defining the acceptance range and the fail-
ure points as ellipses in the L*a*b* space. These ellipses are spe-
cific to each color of the ColorChecker® when evaluating color
rendering, and to each illuminant color temperature when evalu-
ating white balance.
Although a score is measured for each patch, at each lighting con-
dition, on the report an aggregated CR metric is used to summa-

rize the measurements, for each patch n.

CR =
1
n

17

∑
0

∆ab∗n (3)

A similar metric is calculated for white balance on the gray
patches.

WB =
1
n

22

∑
19

∆ab∗n (4)

The patches 18 (white) and 23 (black) are not used for the white
balance computation. The Temporal Color Rendering and Tempo-
ral White Balance are evaluated as the oscillation intensity, which
is computed as the integral difference between a short-term mov-
ing average (0.25 s) and a long term moving average (1 s) over a
ramp of continuous change of illuminant [tend , tbegin].

Eshort(t) = 4
∫ t

t−0.25
∆ab∗(τ) dτ (5)

Elong(t) =
∫ t

t−1
∆ab∗(τ) dτ (6)

I =
∫ tend

tbegin

||Eshort(t)−Elong(t) || dt (7)

Focus
The focus attribute is measured on the Focus Range scene.

The evaluated metric is focus range, which indicates the distances
for which the device is capable to produce a sharp image. The
depth of field, that contributes to the Focus score, is perceptually
evaluated on the DOF scene ( Figure 2 ). The focus range is eval-
uated by calculating the edge acutance of the chart. The acutance
is a single value metric calculated from a MTF result. The value
is a weighted average of the MTF, with weights dependent on the
CSF (contrast sensitivity function) of the typical human eye and
the viewing conditions (image size and distance to subject). The
metric therefore only takes into account the visible frequencies
for a given viewing condition. The acutance can be computed as:

A =
1
Ar

∫
∞

0
MT F−1

p (ν)MT F(ν)MT Fd(ν)CSF(ν)dν (8)

With Ar =
∫ inf

0 CSF(ν) dν , CSF(ν) is the contrast sensitivity
function of the eye at a given distance from the viewing screen,
MT Fp(ν) is given by the resolution of the print of the chart itself,
MT F(ν) is the measured MT F and MT Fd(ν) is given by the res-
olution at which the video is being watched. For each device to
chart distance captured, 10 frames are extracted from the video,
their edge acutance is measured, and the values are averaged into
Ad , the acutance for that distance. The focus range score is calcu-
lated from the standard deviation of the Ad

σA =

√
∑(Ad −Ad)2

N
(9)

Since an important acutance drop would increase σA, indicating a
loss of focus.
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Texture
The texture attribute is measured on the Portrait Timing-

Color, the Deadleaves and the DMC scenes. Its attributes are de-
tail preservation, texture acutance and edge acutance. The detail
preservation is estimated by comparing the detail level of the Fair
Mannequin head and the DMC against a ruler of annotated im-
ages. At the current revision of this document, the scoring on the
DMC is done by a trained AI algorithm [12] and has a score scale
from 0, the worst, to 100, the best observed. The scoring on the
fair mannequin head is done perceptually, and the results are being
used to train an AI algorithm for this scene [13], and has a score
scale from 0, the worst, to 100, the best observed. The edge acu-
tance metric on the Deadleaves chart is identical to the one used
on the focus range measurement. The texture acutance metric
uses the same calculation for the acutance, but estimates the MTF
of the optical system with the Deadleaves portion of the chart.
The statistics of this model follow the distribution of the same
statistics in natural images. The use of this model for sharpness
measurement has been described by Cao et al. [15]. This method
is less susceptible to over-sharpening than the slanted edge mea-
surement used for the edge acutance measurement. The texture
acutance and the edge acutance computed from the Deadleaves
chart do not contribute to the final texture score.

Noise
The noise attribute is measured on the visual noise scene. Its

attributes are visual noise, temporal noise, and noise chromaticity
A typical measurement is the signal to noise ratio (SNR) calcu-
lated on a flat area of the image. This metric does not account for
viewing conditions or the sensitivity of the eye, so a spatial filter-
ing using the CSF(ν), is used for the DXOMARK visual noise
measurement. Since noise depends on luminance, these variances
are computed on seven ROIs with different reflectances. A nor-
malization is required to compare different devices with different
exposures: the noise is given for CIELab L*= 50, linearly interpo-
lated from the two closest uniform grey patches to lightness value
L*= 50. Once the spatial filtering and the normalization is done,
the DXOMARK Image Labs visual noise is the base-10 logarithm
of the weighted sum of the L*,a*,b* variances.

Ω = K log10

[
1+σ

2(L∗)+σ
2(a∗)+σ

2(b∗)
]

(10)

The Temporal Visual Noise metric is computed in the CIELab
color space. Exposure and white balance are compensated to iso-
late the temporal noise from other distinct effects (exposure drift,
white-balance drift, etc.). We measure temporal noise variances
σ2

L∗ , σ2
a∗ and σ2

b∗ as spatial averages (over the pixels of an en-
tire patch) of the temporal variances (over all frames for a sin-
gle pixel). A lightness normalization is performed as for Spatial
Noise. The perception of temporal noise shows a good correlation
to the square root of a weighted sum of the noise variances. Thus,
we set all weights to 1, and we define the temporal visual noise
(TΩ) as:

TΩ =
√

σ2
L∗ +σ2

a∗ +σ2
b∗ (11)

Notice that this is the average euclidean distance of each pixel of
a correctly exposed patch from its average.

Artifacts
The artifacts attribute is measured on the Dots, Deadleaves

and Portrait Timing-Color scenes (see Section . Its attributes
are Lens Geometric Distortion (LGD), Lateral Chromatic Aber-
ration(LCA), Ringing Intensity (RI) and Frame Rate (FR). The
LGD and LCA are measured using the Camera Phone Image
Quality (CPIQ) LGD and LCA metric on the Dots chart as de-
scribed on IEEE’s Camera phone Image Quality [16] The RI mea-
surement is performed on the slanted edges of the Deadleaves
chart. Measurements are given for each color channel, in the
same zones in both directions. The method consists in extract-
ing the exact profile of the edge transition with sub-pixel accu-
racy. The maximum of ringing oscillations is measured in both
dark and bright zones. Its amplitude is given as a percentage of
the step edge amplitude. The FR is evaluated on the LED Univer-
sal Timer (Portrait-Timing-Color scene) in different illumination
conditions. The measurement is performed by measuring how
many frames it takes the bright LED in the box to complete a rev-
olution. Since the revolutions per second of the LED are known,
the Frame rate can be calculated.

Video conferencing benchmark
At the time of writing, we tested and scored a pilot database

of six external video conference webcams, five laptop integrated
webcams and four selfie cameras of mobile devices. For each
category, we have picked cameras that cover a wide price range
and are targeted to business use as well as personal use. External
video conference webcams are the most advanced cameras, de-
signed to work in huddle and conference rooms with groups of
people and offer intelligent framing and focus features as well as
motorized tilting and panning. Integrated webcams in laptops and
selfie cameras of tablets and smartphones are designed to work
mostly at close distance (<60cm) and offer a FoV optimized so
the user’s face fills a large area in the frame. To create a level play-
ing field, all external webcam were tested using the same record-
ing app, laptop and selfie cameras were tested using the native
app of their operative system. All the cameras were tested at the
maximum resolution of the device, capped at 1080p, and with the
same maximum frame rate (30fps). While higher resolutions and
frame rates are available on some models for smooth video, they
require internet speeds that are often not available in homes or of-
fices. All other settings remained at their default “out-of-the-box”
value. We did not test any special features, manual settings or
pan-tilt functions. All cameras used the latest available firmware
at the time of testing. The criteria for testing videoconferencing
cameras are somewhat different to those for testing smartphone
cameras or DSLRs. The most important image quality attributes
for videoconferencing are exposure and color. If any of those
two go wrong they have a direct detrimental effect on the entire
experience. An inaccurate focus or geometric artifacts, such as
distortion, can have a negative impact, too, but are less important
in comparison. Texture and noise, which are crucial to photogra-
phers who print their images or display them at large size, are of
less importance as they may be reduced by video compression or
network issues. In terms of light conditions, the highest weight
is given to the indoor light levels and sources as most videocon-
ferences take place indoors. The perceptual score of each image
quality attribute is derived both from rulers and from a direct com-
parison to known references shot simultaneously. This is always
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performed for the perceptual scenes in order to consider the vari-
able conditions on a natural scene between different test sessions.
The next Section summarizes the average scores and measure-
ments divided by camera category.

Results
The results showed that external webcams provide a real im-

age quality advantage over most built-in webcams in laptops. In
addition they come with more features that are not yet covered
by our test protocol. Things looks slightly different when making
the comparison to selfie cameras of premium tablets and ultra-
premium smartphones, though. These devices are capable of de-
livering excellent image quality, thanks to a combination of pow-
erful hardware, computational imaging and dedicated image pro-
cessing pipelines.
Figure 10 shows the results of the target exposure measured on
the mannequin’s face in HDR conditions (FaceHDR) and SDR
conditions (FaceSDR) as described in Section ”Exposure”. A L*
value within the range of 55 and 75 is considered as acceptable.
The entropy, as measure of dynamic range (DR) in HDR condi-
tions, is also shown on the radar chart. An entropy value less than
6 bits is indicative of exposure clipping. The values of the radar
chart are average measures of tested conditions as follows:

• HDR : 1000lux D65 (+4EV, +2EV); 100lux TL84 (+4EV,
+2EV); 20lux LED (+4EV)

• SDR : 1000lux D65; 300lux TL84; 100lux TL84; 20lx
LED; 5lux LED

The values of the bar chart are exposure scores resulting from
the perceptual analysis on perceptual scenes. In our image quality

Figure 10. Exposure scores. The radar chart shows the average L* mea-

sured on the mannequin’s face in HDR and SDR condition. DR is the average

entropy measured in HDR conditions. Perceptual scores are shown on the

bar chart.

tests all cameras deliver acceptable face exposure in Standard Dy-
namic Range (SDR) condition. They do however differ in terms
of Dynamic Range (DR) and the handling of face exposure in
difficult back-lit scenes. The selfie cameras provide a wider DR
allowing a more accurate face exposure in HDR conditions. The
integrated webcams have a slight advantage over the external we-
bcams in DR performance. However, built-in webcams in laptops
are prone to temporal exposure instabilities that affect the percep-
tual score.
Figure 11 shows the results of the CR, SWB and TWB measured

on the ColorChecker® as described in Section ”Color”. The val-
ues of the radar chart are averaged scores of different lighting
scenarios with multiple transitions. An example of used scenario
is shown in Figure 12. The values of the bar chart are color scores
resulting from the perceptual analysis on perceptual scenes. The
external webcams provide a more stable and accurate WB render-
ing but their CR accuracy is the worst of the three categories. The
selfie cameras provide the best CR accuracy and a pleasant WB
rendering placing them above the external webcams in perceptual
score. The laptop integrated webcams often show inaccurate WB
casts and temporal instabilities.

Figure 11. Color scores. The radar chart shows the average CR, TWB and

SWB scores as result of measurement on the ColorChecker® under lighting

scenarios with multiple transitions. Values are expressed in in the L*a*b*

space units and converted into scores by considering ranges of acceptance

within the L*a*b* space. Perceptual scores are shown on the bar chart.

Figure 12. Example of lighting scenario used during video recording.

Figure 13 shows the results of details preservation measured by
the AI algorithm on the DMC and mannequin face as described
in Section ”Texture”. The values of the radar chart are averaged
measures of bright light (1000lux D65), indoor (300lux TL84;
100lux TL84) and low light (20lx LED; 5lux LED) illuminance
conditions. The percentage of measured ringing artifact is also
shown as indication of texture over-sharpening. The values of the
bar chart are texture scores resulting from the perceptual analy-
sis on perceptual scenes. The external webcams provide the best
detail preservation in bright light and indoor conditions but they
tend to over-sharp the video. The selfie cameras provide well-
balanced detail preservation among all the illuminace conditions
and the lower ringing intensity, with respect to external webcams,
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allows a more natural detail rendering resulting in a better percep-
tual score. Built-in webcams in laptops are limited by sensor size
and number of pixels providing the worst texture quality of the
tested categories.

Figure 13. Texture scores. The radar chart shows the average details

preservation measured by the AI algorithm on the DMC and mannequin face

under bright light, indoor and low light illuminance conditions. The percent-

age of ringing artifact measured on the Deadleaves chart is an indication of

texture over-sharpening. Perceptual scores are shown on the bar chart.

Figure 14 shows the results of noise measured on the visual noise
chart as described in Section ”Noise”. The values of the radar
chart are averaged measures of bright light, indoor and low light
illuminance conditions. Video of visual noise chart is recorded by
using a single lighting scenario shown in Figure 12. Spatial and
temporal component of the noise are also shown as average mea-
sure of all tested conditions. The values of the bar chart are noise

Figure 14. Noise scores. The radar chart shows the average visual noise

measurements under bright light, indoor and low light illuminance conditions

of Figure 12 scenario. Spatial and temporal component of the noise are also

shown as average measure of all tested conditions. Perceptual scores are

shown on the bar chart.

scores resulting from the perceptual analysis on perceptual scenes.
The selfie cameras provide the lowest level of noise thanks to effi-
cient de-noising algorithms achieving also the highest perceptual
score. The laptop integrated webcams present a relative high level
of noise in indoor conditions where all our perceptual scenes (as
most videoconferences) take place. This measure is confirmed by
the lowest perceptual noise score among the camera categories. It
is worth mentioning that the highest noise component is spatial
and it is due to a combination of limited pixels size and temporal
de-noising algorithms.

Figure 15 shows the results of focus measured on the focus range
chart as described in Section ”Focus”. Objective score is the max-
imum for external webcams since they are able to focus the target
at every tested distance. However, their perceptual score is af-
fected by the auto-focus instabilities that are sometimes visible in
presence of moving content in the scene. Selfie cameras and lap-
top integrated webcams do not achieve a perfect focus objective
score due to a significant drop of acutance when the target dis-
tance is about 30cm. Some of the selfie cameras and integrated
webcam also suffer of a relative narrow depth of field that affect
the perceptual focus score when multiple subjects at different dis-
tances are present in the scene.

Figure 15. Focus objective and perceptual scores.

Conclusion
In this paper we propose a novel methodology to assess the

image quality of cameras for video conferencing. Realistic man-
nequins are used as an alternative to charts to perform IQ mea-
surements such as target exposure and details preservation based
on AI. We perform a complete characterization and benchmark-
ing of video conference cameras through image quality analysis
that correlates the measurement results from the objective meth-
ods with subjective results in real user experiences framework.
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