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Abstract

Cameras, especially cameraphones, are using a large diver-
sity of technologies, such as multi-frame stacking and local tone
mapping to capture and render scenes with high dynamic range.
ISO defined charts for OECF estimation and visual noise mea-
surement are not really designed for these specific use cases, espe-
cially when no manual control of the camera is available. More-
over, these charts are limited to few measurements. We developed
a versatile laboratory setup to evaluate image quality attributes,
such as exposure, dynamic range, details preservation and noise,
as well as autofocus performance. It is tested in various light-
ing conditions, with several dynamic ranges up to 7EV difference
within the scene, under different illuminants. Latest visual noise
measurements proposed by IEEE P1858 or ISO-15739 are not
giving fully satisfactory results on our laboratory scene, due to
differences in the chart, framing and lighting conditions used. We
performed subjective visual experiments to build a quality ruler
of noisy gray patches, and use it as a dataset to develop and val-
idate an improved version of a visual noise measurement. In the
experiments we also studied the impact of different environment
conditions of the grey patches to assess their relevance to our al-
gorithm. Our new visual noise measurement uses a luminance
sensitivity function multiplied by the square root of the weighted
sum of the variances of the Lab coordinates of the patches. A
non-linear JND scaling is applied afterwards to get a visual noise
measurement in units of JND of noisiness.

Introduction

Smartphones are nowadays one of the most popular ways
to take photos, at least among non professionals. Being able to
objectively test and compare smartphone cameras carries a lot of
value to advise customers in their choice of smartphone. But these
tests must be relevant to the customer’s use cases. At DXOMARK
Image Labs, we design repeatable laboratory setups to fairly test
smartphone cameras in a wide range of conditions. Since in digi-
tal photography many quality attributes are interdependent, versa-
tile laboratory setups are necessary to measure several quality at-
tributes on the same scene and evaluate the compromise between
them. For noise evaluation, existing ISO standard charts, like the
ISO-14524 [1] 12-patch test chart for OECF estimation and visual
noise measurement (ISO-15739 [2]), are not relevant in our case
as they are limited in terms of number of measurement1. Adding
to that, the existing visual noise measurements proposed by IEEE

1The ISO 19093 standard proposes a chart intended for multiple mea-
surements, however it does not always trigger HDR pipelines in all auto-
matic cameras such as smartphones.

P1858 (CPIQ) [3] or ISO-15739 standards do not give entirely
satisfactory results when used with a different framing, different
chart or in more challenging HDR conditions. Moreover, these
standards generally apply for images with perfect white balance,
which is not always the case on real images taken with smart-
phones.

Existing setups and their limitations

To test imaging systems, some versatile setups are available
to measure their capacity to render details, control noise and so
on.

Deadleaves setup
In 2012, DXOMARK introduced the Deadleaves chart in

its testing protocol. This chart is described in the IEEE P1858
standard [3]. The presence of the Deadleaves pattern and the 12
grey patches allows to measure acutance as well as target expo-
sure and noise on this chart. In 2017, DXOMARK developped
the Deadleaves setup around this chart to add measurements on
autofocus performances and to complexify the content of the test
scene. The Deadleaves setup can be shot in two holding condi-
tions: tripod and handheld. The tripod case is static, to simulate
a perfect conditions photography use case. The handheld case
uses a moving platform to simulate the small hand shake occur-
ring when a person is taking a picture. Movement is also added in
the scene with a small test chart (similar to the Dead leaves chart),
which is moving up and down in a controlled constant velocity.

The shooting procedure of the Deadleaves setup is auto-
mated thanks to a small defocus chart mounted on an automated
moving object (AMO) placed in front of the camera and linked
to a triggering system. This movement is detected by lasers and
triggers the capture of an image by the smartphone.

The Deadleaves setup is shot in a laboratory with a controlled
lighting system, featuring several standard illuminants: Daylight
D65, Fluorescent (TL84), Tungsten (A) and Horizon (H). The in-
tensity of the illumination can be configured according to different
lux levels: 1000 lux, 300 lux, 100 lux, 20 lux, 5 lux and 1 lux.

Thirty-five pictures are taken for each shooting condition,
being the combination of a holder (tripod or handheld), an illu-
minant and a lux level. This allows to evaluate the capacity of
the device to deliver a consistent image quality over consecutive
shots.

Limitations
One of the main limitations of the Deadleaves setup is that

the dynamic range is rather low in the scene. There are no particu-
larly bright parts, nor dark areas. However, a lot of photographed
scenes in real life have content with higher dynamic range, be it
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Figure 1. Example of picture taken with a smartphone on the Deadleaves

setup.

in an outdoor setting with the sun in the background, or indoors
facing a window. In case of a high dynamic range scene, given
the sensor limitation in a smartphone, a single shot with a single
exposure time is often not enough to capture details in both bright
and dark areas of the scene. In these cases, smartphone may ac-
tivate image multi-frame fusion techniques to capture the whole
dynamic of the scene. These consist in taking several captures of
the same scene, with potential different exposure times, to then
merge them together, with the general idea to keep the parts with
the most details for each image. This can bring image artifacts
such as halo or tone compression, for instance.

As it is a rather common use case, we needed a laboratory
setup with a higher dynamic range to be able to test fairly, in con-
trolled conditions, the image quality given those kind of high dy-
namic range technologies.

A new versatile laboratory setup

In the light of the limitations of the Deadleaves setup, and to
challenge even more the ever improving image fusion algorithms,
we decided to create a new laboratory setup called the AF-HDR
setup. The aim of this setup is to be challenging in terms of light-
ing conditions and dynamic range, but also to have enough ele-
ments in it for us to measure as many image quality attributes as
possible on this one setup.

The AF-HDR setup

The AF-HDR setup was introduced into DXOMARK’s cam-
era testing protocol in 2020. An example of picture taken with a
smartphone is given in Figure 2.

It inherits all the elements of the Deadleaves setup presented
previously (Figure 1). Added to it are 2 light boxes placed on top
and on the right of the center chart. These light boxes have Plex-
iglas slides on them, printed with a Deadleaves pattern, a color
checker chart and a “grey gradient pattern”. The light boxes can
be controlled in intensity and color temperature via software. The
moving object on the left of the chart is present in the tripod con-
dition for the AF-HDR setups, however it is not moving in this
condition.

Like for the Deadleaves setup, the AF-HDR setup is shot
with different illuminants and lux levels. The addition of the
light boxes allows to create controllable challenging dynamic
range conditions. These conditions are identified by their Expo-
sure Value differences between the Deadleaves chart and the light
boxes. The EV differences are computed as follows:

∆EV = log2

(
L ·π

I

)
(1)

where L is the luminance emitted by the light boxes, mea-
sured in cd/m² facing the light box, and I is the illuminance inci-
dent on the Deadleaves chart, measured in lux, facing the lighting
system, away from the chart.

The shooting of this setup is also automated, the same way
as it is for the Deadleaves one.

Figure 2. Example of picture taken with a smartphone on the AFHDR setup.

Usage and measurements

The AF-HDR setup has been designed as a multi purpose
setup, allowing to measure, for now, three image quality attributes
(exposure, texture and noise) and autofocus performances.

For exposure, we measure target exposure and dynamic
range capabilities thanks to the 12 gray patches and the light
boxes.

The performances of the auto-focus system of the device can
also be evaluated thanks to the automatic system to trigger the
capture of an image and the LED box. We can measure the speed,
the accuracy and the repeatability of the autofocus system.

With the Deadleaves chart in the setup, we can perform as
well the texture and noise measurements that were performed with
the Deadleaves setup.

Existing visual noise measurement

Several visual noise measurements exist in the literature. The
most common are the one described in ISO-15739 [2] standard
and the one described by CPIQ [3]. In 2017, DXOMARK de-
rived from them another visual noise measurement (henceforth
referred as DXOMARK 2017 algorithm). The algorithms details
and differences are visible in Figure 3.
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Figure 3. Details of the four visual noise algorithms discussed in this article.

CPIQ algorithm is described in [3]. ISO one is described in [2], [4] and [5].

The Deadleaves setup’s conditions were close enough to
what was summarized in the ISO-15739 standard to give accurate
results with the DXOMARK 2017 visual noise algorithm. How-
ever once transferred on the AF-HDR setup, the results of the
measurements, be it from DXOMARK 2017 algorithm or from
the standards, were sometimes quite unexpected and not corre-
lated with perceptual observations. This led us to study the current
model, understand its limitations causing the unexpected results,
and to finally develop a new visual noise measurement compatible
with high dynamic range laboratory setups.

New visual noise measurement

Requirements
Our AF-HDR setup diverges quite considerably from shoot-

ing conditions recommended by CPIQ [3] and ISO-15739 [2]
standards for visual noise measurements. For one, we are not
using an OECF chart, just the gray patches extracted from it and
rearranged on our own chart. The framing used is also different.
Our chart is not centered in the scene. Finally, the content of the
overall scene is different. As two light boxes are added in the
field, this changes significantly the scene content, it impacts the
lighting of the scene and also the reaction of the camera.

Moreover, the visual noise measurements available have
been designed for patches with lightness value not deviating much
from L∗ = 50. We wish to extend this, to be able to measure noise
in darker and brighter parts of an image.

With all these departures from the standards, we understand
that the results obtained from existing visual noise algorithms can-
not give satisfying results. We needed to adapt these algorithms
to our testing conditions. The new measure needed to:

• Be robust to the scene exposure, i.e. take into account the
impact of patch environment conditions (the lightness of the
patch’s surrounding) compared to the mean lightness of the

patch.
• Be robust to different noise types and shapes. Noise pat-

terns in digital photography, with automated image process-
ing, can be very different from photon shot noise or read-out
noise, but its still need to be assessed properly by the mea-
surement.

• Be robust to HDR condition side effects. In HDR condi-
tions, image fusion or local processing can be applied to the
images, resulting sometimes in artifacts like halo. These
phenomena might not be considered as noise by some ob-
servers. Although discussions are ongoing on the subject in
the community, we decided that these artifacts would not be
taken into account by the measurement.

• Provide a visual noise metric in Just Noticeable Difference
(JND) unit to be easily understandable and more reusable.
It can be either JND of quality loss (quality JND) or JND
of perceived noise in the image, what we call noisiness (at-
tribute JND) [6].

Perceptual validation Dataset

Independently from the solution that we propose, we needed
to be able to validate that our new visual noise algorithm
would give results correlated to human perception. To do so,
we needed a dataset of grey patches, annotated relatively to
their noisiness. The dataset, whose construction is described
in this section, is publicly available at the following link:
https://share.dxomark.com/s/yRqAdGAbyx7m2Ac

CPIQ visual noise toolbox (see [3], annex D) proposes a
dataset of patches annotated in quality JND. This unit refers to
a defined set of images, and refers to a virtual degradation of
the image quality. If we were to use new real images taken with
smartphone cameras, we would part from the SQS2 base of qual-
ity JND (described in [7]). On the other hand, redoing an entirely
new base of quality JND on a new set of images would have been
to costly.

We thought more adapted to work with a JND of noisiness
scale for our dataset with real images taken with smartphone cam-
eras. Thus we set to create our own ruler of JND of noisiness
based on the ISO-20462 triplet experiment [8]. We extracted
grey patches from images taken with several smartphones of our
database. We tried to have the most variety of noise types and
intensities as possible, while having a mean L∗ close to 50 and
avoiding images with strong white balance casts. We ended up
with 35 patches of size 143 x 143 pixels. We also took in our
dataset all the CPIQ patches and a perfect grey patch.

The first step was to do a fast categorical sort, splitting the
patches into several groups that do not have too much variation
in it. Indeed, the triplet comparison must be done only between
images that do not have too much differences in JND (no more
than 6JND of range, but ideally less than 4JND of range). We
supposed that our final ruler range will be of about 0 to 15 and
thus we split the data in 4 groups of 9 patches, chosen such that:

• The patches in the group look well distributed in level of
noise

• No patch is obviously better or worst that all others
• A patch (or two for the middle groups) is in common with

the next and/or precedent group.
• The first group must contain the perfect grey patch
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Triplet comparison
We then applied the triplet comparison method on each

group. To do so we developed a hardware and a software tool,
similarly to what has been done in [9]. For the hardware, we set
up a viewing lab with the following characteristics:

• 933 cm between the display and the observer. The distance
is guaranteed by a bar on which the analyst has to rest their
forehead during the whole experiment

• An Eizo CS2420 computer display, color calibrated with a
D65 whitepoint with a luminance at 75 cd/m²

• A background illumination done with a light box set to D65,
to reduce eye stress during the experiment

For the software, we developed a tool to perform the exper-
iment, following the ISO-20462 triplet comparison process [8],
on which images are displayed without magnification. For each
group, patches are presented by subgroups of 3, on a L∗ = 50
background. Twelve comparison per groups are made, as it cov-
ers each possible paired comparison exactly once, without redun-
dancy. For each patch, there are five evaluation propositions:
Good, Acceptable, Just acceptable, Unacceptable and Poor. Ana-
lysts are asked to evaluate the noisiness of a patch relatively to the
other two, while ignoring variation of exposure and white balance
coming from the real images. The levels are not absolute, they
must reflect the relative ranking, in terms of noisiness, between
the shown patches. A group of 31 persons did the experiment,
composed of 25 image quality experts and 6 non experts, all from
DXOMARK Image Lab company.

The output is 4 relative JND rulers with their uncertainties.
We then needed to combine them to get one absolute ruler. We
have one reference image, the perfect grey patch, for which we
know the relative JND value in the 1rst group and the absolute
JND of noisiness value, which is 0. Per group, for the rest of the
patches, we start by identifying the reference patch. It is the one
that is both known within the absolute ruler and relative group
ruler (the patch that was in common between this group and the
previous one). Its JND values and uncertainties in both the abso-
lute and relative scales are rabs±σrabs and rrel±σrrel respectively.
We then build the absolute value and uncertainty of the rest of the
patches of the group :

xabs,i = xrel,i + rabs− rrel (2)

σabs,i =
√

σ2
rel,i +σ2

rabs
+σ2

rrel
(3)

where, for patch i, xabs,i and xrel,i are respectively the absolute
and relative JND values, and σabs,i and σrel,i are respectively the
absolute and relative JND uncertainties.

The generated ruler can be consulted in figure 6. This full
ruler is comprised of 33 patches. For the rest of our experiment we
need a lighter version of the ruler with less patches. We decided
to remove patches with too similar JND of noisiness values in
order to increase the analysis speed and reduce the analyst stress
(it would be more difficult for them to take a decision if images
are too close in the ruler). We then created what we called the
decimated ruler which is composed of 19 patches selected among
the full ruler patches.

Patch environment study
With this first reference ruler created, we conducted an extra

perceptual experiment to study the impact of the environment of
the patches on our perception of the level of noise, to determine
if it needed to be taken into account in future perceptual experi-
ments as well as our visual noise metric. We conducted a softcopy
ruler quality based analysis [7] on an homemade software on 8
patches (7 from our ruler and 1 validation patch from CPIQ ones)
for which we changed the surrounding grey level to 7 different
levels. This makes a total of 50 evaluations. The ruler used for
this experiment is the decimated ruler mentioned previously.

Figure 4. Layout of the software used for the softcopy ruler qual-

ity based analysis on the impact of the patches environment, with Lenv ∈
{0,17,33,50,67,83,100}

The results of this experiment show that modifying the en-
vironment contrast in which we look at the patches has, overall,
only a small impact on our perception of the noise (see Figure 5
the blue curve, less than 1 JND delta even with a ∆L = 50). As a
consequence we decided not to take it into account in our follow-
ing experiments and visual noise metric design.

Figure 5. Results of the environment experiment. JND difference between

the value given by analysts and the JND value of the patch in the ruler.
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Extending the ruler
We then decided to extend our ruler, with patches extracted

from more varied conditions of our AF-HDR laboratory setup.
We took 60 new patches, with various types of noise, in shape
and intensity, and with different lightnesses (not only L∗ = 50)
and chroma. We also took 15 patches with specific HDR artifacts,
like halo, and 2 validation patches. A softcopy ruler quality based
analysis is done by 40 analysts from DXOMARK, 33 image qual-
ity experts and 7 non-experts. We can see on the figure 6 that the
99.5% error interval are greater in the analyzed scenes than in the
reference ruler dataset. It is explained by the fact that analysts
have more difficulties to reduce the notion of visual noise to only
one dimension and place it on the ruler. In that way the softcopy
ruler quality based method is less precise (while faster) than the
triplet comparison method used to build the first reference ruler
dataset.

Figure 6. DXOMARK full setup dataset, composed of 93 noisy patches

annotated in JND of noisiness.

We decided to keep this extended ruler and to take into ac-
count the confidence that we have on each patch to design and test
our new visual noise measurement.

Defining a new visual noise measurement
Linearization

The first step of the visual noise measurement is to linearize
the input image in order to be able to use linear color spaces
such as CIELAB. In DXOMARK 2017 algorithm, visual noise
was considered scene referred. An OECF estimation then inver-
sion was used. During the process, a factor was applied such as
the mid-range patch ends up at 50% of the dynamic after lin-
earization. ISO-15739 recommends to use visual noise for out-
put referred noise evaluation. Since OECF estimation can come
with measurement difficulties (especially with smartphones do-
ing some local processing) and following ISO recommendation,
we use a simple gamma linearization for our new visual noise
measurement.

Frequency filtering
The next step is to apply the contrast sensitivity function

(CSF). The CSF are 3 frequency filters, which describe the human
perceptual sensitivity to frequencies. Several definitions of these

curves exist. In our previous measurement, we used the Johnson
& Fairchild CSF, as used in CPIQ. For the new measurement, we
decided to follow a recent ISO-15739 revision study [4] [5] show-
ing that it is preferable to use the Johnson & Fairchild CSF with
the luminance normalized to 1.

In addition to CSF and MTF frequency filters, a third one is
considered to remove image artifacts that are not considered as
noise by a human observer, but which can have a huge impact
on the L∗,a∗,b∗ channel variances. Our previous measurement
used the high-pass filter designed by CPIQ standard to remove
shading effect. On the other hand, ISO-15739 standard does not
include this kind of filtering in the visual noise calculation. We
want to extend our previous high-pass filter to also deal with halo
effects which are more likely to appear in HDR conditions of our
new setup. The proposed filter (defined in cycle-per-degree) is as
follow:

HPF : f 7→ 1
1+ e−w f ( f− fc)

(4)

with fc the cutoff frequency and w f the slope parameter.

We observed that the error on the JND estimation was re-
duced by about 30% on patches affected by halo and shading.

Visual noise formula
For the visual noise metric in itself, our previous measure-

ment, as well as CPIQ and ISO-15739 propositions, are all based
on a weighted sum of the L∗,a∗,b∗ channel variances. CPIQ’s
formula, using the base-10 logarithm of the weighted sum of the
variances and covariances, has been found to sometimes lead to
math domain errors because of the negative coefficient in front of
σ2

b and because it can happen that σLa ≤ 0. We decided to go
with a formula similar to the one used in the ISO-15739 standard
revision proposition from 2019 and 2021 [4] [5]:

V =
√

σ2
L +waσ2

a +wbσ2
b (5)

with wa and wb weighting coefficients for a and b component
noise variances.

However we wanted our algorithm to take into account that
an observer is not perceiving the noise the same way for compo-
nent a and b depending on the signal. In our case the signal is
simply the mean values of the image pixels across the color chan-
nels: E(L∗), E(a∗) and E(b∗). Looking at the results from the
formula above, we noticed a clear dependency between E(L∗) and
the generalized error, while on chroma channels the dependency
is quite limited. Thus we concentrated our study on L channel,
to introduce a new luminance sensitivity function. Neither CPIQ
nor ISO-15739 standards use this kind of function.

To be able to properly study the sensitivity of the noise obser-
vation with respect to the patch signal E(L∗), we conducted a new
perceptual experiment based on a softcopy ruler quality analysis.
We needed a smaller ruler than our full dataset, so we selected
25 patches from our full setup dataset, providing an appropriate
JND values sampling and range. To generate the set of patches
to be evaluated, we first selected a set of 8 patches with a known
JND values for a particular mean L∗ value (in our case it is for
L∗ = 52 for all patches). Then for each patch we applied an off-
set on the L∗ channel, paying attention not to clip some pixels, so
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that we end up with new patches having the same variance σL∗ as
the original one, but their signal E(L∗) is in: 17, 22, 27, 32, 42,
62, 72, 82. Our experiment is then composed of 7 patches with 9
treatments and a validation patch, for a total of 64 patches. This
dataset will further be called the luminance dataset.

We asked 11 analysts to evaluate the perceptual noise of
these 64 patches by comparing them to the ruler patches. For
each of the 7 patches, we analyzed the evolution of JND values
assigned by the analysts with respect to the patch signal E(L∗).
We then averaged, for each single L∗-mean value, the normal-
ized JND values over all the patches to get a representation of
the noise perceptual evaluation sensitivity with respect to the L∗-
mean value. (see Figure 7)

Figure 7. Results of the L∗-mean influence study averaged over the 7

patches of the study, with uncertainties.

It shows that the sensitivity is less important for low or
high L∗-mean values and reaches a maximum at L∗ = 50. The
sensitivity varies by about 20% for L∗ = 20 or L∗ = 80. To take
into account this sensitivity to the L∗-mean value and extrapolate
the missing values at the extremities of the L∗ range, we fitted
a 3rd order polynomial function on our luminance dataset.
Applied to our full setup dataset, we noticed that the algorithm
residual error was about 15% lower than without this luminance
sensitivity function, which confirmed the improvement due to the
sensitivity function.

The polynomial sensitivity function is defined as follow:

SL : L 7→ a+bL+ cL2 +dL3 (6)

with a = 0.068641535, b = 0.048546862, c = −7.7856422e− 4
and d = 3.5483275e−6

The new proposed visual noise metric is as follow:

V = SL(E(L∗))
√

σ2
L∗ +waσ2

a +wbσ2
b (7)

with E(L∗) the mean of lightness L∗ on the patch.

JND mapping
The output of this metric is not in a unit easily understand-

able in terms of human perception, so we need to map it to a

JND of noisiness scale. While ISO-15739 does not provide a
JND mapping, CPIQ proposes an integrated hyperbolic incremen-
tal function (IHIF) for their JND scale transformation. Looking at
our metric defined above (equation 7), we notice that its growth
was quite correlated with the JND values growth of our full setup
dataset. However the relation between them did not seem linear.
Looking at the data, we observed that a non-linear mapping func-
tion FJND should have the following properties:

FJND(V ) ∼
V 7→0

V 3 and FJND(V ) ∼
V 7→in f

V
1
3 (8)

Therefore we propose to use a JND mapping as follows:

FJND : V 7→ w1V 3

1+w2V
8
3

(9)

with w1 and w2 are two shaping parameters.

Results, discussion and further improve-
ments

Numerical results
To evaluate the performances of each algorithm, we com-

puted what we called heteroscedastic residual sum of squares
(HRSS) on our full setup dataset in order to take into account
the variable standard deviation σk of the perceptual evaluation for
each image in our full setup dataset.

HRSS = ∑
k

(
ek

σk

)2
(10)

with ek the difference between the visual noise computed each
algorithm (with JND mapping) and the JND value of the patch in
our dataset.

We optimized the parameters of the new visual noise algo-
rithm on our full setup dataset through a least square method,
minimizing the HRSS. The optimal numerical values found for
the parameters are given in table 1. All algorithms performances
are then given in table 2. We can observe that our new proposed
algorithm is giving significantly better results than the others on
the full setup dataset.

Parameter Value

w f 13.5
fc 1.4

wa 0.04977
wb 0.2790
w1 323
w2 46

Table 1. DXOMARK new algorithm optimal parameters when optimized on

the full setup dataset. Parameters are the ones described in equations 4, 7

and 9.

Discussion and further improvements
The numerical results were obtained through a joint opti-

mization of several parameters.
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Algorithm name HRSS RMSE

DXOMARK 2017 algorithm 7861 2.19
CPIQ 4456 2.10
ISO 15739 (2021 tentative) with
linear JND mapping

3102 1.99

DXOMARK new algorithm 786 0.88

Table 2. Algorithm performances on DXOMARK full setup dataset. DXO-

MARK new algorithm performance is given when using the parameters de-

fined in table 1

Values for wa and wb deviates quite significantly from the
ones found in [5]. This may be explained by the fact that the
patches of the dataset come from images taken with camera
equiped with automatic white balance and no additionnal white
balance correction were applied. Therefore the remaining cast for
some illuminants might influence the perception of noise. Just
as we included in our algorithm a luminance sensitivity function,
the same could be done for a∗ and b∗ channels as our sensitivity
to noise (especially chroma noise) is probably different depend-
ing on the white balance cast of the patch (pointed out by [10]
and [11]). However it should be noted here that the influence of
the proposed values for wa and wb is actually quite small on the
residual error. Incorporating wa and wb values from [5] actually
increase marginally the heteroscedastic residual error while it de-
creases slightly the residual error on the dataset.

We studied the influence of the patch luminance on our noise
sensitivity. If this is valid for most of signals E(L∗), some con-
cerns could be raised for very low or very high E(L∗) values
as the screen performance (quantization or imprecisions for in-
stance) could be a non-negligible part of what people see during
the ground-truth experiments.

It could be also interesting to include into the model the spa-
tial correlation of the noise. With the current model an image with
a white noise and an image with a pattern noise could be ranked
the same as long as the variances in our filtered L∗a∗b∗ spaces,
and the signal E(L∗), are the same. However for an observer the
correlated noise is more likely to be considered more ”noisy” that
the white noise one. In our study incorporating spatial correlation
indicators like Moran’s I or band-pass frequency filter were tested
but not included in the formula as we did not find any significant
correlation between the indicator and the generalized error.

Finally, with the proposed algorithm, the results are within
the ruler dataset uncertainties. This means that very few im-
provement can be made from this point without updating our
dataset, because we might only try to improve the dataset ”noise”
(which generally leads to overfitting) instead of really improving
the model.

Conclusion
Image processing pipelines in smartphones are becoming

more and more complex in order to achieve the best image qual-
ity possible. Depending on the content of the scene being shot,
compromises have to be made between different image quality at-
tributes like texture, noise, dynamic range and artifacts. That is
why we need versatile laboratory setups on which we can mea-
sure these different attributes at the same time and under a large
variety of light conditions. In this article we propose a new vi-
sual noise algorithm suited for noise evaluation on images of both

standard and high dynamic range scenes. To validate our algo-
rithm, we built a dataset of images of our laboratory setup cap-
tured with smartphone cameras. The dataset was annotated on a
JND of noisiness scale and is provided to the community. The
new visual noise algorithm derived from our studies is dependent
of the lightness of the patch measured, and comprises a high-pass
filter to remove low frequency content not perceived as noise. Fi-
nally a JND mapping is proposed.

Thanks to this new measurement, we are now able to have a
perceptually accurate measurement of visual noise in HDR scenes
conditions. It raises up to four the number of image quality at-
tributes that we can objectively evaluate on our HDR setup (expo-
sure, focus, texture and now noise).

The results of these study were shared, discussed within the
ISO/TC42/WG18 Electronic still picture imaging working group
in the context of the AWI 15739 standard.
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