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Abstract

Deep learning has been extensively studied in a variety of as-
pects of image denoising, including blind, unsupervised, univer-
sal, and perceptually oriented. This paper focuses on blind, bias-
removed, mix loss optimized, and perceptually oriented image de-
noising task. We propose a network designed for AWGN image
denoising. Our network removes the bias at each layer to achieve
the benefits of scaling invariant network. Additionally, it imple-
ments a mix loss function to boost performance. We train and
evaluate our denoising results using PSNR, SSIM, and the per-
ceptual metric LPIPS, and demonstrate that our results achieve
impressive performance evaluated with both objective and sub-
Jective IQA metrics.

1. Introduction

Due to the limitations of various recording devices, images
are sensitive to random noise during acquisition. Noise is sig-
nal distortion that impedes image observation and information ex-
traction. Thus, as a fundamental topic of image analysis and pro-
cessing, image noise suppression aids our understanding of image
statistics and processing.

There are numerous noise sources during the imaging pro-
cess, including photon-shot noise, photon-to-charge conversion
noise, analog-to-digital conversion noise, hot pixels, read noise,
compression artifacts, and so on. The most frequently con-
cerned noises in the literature are Additive White Gaussian Noise
(AWGN), impulse (salt-and-pepper) noise, Poisson noise, and
speckle noise. Impulse noise, speckle noise, and Poisson noise
are caused primarily by defective manufacturing, bit errors, and
an insufficient photon count. AWGN is most commonly seen in
analog circuitry during image acquisition and transmission. In
most image denoising tasks, the noise is assumed to be additive
white Gaussian noise (AWGN).

Digital images can be viewed as a matrix or a two-
dimensional signal containing gray level intensity or color chan-
nel values: (x,y(x)), where x is the index of a pixel; y(x) is
the value indicating the pixel’s intensity at a given location in a
grayscale image; or indicating a three-value array representing the
red, green, and blue channels in a color image. An image AWGN
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noise model can be thought of in the following manner:

y(x) = m(x) +n(x) xeZz? (1)

where m(x) represents the original image, y(x) represents the
noisy observation and n(x) represents the Gaussian noise with
zero mean and standard deviation 6. The denoising problem re-
quires determining a function f : RN — RV, that can accurately
estimate the original image m(x). This issue is typically resolved
by minimizing the mean squared error : f = argmingE||m(x) —
g(¥(x))||>. In deep learning, the denoising function g is parame-
terized by the weights of the network, so the optimization is per-
formed over these parameters.

Image denoising algorithms have made significant strides
with the development of imaging technology over the last few
decades. Denoising algorithms are classified into the follow-
ing categories according to their type [1]: Spatial domain fil-
tering, which includes average filter, Weiner filter, bilateral fil-
ters, non-local mean and so on. Transform domain thresholding,
which makes use of the Fourier transform (FT), fast Fourier trans-
form (FFT), discrete cosine transform (DCT) and discrete wavelet
transform (DWT). The most prevalent approach in this cate-
gory is color block matching 3D collaborative filtering (CBM3D)
[2]. Apart from these, additional well-established denoising ap-
proaches include random field based methods Markov random
field (MRF) and hidden Markov models (HMM) [3]; as well as
sparsity based methods such as K-singular value decomposition
and convolution sparse representation (CSR) and the dictionary
learning method [1].

Recently, as network architectures became more flexible,
deep learning has been widely used to deal with image restora-
tion problems, resulting in significant advances in image denois-
ing. The convolutional neural networks (CNNs) were proposed
and quickly gained popularity in image/video processing and low-
level computer vision. As a result, CNNs were frequently used for
AWGN denoising or feature extraction for removing real-world
noise or hybrid noise. For addressing multiple low-level tasks by
one model, a denoising CNN (DnCNN) [4] consisting of convolu-
tions, batch normalization (BN), rectified linear unit (ReL.U) and
residual learning (RL) was proposed to deal with image denois-
ing, super-resolution, and JPEG image deblocking. Taking into
account the tradeoff between denoising performance and speed, a
color non-local network (CNLNet) [5] efficiently reduced image
noise by combining non-local self-similarity (NLSS) and CNN. In
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terms of blind denoising, a fast and flexible denoising CNN (FFD-
Net) [6] used different noise levels and the noisy image patch as
the input of a denoising network, thus ensuring that the denoiser
can adapt to all noise levels; and a convolutional blind denois-
ing network (CBDNet) [7] removed the noise from the given real
noisy image by two sub-networks for blind denoising. To address
the lack of clean reference images, Generative Adversarial Net-
work (GAN) based methods (e.g. GCBD) and CNN based un-
supervised/weakly supervised methods (e.g. Noise2Noise, DIP,
Noise2Self) are denoising methods that do not require clean im-
ages [8].

The idea of a bias-free CNN [9] also inspired us. It points
out that CNN feedforward neural networks with ReL.Us are piece-
wise affine, implying that the net network bias fluctuates wildly
outside the training range, leading to the CNN overfitting to the
noise levels within the training range and underfitting to the noise
levels outside of the training range. The authors suggested that
the issue could be ameliorated by removing additive (bias) terms
at each stage of the network, resulting a bias-free CNN network
(BF-CNN).

Although the loss layer is the primary driver of network
learning, dealing with image restoration tasks is often accom-
plished by using L1 (MAE) or L2 (MSE). The cost function is
typically set to the L2 for the majority of AWGN denoising tasks.
However, L2 has a number of well-documented drawbacks, for
instance, L2 has a weak correlation with perceived image quality
by human observers [10]; L2 will significantly blur image details;
and the use of L2 makes implicit assumptions about the noise,
such as that the noise is additive and independent of the image,
which is not suitable to real world noise.

Contributions

In this work, we focus on the CNN-based AWGN blind de-
noising task. We study the networks with and without bias, then
train a bias-removed network, and compare its denoising perfor-
mance to that of biased networks across various noise levels to
demonstrate its superiority on the denoising task. We investigate
the impact of loss functions on the performance of the CNN-based
image restoration network and design a mix loss that combines
MSE and SSIM for our bias-removed network. We train a de-
noiser and compare its performance to that of traditional MSE
loss functions in the AWGN denoising task to demonstrate the
advantage of mix loss. Additionally, we utilize not only the con-
ventional image quality assessment metrics SSIM and PSNR, but
also the cutting-edge perceptual image quality assessment (IQA)
metric LPIPS to evaluate our denoising results and comparison
results, showing that our results perform well on both objective
and subjective IQA metrics. We have made the following contri-
butions:

* First, we develop a bias-removed image denoising network,
demonstrating that it is capable of handling the AWGN de-
noising over a wide range of noise levels while training over
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a very narrow range of noise levels. The bias-removed net-
work achieves impressive denoising results on trained noise
levels, and outperforms the state-of-the-art bias network on
untrained noise levels.

* Second, we design a mix loss that combines MSE and SSIM,
and use it as the loss function in our bias-removed network
to further improve denoising performance. Our network is
fully capable of denoising AWGN while retaining visually
pleasing image details, so it outperforms the deep denoiser
using a conventional L2 loss function in terms of perceptual
image quality assessment.

* Finally, we study objective and subjective image quality as-
sessment, and comprehensively evaluate our denoising re-
sults and comparison results using objective and subjective
image quality assessment metrics.

2. Related Work

Deep learning-based image denoising has been extensively
studied for denoising tasks with many aspects such as blind, un-
supervised, universal and perceptually oriented. Our research fo-
cuses on a blind, bias-removed, mix loss optimized, and percep-
tually oriented image denoising task. Therefore, we will discuss
related work and progress in these aspects.

Bias-removed network

Feedforward neural networks with rectified linear units (Re-
LUs) are piecewise affine since each of these is affine. For a noisy
input image y, the function f; computed by a denoising neural
network with bias may be written:

S1 = WLRW—1..R(Wyy+b1)+...bp 1) +bL = Apy+by (2)

where W, is the weight of the convolutional layers, b, is the
bias (additive constants), R is the activation function ReLU, A,, €
RN*N is the Jacobian of f; evaluated at input y, and b, represents
the net bias. Also, a bias-removed denoising neural network can

be derived as follows:
fo=WLR(WL_1..R(W1y)) = Any 3)

The work [9] demonstrates a viewpoint for several popu-
lar deep models, including DnCNN, Recurrent CNN, UNet and
DenseNet, that these biased convolutional networks overfit to
noise levels within the training range, but underfit to noise levels
outside of the training range, because the net bias fluctuates wildly
over the untrained noise level. This issue can be addressed by re-
moving bias (additive terms) from each stage of the network, re-
sulting in a bias-removed CNN. If bias-removed CNN has ReLU
activations, the denoising map is locally homogeneous, and thus
invariant to scaling. This property behaves as shown in the for-
mula:

flay)=af(y) @)
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Figure 1. The network architecture of our denoiser. We adopt 17 convolutional layers for the main stem of the network, each consisting of 3 x 3 filters and 64

channels, revised batch normalization according to bias-removal, and a leaky RelLU activation function. Also, the network includes residual blocks.

The bias-removed neural network has the scaling invariant prop-
erty, which means that rescaling the input by a constant value sim-
ply rescales the output by the same amount, and this property is
intuitively desirable for a denoising method that operates on nat-
ural images.

Loss functions for image denoising

Different losses compute the similarity between the esti-
mated image g(y) and the clean image (ground truth) m in dif-
ferent ways. We list several important loss functions for image
restoration tasks.

¢ Mean absolute error (MAE) or L; is defined as:

Losst, (P) = X 80(p)) — m(p)| S

* Mean squared error (MSE) or L; is defined as:

Lossi, (P) = +(8((p)) —m(p))? (6)

For Formulas (5) and (6), p is the index of the pixel, P is the
patch, and N is the number of pixels in the patch; g(y(p)) and
m(p) are the values of the pixels in the processed patch and the
ground truth, respectively.

* The Structural Similarity Index (SSIM) is a perceptual met-
ric. SSIM is based on visible structures in the image. It is a
perceptual metric used to quantify the image quality in terms
of luminance, contrast, and structural similarity. SSIM is de-
fined as:

2g(y)Hm + €1 20g()m +C2
2

2 2 2
Hety) T Hin 1 %) Ot

SSIM(p) = @)

where [,y and i, are the averages of g(y) and m, respec-
tively, G§<y) and o2 are the variance of g(y) and m, respec-

tively, and o), is the covariance of g(y) and m. Also,

y)m
c1 =1x10* and ¢, = 9 x 10* are two constants, which are
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used to stabilize the division with a weak denominator. The
SSIM loss is defined as:

LOSSSSIM(P) =1 —SSIM(p) (8)

In the image restoration task, each loss function has its ad-
vantages and disadvantages. The paper [10] focuses on the per-
formance of various loss functions in multiple image restorations
and proposes a mix loss function. Inspired by this work, we pro-
pose and develop a novel mix loss function that is suitable for
our bias-removed denoising networks. We demonstrate that our
denoised image quality outperforms those that were trained with
conventional loss in terms of perceptual assessment.

Image quality assessment (IQA) metrics

While assessing the perceptual similarity of two images
is straightforward for humans, the underlying processes are re-
garded to be highly complex. The widely used image quality as-
sessment measures, such as PSNR and SSIM, are far too simplis-
tic to account for subtleties in human perception. Therefore, many
researchers have studied image quality assessment metrics based
on human perceptual similarity.

The work [12] summarizes and compares a variety of mod-
els for evaluating the quality of full-reference images. They
tested 11 IQA models, which include objective, subjective, con-
ventional, and deep learning based models. They proved that the
Learned Perceptual Image Patch Similarity model (LPIPS) [11]
score, which is computed automatically by a pretrained network,
is positively correlated with human subjective evaluation in the
image denoising task. Thus, we use PSNR, SSIM, and LPIPS to
comprehensively evaluate the denoised image quality in our work.

3. Main Body

‘We propose a network designed for AWGN image denoising.
Our network removes bias at each layer to achieve the benefits of
bias-removed networks. Additionally, it implements a mix loss
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function to boost performance. AWGN noisy image and clean
image pairs serve as inputs. The overall architecture is shown in
Figure 1.

Network architectures

We developed our network architecture based on the bench-
marking network, Denoising CNN (DnCNN) [4]. DnCNN is
composed of 17 or 20 convolutional layers, depending on whether
the task is non-blind or blind. Each layer of DnCNN comprises
3 x 3 filters and 64 channels, batch normalization, and a ReLU
activation function. It has a skip connection from the initial layer
to the final layer.

We set the depth of our AWGN denoising network to 17 lay-
ers. This depth is used by DnCNN to train a non-blind denoiser,
which has a relatively shallower depth and thus requires a smaller
dataset. We also use this depth to train a non-blind denoiser, but
our non-blind denoiser will have the ability to perform blind de-
noising. Our network includes the following attributes:

* Bias removed. We removed all additive constants at each
layer of the network and made corresponding changes to the
batch normalization function.

* Mix loss optimized. We design and implement a mixed
function of L2 and SSIM, as indicated by the following for-
mula.

mixLoss = aLossy, + (1 — o) Lossssiy 9)

where Lossy, represents the MSE function of pixel-by-pixel
comparison, Lossgsyy represents SSIM Loss function we
mentioned before, and « is the loss weight set to 0.6. We
chose the value for this parameter so that the contribution of
the two losses would be roughly balanced. Also, based on
a published reference [10], the results were not significantly
sensitive to small variations of «.

——| MSE Loss

D

4
} —» Mix Loss
A

——>| SSIM Loss

Figure 2. Mix Loss.

* Leaky ReLU used. We adapt the activation function to a
leaky ReLU instead of the ReLU.

Thus, the network includes the first layer of convolutional
layer and leaky ReLU, and then uses convolutional layer, revised
batch normalization and leaky ReLU for layers 2 ~ (L —1). For
the last layer, the convolutional layer is used to reconstruct the
estimated residual image.
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The denoiser trained from the above-mentioned network has
a dual application: 1). It can be used to train blind denoisers
directly, and the blind denoiser can produce cutting-edge denois-
ing results for AWGN noisy images. 2). It can be used to train
non-blind denoisers on limited noise ranges and smaller datasets,
while the non-blind denoiser still maintains the ability of a blind
denoiser to remove noise at any level, including levels beyond the
training range. This attribute will be shown in detail in the subse-
quent results section.

Dataset

The training datasets are divided into two categories:
grayscale images and color images. We used well-known
datasets: The Berkeley Segmentation Dataset [13] includes
the datasets BSD400, composed of 400 grayscale images; and
BSD500, composed of 500 color images. The test datasets we
used include grayscale image test datasets Setl2 and Set68, and
color image test datasets Set5 and Setl4. All images are in png
format.

We applied the following data augmentation and data pre-
processing steps: 1). Using cubic interpolation, resize each image
by different scales (1, 0.9, 0.8, and 0.7). 2). Flip or rotate each
image at random. 3). Divide each image into small patches of
50 x 50 pixels. 4). Divide training images into a training set and
a validation set at random. 5). Save training, validation, and test
sets in an h5 (Hierarchical Data Format 5) file.

Training

After the data augmentation, we input a total of 655,900
small color patches with a size of 50 x 50 pixels. The loss func-
tion is mix loss combined by MSE and SSIM. We initialize the
weights using the Kaiming weight initialization method [14] and
use the Adam Optimizer [15]. For Adam, the learning rate = le 3,
B1 =0.9, B, =0.999, £ = le~8. We train on Nvidia Titan Xp
graphics cards, check the Loss and PSNR per batch, and validate
in the end of each epoch. We train a grayscale image denoiser
on noise levels ¢ € [0,30] using the grayscale dataset and a color
image denoiser on noise levels o € [0,50] using the color dataset.

Results and Evaluation

In our work, we use PSNR, SSIM, and LPIPS to assess im-
age quality. Numerous researchers have found that PSNR, which
is derived from MSE, frequently contradicts human perceptual as-
sessment. SSIM is a basic perceptually motivated metric, but it
still represents only a limited perceptual assessment. However,
PSNR and SSIM remain the most mainstream IQA metrics in the
image processing area. For PSNR and SSIM, higher scores indi-
cate greater similarity between the two images (denoised image
and ground truth). Additionally, we use LPIPS to assess the im-
age quality. LPIPS, as previously stated, is a cutting-edge deep-
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Ground Truth

Noisy (0 = 15)

xa
L

Non-blind DnCNN (o € [0, 30]) Ours (o € [0, 30])

PSNR? | 30.15 PSNRT | 29.94
SSIM? | 093 SSIM? | 093
LPIPS| |0.095 LPIPS, |0.088

Ground Truth Noisy (o = 30)

PSNR? | 26.99 PSNR? | 2673
SSIMt | 0.82 SSIMt | 0.81
LPIPS| |0.183 LPIPS| | 0.146

Figure 3. Visualized results of denoising for ¢ = 15 and 30. The best values
are highlighted in bold.

learning-based perceptual assessment metric that quantifies im-
age similarity in units of JND, and correlates positively with hu-
man perceptual assessment. For LPIPS, a lower score indicates a
greater similarity.

The performance of the denoiser based on grayscale images,
and the advantages of the bias-removed network is illustrated in
Figures 3 and 4. The non-blind denoiser is trained at a given range
of noise ¢ € [0,30], and compared to a non-blind DnCNN pre-
trained in the same range. The two models are compared at four
different levels of noise: ¢ = 15, 0 =30, 0 = 50 and ¢ = 80.
o =15 and o = 30 are two test noise levels that fall within the
training range, while 6 = 50 and ¢ = 80 are two significantly
higher noise levels that exceed the training range. For ¢ = 15 and
o = 30, as illustrated in Figure 3, the denoising performance of
the two models is comparable because both models are trained on
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Ground Truth

Noisy (o = 50)

Ours (o € [0, 30])

PSNRT | 18.62 PSNR?T | 24.77
SSIM? 043 SSIM 1 0.74

LPIPS| |0.439 LPIPS| (0271
Ground Truth

Noisy (o = 80)
. s

PSNRT | 14.17 PSNR1 | 2142
SSIMt | 026 SSIMt | 0.62
LPIPS| | 0.569 LPIPS| | 0332

Figure 4. Visualized results of denoising for ¢ = 50 and 80. The best values
are highlighted in bold.

this noise interval. Our results are slightly lower on PSNR but
remain competitive on SSIM and better on LPIPS. ¢ = 50 and
o = 80, as illustrated in Figure 4, are noise levels higher than the
training range for both models. While the non-blind DnCNN is
nearly incapable of removing noise at these levels, our model is
still capable of doing so effectively. While our denoising perfor-
mance is insufficient at ¢ = 80 noise level, as a non-blind denoiser
with narrow training range and shallow network depth, its blind
denoising capability is still impressive.

The performance of the denoiser based on color images is
illustrated in Figures 5, 6 and 7, and Table 1. Our color image
denoiser is trained at a given range of noise ¢ € [0,50], and com-
pared to a non-blind DnCNN are pretrained in the same range.
We compared the two at ¢ = 15, ¢ = 25 and ¢ = 50 noise level,
thus, they can all be regarded as blind denoisers. Table 1 shows
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the quantitative results for the test dataset Set14.

Our results, even though they are a little lower on PSNR,
are competitive on SSIM and impressive on LPIPS. At various
noise levels, our denoiser achieves the best LPIPS scores. Con-
sidering that LPIPS metrics have a higher correlation with human
perceptual assessment, our results outperform DnCNN in subjec-
tive assessment. Some qualitative results on images are shown
in Figures 5, 6 and 7. We can see that our results preserve de-
tails while denoising. This is the benefit of using a relatively
perceptual-aware SSIM in the loss function, which mitigates the
over-smoothing property of MSE loss.

Ground Truth Noisy (0 = 15)

Non-blind DnCNN (o € [0, 50]) Ours (o € [0, 50])

PSNRt | 3051 PSNR?T 30.06
SSIMt | 0.91 SSIM?T 091
LPIPS| | 0.105 LPIPS| |0.078

Figure 5. Visualized results of denoising for o = 15. The best values are
highlighted in bold.

Gaussian Denoising

Dataset | Noise Level | IQA Scores | DnCNN Ours
PSNR 1 31.22 31.05
c=15 SSIM 1 0.9013 | 0.9003
LPIPS | 0.0217 | 0.0187

PSNR 1 28.51 28.32
Set 14 =25 SSIM 1 0.8212 | 0.8209
LPIPS | 0.1312 | 0.0956

PSNR 1 24.67 24.33
c=50 SSIM 1 0.7264 | 0.7249
LPIPS | 0.1763 | 0.1378

Table 1: Overall quantitative results compare with non-blind
DnCNN on the same testset Setl4. Our proposed method obtain
better LPIPS values, and also perform competitive in PSNR and
SSIM scores. The best values are highlighted in bold.

4. Conclusion

The modern CNN-based image denoising networks were in-
vestigated in this paper, and a CNN-based image denoising net-
work that combines blind, bias-removed, and mix-loss was pro-
posed and implemented. We train and evaluate our denoising re-
sults using PSNR, SSIM, and the perceptual metric LPIPS, and

2886

Ground Truth

Noisy (0 =25)

PSNR? | 2534 PSNRT | 25.12
SSIMt | 083 SSIMt | 083
LPIPS| |0.164 LPIPS| |0.147

Figure 6. Visualized results of denoising for o = 25. The best values are
highlighted in bold.

Ground Truth

Noisy (0 = 50)

Non-blind DnCNN (o € [0, 50])

p)

Qurs (o € [0, 50])

PSNR? | 2343 PSNRT | 2337
SSIMt | 0.79 ssMr | 0.78
LPIPS| | 0233 LPIPS| | 0.175

Figure 7. Visualized results of denoising for c = 50. The best values are
highlighted in bold.

demonstrate that our results achieve impressive performance eval-
uated with both objective and subjective IQA metrics.
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