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Abstract
Correspondences are prevalent in natural videos among dif-

ferent frames, as well as a set of images sharing a common at-
tribute. Dense correspondences are important for the core prob-
lem of many natural image and video reconstruction tasks: re-
covering texture details with high fidelity. In this paper, we will
discuss recent methods in learning and utilizing such correspon-
dences in image and video reconstruction. Specifically, we de-
compose the network design into several switchable components
of different purposes and discuss their applications to different
images and video restoration tasks such as super-resolution, de-
noising, and video frame interpolation. In this way, we can an-
alyze the performance and uncover the generic and efficient net-
work design. Benefiting from the above investigations, our pro-
posed methods achieve state-of-the-art performance on multiple
tasks with fewer parameters. Our findings could inspire the net-
work design of multiple image and video reconstruction tasks for
the future.

Introduction
Visual reconstruction aims to restore photo-realistic high-

quality images and videos from their degraded counterparts.
Since external images and internal neighboring video frames con-
tain rich relevant content with input images or video frames, many
image and video reconstruction problems rely on getting a dense
estimation of the correspondence between a set of images to lever-
age useful visual contexts. Such sets of images usually possess
some key attributes in common: environment, identity, etc. With
careful designs, such similarities can be extracted and transferred
to recover the fine details of degraded inputs. Compared with
blindly recovering this information with priors only, utilizing cor-
respondences can provide substantial information with higher fi-
delity and assist the reconstruction process.

The process of finding correspondences involves two im-
ages: target image that to be enhanced, and the supporting image.
Generally, the supporting images are with similar texture and con-
tent structure to the target image. The supporting images could be
from adjacent frames in a video [71, 81], images retrieved from
the database [89, 86, 95], images from another view [96, 94], or
images of the same identity [60, 41, 18, 73]. If we split the target
image into separate patches and find the correspondences between
them, it would be self-exampled reconstruction [22, 12, 21, 29].
The similarity of the supporting images varies greatly among the
above methods. Thus, different matching methods are developed.

Finding correspondences in image sets has been a fundamen-
tal yet difficult problem in the computer vision area for the past
50 years. From early works like feature-based parameter estima-
tion [77, 61], correspondence-based transformation [5, 72], opti-
cal flow [1, 3, 4], etc., to more recent works based on deep learn-

Figure 1. Visual correspondences exist widely among images and videos.

ing methods: segment-guided matching [75, 66] and deformable
alignment [71, 74, 81]. These approaches use different matching
strategies to discover image pixels or patches with similar local
structure and texture information. In this paper, we will survey
different visual correspondence detection methods and conduct a
systematic study to investigate applications of discovering corre-
spondence on image and video reconstruction.

Related Work
Feature Matching

SIFT feature descriptor [49, 50] are adopted in early
works [44] to establish the pixel-level correspondence between
the target and supporting images. Yue et al. [89] first retrieve sim-
ilar images from the candidate pool and then search the correspon-
dences with global registration and local matching. Usually, these
algorithms involve a rectification of image pairs using a group of
sparse correspondences. However, the coarse correspondence es-
timation and simple morphing scheme result in visual artifacts.
Besides, such computation can be time-consuming.

Recent works [93, 92, 87, 83] adopt the idea of patch-wise
texture searching with features extracted by a pretrained deep neu-
ral network, e.g. VGG [65]. Zhang et al. [93] proposes a deep
model-based method that measures the patch similarity between
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neural features with an inner product and transfers the matched
texture to the target with feature swapping. Yang et al. [87] uti-
lizes hard attention to select the most similar patch and uses soft
attention to transfer the features depending on the similarity.

Optical Flow
Optical flow [25, 3, 20] is widely used to describe mo-

tions with displacements at every voxel position between two im-
ages. It assumes a brightness constancy constraint. There are
many methods for estimating the optical flow: Lucas-Kanade
method [51, 52], Horn-Schunck method [28], and recent deep
learning-based approaches like SpyNet [63], FlowNet2 [19, 32],
and PWCNet [67]. The estimated optical flow is used for
warping the supporting images, or directly as inputs in many
low-level vision tasks, including reference-based super-resolution
(RefSR) [94], video super-resolution (VSR) [43, 36, 47, 69, 26],
video frame interpolation (VFI) [57, 33, 2, 84, 58], and video
denoising [45, 85, 70]. Still, optical flow may not match long
distance correspondences, thus may not perform well in handling
large displacements between the target and the supporting images.

Segment-Guided Matching
Unlike dense correspondences between points, segment-

guided matching tends to build a region-to-region correspon-
dence, where these regions can be categorized depending on the
semantic feature. Wang et al. [75] aims to synthesize realistic
details for SISR by adopting a semantic segmentation map as a
condition for texture feature transform. In this network, the se-
mantic category is mapped to the learned affine transformation
parameters that scale and shift the feature maps. For textureless
inputs like anime, Li et al. [66] exploit global matching among
color pieces of different frames to generate smooth interpolation
outputs. It uses the color consistency of moving objects across
cartoon frames to predict coarse optical flows.

Deformable Alignment
Previous pixel-wise alignment methods usually use optical

flow between a target image and a supporting image to wrap
the supporting input. Thus, the performance of these image-
level wrapping-based models will highly depend on the estima-
tion accuracy of optical flow, and inaccurate optical flow pre-
diction will lead to artifacts in the wrapped supporting images,
which also will be propagated into the reconstructed image. To
reduce the limitation, deformable alignment-based methods are
proposed [71, 74, 81, 64]. With the help of deformable convo-
lution [17], the deformable alignment is able to adaptively align
the target image and each supporting image at the feature level
without explicitly motion estimation and compensation as in op-
tical flow-based approaches. In particular, Tian et al. [71] firstly
proposed to use deformable alignment to solve the video recon-
struction problem, which utilizes a temporally-deformable align-
ment network to align video frames for video super-resolution.
Later on, Wang et al. [74] further enhanced deformable align-
ment with a pyramid cascaded structure to address video deblur-
ring and super-resolution tasks and Xiang et al. [81] incorporates
deformable alignment to handle fast video motions for space-time
video super-resolution.

Methodology
Representation

To get the most representative features for searching the cor-
respondence and transferring the textures, recent works [93, 87,
71, 81] utilize learned neural features as representation. For CNN
networks, features at different depths have different representa-
tions and abstraction of the image information [56, 68, 90, 87, 62]:
in the early layers, the network perceives more local informa-
tion; with the network depth grows, the effective receptive field
becomes larger. While in vision transformer, the representation
between lower and higher layers are more uniform: global infor-
mation is Incorporated since early layers [62].

Some works [79, 81, 83, 87] adopt several convolution lay-
ers to turn the RGB images into feature space, which usually come
from shallow layers. To get a better representation across differ-
ent scales, [68, 90, 79, 87] adopt cross-scale feature integration to
exchange information acquired at a different level by striding or
downsampling. Other works [93] adopt a pretrained VGG [65] to
extract representative features. By choosing outputs from differ-
ent intermediate layers, it can acquire texture representation at dif-
ferent scales [23, 24]. For image and video reconstruction tasks,
existing works [87, 83] have shown that the learned feature repre-
sentation performs better than ones extracted by pretrained VGGs.
In this paper, we explore the influence of such task-oriented fea-
ture extractors that are trained with the main network by control-
ling three key factors: network width and depth, and resolution
space. We train 140 VFI networks of different structures for this
experiment and evaluate the PSNR and SSIM [76] of the outputs
to reflect the performance.

By changing the feature channel from 8 to 16, we plot the
experimental results in Figure 2, where the x-axis is the num-
ber of trainable parameters (million), and the y-axis is the SSIM.
We can observe that increasing the number of feature channels
can increase the performance in most cases, while the number
of parameters also increases greatly. Changing the feature chan-
nels from 8 to 16 can increase the PSNR by 1.24 and the SSIM
by 0.0224 on average. Under the same number of trainable pa-
rameters, the models with more channels are usually not in the
worst-performance tier. Still, they are not always to be the best-
performed ones. These results inspire us that under a certain con-
straint of trainable parameters, we can always choose to increase
the number of feature channels as a baseline. With careful de-
signs, it is possible to make the model have better representation
capability and thus demonstrate better performance.

For simplification, we choose residual blocks without the
batch norm layer as the basic building block and connect them
in sequential order for the feature extractor for this experiment.
We change the number of feature extraction blocks from 1 to 3
to control the network depth. From Figure 3, it is interesting that
models with one block perform better than the ones with three
blocks. Under the same number of trainable parameters, the mod-
els with one block still perform better. On average, when de-
creasing the blocks from 3 to 1, the SSIM increases from 0.8691
to 0.8792, which is significant enough. These experiments show
that, for this reconstruction task, we do not need deep extractors
to acquire good feature representations.

For the common image and video reconstruction task, all in-
puts are within the same resolution space. But for RefSR, the
input LR image and Ref images are with different resolutions and
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Figure 2. Influence of the number of feature channels on the VFI task.

Figure 3. Influence of the number of feature extraction blocks on the VFI

task.

Table 1. Influence of the feature resolution space on the RefSR
task.

Methods PSNR↑ SSIM↑ LPIPS↓
LR-LR ref 24.38 0.7339 0.2533

LR-ref 24.36 0.7333 0.2537

contain different levels of information. In order to find the cor-
respondences between the LR and Ref images, it is necessary to
turn the images or their features into the same resolution space
to make them comparable. To investigate the effectiveness of
such a design, we construct two models for the RefSR based on
the framework in [80]. The first model utilizes the deformable
convolution to build the correspondence between the LR and the
downsampled Ref features that are both in the LR space. The sec-
ond model changes the ways of computing the deformable offsets
with LR and original Ref features, which is across the LR and
HR spaces. According to the results in Table 1, we can see that
the first model is slightly better than the second one, which indi-
cates that matching the features in the same space is better than
cross-space.

Alignment
Spatial alignment is the core part of the correspondence in

reconstruction, which aims to align similar but misplaced pixels
or features for transferring the texture. In terms of the align-
ment method, the existing works can fall into three categories:
no-alignment, flow-based alignment, and deformable alignment:
No-Alignment In video reconstruction area, some works [30, 34,
38, 30, 88, 39] do not perform alignment but adopt recurrent mod-
ules or 3D convolution when processing consequent video frames.
However, the unaligned frames cannot provide useful information
for the following processing (like aggregation) for a given per-
ceptive window, which loses the superiority of multi-frame cor-
respondences and thus lead to inferior performance. We verify
such influence in our VFI experiment by removing the alignment
module from our backbone network. As a substitution, we di-
rectly concatenate the unaligned input features and pass them to
the reconstruction trunk. Since the common convolution can only
provide a very small perceptive field, it is unable to capture the
correspondences with large displacement. As shown in the first
row in Table 2, the performance is much lower in terms of PSNR
and SSIM. This result indicates that it is necessary to acquire and
integrate the corresponding information with a large spatial dis-
tance.
Flow-based Alignment As introduced in previous Section Op-
tical Flow, the optical flow field can provide explicit warping
guidance for the supporting inputs. Calculating the optical flow
requires the target and the supporting images to be in the same
resolution, while the warping operation can be conducted on both
the RGB images and the feature space. [2] combines the warping
results from the RGB images and the context features to achieve
impressive performance. Other works [9, 10] have demonstrated
that warping on a feature level performs better than warping on
the image level. Thus, we conduct our experiment on the feature
level only. We adopt the SpyNet [63] as the optical flow estimator
and show the results at the second row of Table 2. Compared with
the other alignment modules, it has the least trainable parameters.
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Table 2. Influence of the alignment modules on the VFI task.
Alignment Params

(M)
Trainable
params (M)

PSNR SSIM

null 1.7 1.700 31.94 0.9180
SpyNet [63] 3.1 1.700 32.02 0.9308
DCN [81] 2.5 2.500 32.45 0.9259
FDA [11] 4.2 2.800 33.02 0.9381

It performs well in terms of the SSIM, while not for PSNR. These
results indicate that the flow-based alignment method is good in
retaining the details. Still, since it relies on the pretrained esti-
mator, the alignment accuracy might be influenced when tackling
different datasets.
Deformable Alignment Unlike the flow-based alignment, the de-
formable alignment directly calculates the required offset field
from the input features. Thus, the module design is more flex-
ible and does not require the input RGB images. Although the
offset field and the flow field are conceptually similar, their ways
of building correspondences are different: for flow-based warp-
ing, we explicitly copy the value from the source and paste it at
the target position. While in the deformable alignment, the ker-
nel of a convolution is modified to acquire longer-range contexts.
The corresponding info is convoluted to form the aligned results.
Thus, the alignment is more implicit, and the reconstruction re-
sults come from the synthesized features. As introduced in Sec-
tion Deformable Alignment, it is widely adopted in RefSR, VFI,
and VSR areas for efficient and effective architecture design. We
adopt the DCNv2 in our experiment and show the results in the
third row in Table 2. Compared with the optical flow network, it
achieves a better PSNR with smaller network size. However, the
SSIM is worse. These results suggest that the feature synthesis
is not good at reconstructing fine details. The better performance
in terms of the PSNR might also attribute to the consistency with
our training objective, L2 loss.

Besides, the training of the deformable alignment module
is difficult and may fail because of instability in the offset esti-
mation. These issues might impede the network’s final perfor-
mance. Along with the above issues, we seek to combine the
optical flow and the deformable alignment to reach an improve-
ment. Considering that the learned offset field and the estimated
optical flow both represent the correspondences, we can directly
use the flow field as the offset field to guide the deformable con-
volutions. This changes the goal of the DCN from estimating
the displacement into the residual of the optical flow estimation.
Thus, we use the features pre-warped by the optical flow as in-
puts. This flow-guided alignment (FDA) model’s performance is
shown in the last row of Table 2. Adopting both modules does
increase the overall model size as well as the number of train-
able parameters. Correspondingly, it shows a 0.57 improvement
for PSNR compared with the DCN-based model and a 0.0073 im-
provement in terms of the SSIM compared with the flow-based
model. These results suggest that such a combination can reach a
balance between the reconstruction accuracy and the fine details,
which could be a promising direction for future researches.

We also conduct the above experiments on the RefSR task.
Similarly, we switch the alignment module in the backbone net-
work and list the results in Table 3. We experiment on multiple

Table 3. Influence of the feature alignment module on the
RefSR task.

(LR, s) Methods PSNR↑ SSIM↑ LPIPS↓

(32,4)
DCN 29.11 0.8794 0.1136
FDA 29.23 0.8817 0.1102

(64,4)
DCN 31.24 0.8785 0.1611
FDA 31.28 0.8789 0.1600

(16,8)
DCN 24.54 0.7411 0.2433
FDA 24.68 0.7467 0.2361

Table 4. Influence of the feature aggregation methods.
Methods PSNR↑ SSIM↑ LPIPS↓
Average 22.120 0.6350 0.4332

Max-pool 22.118 0.6349 0.4331
CoFA 24.381 0.7339 0.2533

input resolutions (denoting as LR) and scale factors (s). We can
observe that such a trend also exists in the RefSR task, which im-
plicates that the improvement of combining the optical flow and
deformable alignment can generalize to more image and video
reconstruction tasks to build a better correspondence. Still, the
performance might be influenced by the input content and the res-
olution.

Aggregation
For video reconstruction tasks, the multi-frame information

is usually concatenated together and then aggregated with a con-
volution. This method works well with fixed-length inputs, where
the convolution can learn a weighted combination of the given
feature maps. However, if the number of supporting frames is
unknown, such a method cannot be applied.

In this case, we need to consider a more general method for
set aggregation. We construct an application scenario for RefSR
with a reference set of any length. Our goal is to find the best set
representation for the following reconstruction. From the statisti-
cal point of view, we can simply average all the features, or select
one feature with the highest similarity, or acquire a weighted aver-
age result. We experiment with all three methods and show results
in Table 4. In order to learn the aggregation weights, we design a
content-conditioned feature aggregation(CoFA) module based on
soft attention [80]. By multiplying the feature vector of the target
LR and downsampled Ref, we can get a similarity map µi for the
i-th Ref. Then the aggregated feature can be expressed as:

F (Fre f
1 , . . . ,Fre f

n |FL) =
∑

n
i=1 µiF

re f
i

∑
n
i µi

, (1)

where F denotes the aggregation operation, FL is the LR input,
Fre f

i is the i-th aligned reference feature map. Therefore, the final
representation of the set is a fusion of each feature weighted by
its similarity score.

From Table 4, we can observe that the CoFA module im-
proves the PSNR by over 2 dB compared with average and max-
pooling. Such performance improvement appears on all metrics,
which indicates that our proposed module can learn a better set
representation, helping to restore the LR information and enhance
the output quality.
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Experiments
In this section, we conduct experiments on several im-

ages and video reconstruction tasks: Spatio-temporal video
super-resolution, burst denoising, video frame interpolation, and
reference-based super-resolution. The experimental setups and
comparisons with SOTA methods are described in each section.

Spatio-Temporal Video Super-Resolution
The goal of spatio-temporal video super-resolution is to re-

construct more high-resolution frames from the low-resolution in-
puts. It can also be achieved by two consequent methods: video
frame interpolation and video super-resolution. In this task, our
network [82] learns to find the correspondences between the in-
put frame and the adjacent supporting frames and interpolates an
intermediate frame based on them.

We train our network on the Vimeo90K [85] dataset, which
includes over 60,000 7-frame training video sequences. We take
out the even-indexed frames. Then we downsample the rest
frames by 4× to construct the input sequences and use the original
sequences as the ground truth. We compare our results with sev-
eral two-stage methods that are composed of the SOTA VFI, and
VSR works on the widely-used Vid4 [46] testset. Our quantitative
comparison results are shown in Figure 5. From this table, we can
observe the following facts: both VFI and VSR models matter.
Although RBPN and EDVR perform much better than RCAN for
SR, however, when equipped with more recent SOTA VFI net-
work DAIN, DAIN+RCAN can achieve a comparable or even
better performance than SepConv+RBPN and SepConv+EDVR
on the Vimeo-Fast testset; Equipped with the same VFI network
DAIN, EDVR keeps achieving better STVSR performance than
other SR methods. Moreover, we can observe that our model out-
performs the DAIN+EDVR by 0.19dB on Vid4 in terms of PSNR.
Such significant improvements demonstrate that our one-stage ap-
proach can leverage space-time contexts with better synergy than
two-stage methods.

Burst Denoising
Burst denoising leverages the temporal information from

multiple frames with minor motions to reconstruct higher-quality
targets. In this task, our network [42] adopts an FDA module to
find the correspondences between the target input and the other
burst frames. We conduct experiments on the grayscale burst
denoising dataset [55], where the bursts are generated by ap-
plying random translations to the target images from the Zurich
Raw to RGB dataset [31]. Then the generated images are cor-
rupted by adding heteroscedastic Gaussian noise. At the train-
ing stage, the read and shot noise parameters are uniformly
sampled from the following ranges: log(λs) ∈ [−4,−2], and
log(

√
λr) ∈ [−3,−1.5]. At inference,we evaluate the network

on four gains: [1, 2, 4, 8], which matches noise parameters
(−2.2,−2.6), (−1.8,−2.2), (−1.4,−1.8), and (−1.1,−1.5), re-
spectively.

The comparison of our method and other SOTA methods is
shown in Table 6. By comparing with the other results, we can
see that our method achieves a significant improvement.

Video Frame Interpolation
Video interpolation aims to reconstruct the missing interme-

diate frame(s) from the given inputs. Thus, the network needs

to model the temporal correspondences and estimate the missing
info based on them. For this experiment, our model aims to re-
construct one in-between frame from two given inputs.

We train our network on the Vimeo90K [85] dataset, which
has been introduced in the above sections. We randomly sample a
3-frame sequence and take out the middle one to construct the in-
puts for training. We also augment the sequence temporally by in-
creasing the sequence interval so that the acquired sample is with
larger motion, which is more challenging for the network. For a
fair comparison, all the compared methods are trained with the
same data and hyper-parameters. We evaluate the performance of
different methods on the Vimeo90K testset, which contains 7815
clips of 7 frames. The results are shown in Table 7. We report
two designs of our model in this table: one large model with the
FDA module and one small model with the DCN for alignment.
From this table, we can observe that our large model outperforms
all the other methods by a large margin in terms of PSNR and
SSIM while keeping a relatively small model size. Especially,
our small model achieves the third-best performance with 4% to
24% parameters of the other methods. These results demonstrate
the effectiveness and efficiency of our models.

Reference-based Super-Resolution
Reference-based super-resolution aims to improve the recon-

struction of the LR target image with high-resolution references.
Thus, the correspondence is built across two images of different
resolutions. To investigate the influence of feature aggregation,
we choose multiple HR images as references in previous sections.
Here we keep the same experimental setting since the network
may benefit from the rich information among various exemplars.

The CelebAMask-HQ is used as the training and test datasets
[37], which includes over 30,000 1024×1024 faces selected from
the CelebA dataset [48]. To construct the LR-ref image sets, We
read the identity information from the original CelebA meta info
and remove 3,300 out of 6,217 identities with less than four im-
ages. Then we randomly split the remaining identities into a train-
ing set and a test set of 2,600 and 287 identities, respectively.
We synthesize images of different scales by bicubic downsam-
pling with factor s = [4, 8]. The results are shown in Table 8.
Since the experiment is conducted on face images, we choose
both RefSR and face hallucination methods for comparison. Our
model greatly outperforms the other methods by a large margin.

Ablation Studies
In this section, we discuss two details in the network design:

long-range skip connection and the influence of choosing differ-
ent optical flow estimators. Although they might not make the
key contribution of the paper, they do substantially influence the
network performance.

Long-range Skip Connection
The long-range skip connection refers to adding the input

to acquire the final result. For SR tasks where the input and tar-
get images are of different resolutions, we first upsample the input
with naive methods before the addition. For VFI-related tasks that
miss the corresponding frame, we will either add one of the inputs
or an overlap of the two inputs. This skip connection fundamen-
tally changes the learning goal of the main network from recon-
structing the image itself to recovering its residue. Such a long-
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Table 5. Quantitative comparison of two-stage VFI and VSR methods and our results on Vid4 [46] dataset. The best results are
highlighted in bold. We measure the total runtime on the entire Vid4 dataset [46]. Note that we omit the baseline methods with
Bicubic when comparing in terms of runtime.

VFI
Method

SR
Method

Parameters
(Million)

Runtime-VFI
(s)

Runtime-SR
(s)

Total
Runtime (s)

Average
Runtime (s/frame)

Vid4
PSNR SSIM

SuperSloMo [33] Bicubic 19.8 0.28 - - - 22.84 0.5772
SuperSloMo [33] RCAN [91] 19.8+16.0 0.28 68.15 68.43 0.4002 23.80 0.6397
SuperSloMo [33] RBPN [26] 19.8+12.7 0.28 82.62 82.90 0.4848 23.76 0.6362
SuperSloMo [33] EDVR [74] 19.8+20.7 0.28 24.65 24.93 0.1458 24.40 0.6706

SepConv [59] Bicubic 21.7 2.24 - - - 23.51 0.6273
SepConv [59] RCAN [91] 21.7+16.0 2.24 68.15 70.39 0.4116 24.92 0.7236
SepConv [59] RBPN [26] 21.7+12.7 2.24 82.62 84.86 0.4963 26.08 0.7751
SepConv [59] EDVR [74] 21.7+20.7 2.24 24.65 26.89 0.1572 25.93 0.7792

DAIN [2] Bicubic 24.0 8.23 - - - 23.55 0.6268
DAIN [2] RCAN [91] 24.0+16.0 8.23 68.15 76.38 0.4467 25.03 0.7261
DAIN [2] RBPN [26] 24.0+12.7 8.23 82.62 90.85 0.5313 25.96 0.7784
DAIN [2] EDVR [74] 24.0+20.7 8.23 24.65 32.88 0.1923 26.12 0.7836

Ours [82] 11.10 - - 10.36 0.0606 26.49 0.8028

Table 6. Comparison between different method for burst denoising on the gray scale burst denoising dataset [55]

Gain
HDR+

[27]
BM3D

[16]
NLM

[7]
VBM4D

[53]
Single
Image

KPN
[55]

MKPN
[54]

BPN
[78]

Deep-Rep
[6]

Ours [42]

Gain ∝ 1 31.96 33.89 33.23 34.60 35.16 36.47 36.88 38.18 39.37 39.67
Gain ∝ 2 28.25 31.17 30.46 31.89 32.27 33.93 34.22 35.42 36.51 36.63
Gain ∝ 4 24.25 28.53 27.43 29.20 29.34 31.19 31.45 32.54 33.38 33.52
Gain ∝ 8 20.05 25.92 23.86 26.52 25.81 27.97 28.52 29.45 29.69 29.75
Average 26.13 29.88 28.75 30.55 30.65 32.39 32.77 33.90 34.74 34.89

Table 7. Comparison with SOTA methods on VFI task

Methods Number of Params (M)
Vimeo-90K

PSNR SSIM
ZSM [81] 7.6 35.10 0.956
DAIN [2] 24.0 33.35 0.945

FLAVR [35] 42.1 32.22 0.929
Ours (large) 4.2 35.47 0.959
Ours (small) 1.8 34.85 0.955

range skip connection is easy to conduct without too much extra
consumption of computation or storage. Besides, such shortcuts
can pass the abundant information from the inputs, thus making
the whole network easier to optimize.

We conduct experiments on 140 models: half of them are
with the long-range skip connection, while the other half are with-
out. We plot the results in Figure 4, where the x-axis is the number
of trainable parameters, and the y-axis is the SSIM. It is obvious
that the models with skip connections perform better than the ones
without. On average, adding the long-range skip connection im-
proves the PSNR by 1.67, SSIM by 0.0184 without increasing
the model size. Such improvement is very significant, and the re-
quired operation is almost a “free lunch”. This finding can inspire
us to design models for other reconstruction tasks.

Influence of Optical Flow Estimator
In this section, we try to answer the question of how much

the optical flow estimator can influence the final reconstruction
performance. We swap the optical flow network of the FDA mod-

Table 8. Quantitative comparison of our results and other
SOTA methods. The best results are shown in bold.

(LR, s) Methods PSNR SSIM

(32,4)
Bicubic 25.64 0.7752

SRNTT [93] 28.02 0.8434
TTSR [87] 27.31 0.8346

SPARNet [13] 20.50 0.6118
PSFR-GAN [14] 25.47 0.7709

Ours [80] 29.23 0.8817

(64,4)
Bicubic 28.40 0.8169

SRNTT [93] 30.41 0.8552
TTSR [87] 29.87 0.8484

SPARNet [13] 23.26 0.6990
PSFR-GAN [14] 26.62 0.7685

DFDNet [40] 21.55 0.6587
Ours [80] 31.28 0.8789

(16,8)
Bicubic 21.83 0.5929
PFSR[8] 21.44 0.5778

FSRNet [15] 20.03 0.5749
GWAINet [18] 21.96 0.5844
SPARNet [13] 19.00 0.5022

PSFR-GAN [14] 22.05 0.6102
Ours [80] 24.68 0.7467

287-6
IS&T International Symposium on Electronic Imaging 2022

Imaging and Multimedia Analytics at the Edge 2022



Figure 4. Influence of long-range skip connection.

Table 9. Performance comparison of the FDA module using
different optical flow estimators.

Alignment Params
(M)

Trainable
params (M)

PSNR SSIM

PWCNet [67] 9.8 0.397 33.31 0.9436
SpyNet [63] 1.8 0.397 33.61 0.9471

ule: PWCNet [67], and SpyNet [63] while controlling the other
parts of the network unchanged. By comparing the results in Ta-
ble 9, we can see that the model with SpyNet performs slightly
better than the other one, which suggests that a suitable opti-
cal flow estimator can influence the final reconstruction results
to some extent.

In all the previous experiments, the weights of the optical
flow estimator are frozen. In the following experiment, we inves-
tigate the influence of freezing/unfreezing the parameters during
training. We conduct experiments on the simple flow-based fea-
ture warping module and the FDA module, and put the results in
Table 10. Note that although the number of trainable parameters
greatly increases for the unfrozen models, the inference cost re-
mains the same. All results become better when unfreezing all pa-
rameters: for the flow-based warping module, the PSNR increases
by 2.86, and SSIM improves by 0.063. For the FDA module, the
PNSR improves by 1.24, and SSIM leverages by 0.0082. These
results provide us with inspiration for more general image and
video reconstruction: it is worth training a reconstruction-oriented
flow model for multiple image/video reconstruction tasks.

Table 10. Performance comparison of freezing/unfreezing the
optical flow estimator during training.

Alignment Params
(M)

Trainable
params (M)

PSNR SSIM

SpyNet-f 1.5 0.013 29.60 0.8896
SpyNet-u 1.5 1.5 32.46 0.9257
FDA-
SpyNet-f

1.8 0.397 33.61 0.9471

FDA-
SpyNet-u

1.8 1.8 34.85 0.9553

Conclusion
This work focuses on several general topics of learning the

correspondences for image and video reconstruction tasks. We
revisit various components: feature extraction, alignment, and ag-
gregation modules. With experiments across many different tasks,
we uncover the strength of existing approaches and propose our
unique solutions that outperform existing state-of-the-art methods
with high efficiency. With the modular designs, our models can
serve as good baselines for upcoming researches. We believe that
the findings for each component may inspire more future works
on architecture design and have the potential to be extended to
other image and video reconstruction tasks.
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