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Abstract
Virtual background has become an increasingly important

feature of online video conferencing due to the popularity of re-
mote work in recent years. To enable virtual background, a seg-
mentation mask of the participant needs to be extracted from the
real-time video input. Most previous works have focused on im-
age based methods for portrait segmentation. However, portrait
video segmentation poses additional challenges due to compli-
cated background, body motion, and inter-frame consistency. In
this paper, we utilize temporal guidance to improve video seg-
mentation, and propose several methods to address these chal-
lenges including prior mask, optical flow, and visual memory. We
leverage an existing portrait segmentation model PortraitNet to
incorporate our temporal guided methods. Experimental results
show that our methods can achieve improved segmentation per-
formance on portrait videos with minimum latency.

Introduction
Video conferencing has been widely used for remote work

and entertainment in recent years. However, the background of
the scene may reveal information regarding the participant pri-
vacy that could be of concern or nuisance. If the background is
cluttered or has a strong light source, the conferencing experi-
ence is also less pleasant. Virtual background such as blurring
the scene background or replacing it with the participant selected
background image or video has been commonly used to address
these issues. One challenge with using virtual background is that
an accurate segmentation of the participant in each video frame
is required. Fig. 1 illustrates the process of enabling the virtual
background feature in a video conference.

Current segmentation methods mostly rely on using Convo-
lutional Neural Networks (CNN) and have achieved good accu-
racy on portrait image segmentation [1]–[3]. However, the per-
formance of image based methods tends to degrade for portrait
videos. Artifacts such as flickering edge and false positive pre-
diction in the background can be observed largely due to the lack
of consideration for temporal information between frames. Video
segmentation methods have been investigated for general object
segmentation [4]–[7], but are not designed for portrait videos
where noticeable portrait edge detail and inter-frame consistency
are crucial. It is worth noting that real-time portrait video segmen-
tation may also have a computation constraint where only CPUs
can be used for CNN inference, therefore, efficient methods are
much to be desired.

In this paper, we propose several temporal-guided methods
for video object segmentation, including prior mask, optical flow,

Figure 1. Illustration of portrait video segmentation to enable virtual

background features for real-time video conferencing. The segmentation is

trained using an encoder-decoder CNN.

and visual memory. Our methods are implemented based on the
portrait image segmentation method PortraitNet [3]. Experimen-
tal results show that our methods with temporal guidance out-
perform those without any temporal guidance for public image
and video portrait datasets. In addition, the accuracy and runtime
comparison also suggest that our prior mask method is both effi-
cient and accurate among the proposed temporal-guided methods.

Related Work
Portrait Image Editing. Portrait image editing has attracted

great research interests in recent years. Portrait typically refers to
the upper-half region of a person, which is commonly featured
in photography. To enable editing for portrait images, an accu-
rate pixel-wise segmentation mask of the person in the image is
required. With the advance of convolutional neural network ar-
chitectures, improved performance has been achieved for seman-
tic segmentation. PortraitNet [3] proposed a lightweight U-shape
encoder-decoder model architecture. It uses the MobileNetV2
architecture [8] as the lightweight encoder to extract image fea-
tures and replaces the standard convolution in the decoder with
depth-wise separable convolution, which had fewer parameters
and lower inference latency. SINet [1] designed an extremely
lightweight portrait segmentation network with only 86.9K pa-
rameters and achieved comparable results with less than 1% mIoU
degradation than the state-of-the-art PortraitNet on a portrait im-
age dataset EG1800 [2]. EG1800 is the first public portrait image
dataset, which provides 1,800 portrait images and manually an-
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notated pixel-wise masks. Other public portrait image datasets
including Supervise-Portrait [9] and BaiduV1&V2 [10], which
were generated by cropping the upper half region from the origi-
nal annotated full-body person images.

Figure 2. Example artifacts for portrait video segmentation using image

based methods. The overlay of the predicted portrait mask and the original

video frame are shown. (a) Motion blur causes segmentation error on the

arm. (b) False positive prediction in a complicated background.

Portrait Video Segmentation. Portrait video segmentation
is closely related to portrait image segmentation, since a portrait
video can be processed as a series of portrait images. Even though
the current best portrait image segmentation networks can achieve
more than 95% mIoU accuracy on test images, their performance
tends to degrade on real-world videos due to the lack of consid-
ering temporal information. Typical artifacts, including mask in-
consistency between adjacent frames and segmentation error in
the background, greatly reduce the quality of the user experience.
Examples of such artifacts are shown in Fig. 2. A straightfor-
ward and effective method of incorporating temporal information
is optical flow. Jain et al. proposed a fusion model, which had two
CNN branches to process the RGB image and the optical flow, re-
spectively, and fused feature maps from both branches [4]. In a
recent work [11], Kuang et al. proposed using a processed opti-
cal flow result as an auxiliary input to the segmentation network,
which emphasized the region showing large motion. However, an
accurate optical flow requires additional computation, which in-
troduces non-negligible latency to the real-time applications. A
segmentation mask from the previous frame concatenated with
the RGB frame as the network input has significantly improved
the robustness of video segmentation [5], [12]. Recurrent mod-
ules such as LSTM (Long Short-Term Memory) and GRU (Gated
Recurrent Unit) have also been proved effective in several video
tasks [6], [13], [14].

Portrait Video Datasets. Although there are several pub-

lic video object segmentation datasets that include labelled hu-
man videos such as YouTube-VOS [7], DAVIS [15]. Videos in
these datasets are for general object segmentation, thus a dedi-
cated portrait video dataset is preferred in this task. However,
such a portrait video segmentation dataset is difficult to obtain
due to the high cost of manually annotating each video frame.
Kuang, et al. introduced the ConferenceVideoSegmentation-
Dataset [11], which contains 6 synthesized videos of online con-
ferencing scenes. Lin et al. proposed the VideoMatte240K mat-
ting dataset [16], which contains 484 high-resolution videos of
the human foreground and the alpha matte generated from green-
screen videos. Thus, a diverse set of video datasets can be gener-
ated by composing a person foreground with different background
images.

Methods
In this section, we first introduce PortraitNet [3], which we

use as the baseline model. We modify its network input and model
architecture to enable efficient learning from video temporal in-
formation.

PortraitNet Architecture
PortraitNet [3] achieves the state-of-the-art accuracy on real-

time portrait image segmentation. It uses a U-shape encoder-
decoder structure, which is similar to U-Net [17]. To further re-
duce inference latency without degrading the segmentation qual-
ity, several efficient lightweight model designs were adopted.
First, it uses MobileNetV2 [8] as the encoder to extract dense im-
age features from a relatively-small input image size 224× 224.
Compared with other powerful feature extractors like ResNet
[18], MobileNetV2 originally designed for mobile devices can
achieve comparable performance with far fewer model param-
eters and less inference latency. Furthermore, it introduces a
lightweight residual block for the decoder transition module,
which is used to reconstruct image features. The major improve-
ment of the proposed residual block is replacing the normal con-
volution with the depth-wise separable convolution, which de-
composes a normal convolution into a depth-wise convolution and
a point-wise convolution. Additionally, it introduces two auxiliary
training losses, namely boundary loss and consistency constraint
loss to improve performance.

Prior Mask Guided PortraitNet
In order to efficiently obtain temporal information from the

prior segmentation mask, we modify the first convolutional layer
of PortraitNet to allow 4-channel input, which are the RGB frame
and prior mask based on [5], [12]. We call the modified model
MaskPortraitNet. Due to the absence of a valid prior mask for the
initial frame during video inference, the initial prior mask needs
to be set as an empty mask, as is shown in Fig. 3.

In our experiment, we propose two strategies for training
MaskPortraitNet with static image and video datasets, respec-
tively. As described in [5], motion information can be learned
even from static images, where the prior mask of an image can be
simulated by applying affine transformation and thin plate spline
smoothing to the ground truth mask to simulate object motion and
camera position changes. This simulation technique offers more
flexibility for model training since we can simulate the tempo-
ral information from images instead of restricting training data to
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videos only. Compared to learning the temporal information from
static images with simulated motion, training with videos benefits
from learning more natural motion, which could make the trained
model better adapt to real-world video scenarios.

Figure 3. Illustration of the inference process for a portrait video with

MaskPortraitNet, which adds the prior mask as the auxiliary input to incorpo-

rate temporal information.

PortraitNet with Gated Recurrent Unit (GRU)
We propose an RNN-CNN model, GRUPortraitNet, which

is mostly inherited from PortraitNet except the original decoder
transition modules are replaced with efficient ConvGRU mod-
ules introduced in [13]. The ConvGRU module can effectively
incorporate temporal features represented by the hidden state in
the GRU module while processing spatial features in the convo-
lutional layers. However, due to the heavy computation load of
the ConvGRU module, only half of the feature maps are sent into
the ConvGRU module and the rest are later concatenated with
the output feature maps of the ConvGRU module, as is shown in
Fig 4.

Compared to other methods which utilize processed tempo-
ral guidance as the auxiliary model input to improve the video
segmentation performance, RNN-CNN models can effectively in-
corporate temporal information with only the RGB frame as the
model input.

Figure 4. Decoder transition module with ConvGRU used to reconstruct

image features from both spatial and temporal features in GRUPortraitNet.

For efficient usage, only half of feature maps are processed in ConvGRU.

Flow Guided PortraitNet
To enable learning from optical flow features, We utilize the

architecture proposed by [11], which introduces a feature mask of
large motion as an auxiliary input in addition to the RGB frame to
improve the segmentation performance. We call this optical flow
based method FlowPortraitNet. The pipeline includes two major
parts, motion feature extraction and segmentation. First, an accu-
rate optical flow result between two adjacent frames is obtained by

running a pre-trained CNN-based optical flow estimation model
PWC-Net [19]. Then, a binary feature map is generated by the
motion extraction function using the estimated optical flow. For
fair comparison, we adopt PortraitNet as the segmentation net-
work with the RGB frame and motion feature map as the network
input.

Experiments
In this section, we first describe datasets used for our model

training and evaluation. Then, we discuss the experiment’s setup
and training strategies for each implemented method.

Figure 5. Example of a synthetic video frame generated by composing a

person foreground from VideoMatte240K dataset [16] with a random back-

ground image.

Table 1: Image and video datasets used in our experiments.
Dataset Type Train / Test
EG1800 [2] image 1500 / 300
Supervise-Portrait [9] image 1858 / 400
BaiduV1&V2 [10] image 8451 / 2112
ConferenceVidSeg [11] video 4 / 2 (clips)
VideoMatte240K [16] video 479 / 5 (clips)

Datasets
The original PortraitNet uses the EG1800 [2] and Supervise-

Portrait [9] image datasets. In our implementation, two additional
portrait image datasets, BaiduV1&V2 [10] are also used. The
total number of training images exceeds 10K, which is desired for
video segmentation to cover more diverse scenes.

For training with videos, the VideoMatte240K [16] is used
since it provides a large number of videos with detailed person
foreground and associated alpha matte. These details also allows
use to generate synthetic videos without apparent edge artifacts.
Due to licensing restrictions, only 193 background images are
released compared to more than 8K background images used in
model training reported in the paper [16]. Additionally, we collect
4,018 background images sourced from the Internet, representing
different levels of scene complexity. The process of generating
synthesized video frames is illustrated in Fig 5.

To evaluate our implementation, we combine the test videos
from ConferenceVideoSegmentation [11] and VideoMatte240K.
We remove two videos from the test set of VideoMatte240K since
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they feature the full-body region and the presence of multiple per-
sons, which is not the target of portrait segmentation.

Training
For model training, we use the binary cross entropy (BCE)

loss:

Loss =− 1
N

N

∑
i=1

yi · log(pi)+(1− yi) · log(1− pi) (1)

where pi and yi denote the predicted probability and the ground
truth label for the ith pixel, respectively.

Mean intersection over union (mIoU) is used as the quanti-
tative metric for evaluating segmentation quality:

mIoU =
1
N
·

N

∑
i=1

Predi ∩GTi

Predi ∪GTi
(2)

where Predi and GTi are the predicted and the ground truth masks
for the ith images.

All of our experiments are conducted on a single NVIDIA
GTX TITAN V graphics card with 12GB memory. For efficiency,
all training and testing inputs are resized to 224×224. To make
trained models generalizable for different scenes not in our origi-
nal training data, we apply several augmentation methods includ-
ing affine transformation, cropping, scale change, horizontal flip,
image noise, color shift, brightness change and contrast change.
Compared to the offline augmentation method, which takes too
much disk space, we adopt the more flexible online augmentation
method in our implementation.

PortraitNet is our baseline model, which does not incorpo-
rate any temporal information in processing portrait videos. We
train the model on all the image datasets listed in Table 1 for 200
epochs with batch size 64. The initial learning rate is set to 0.0001
and is reduced to 0.00001 after 100 epochs. The Adam algorithm
is applied as our training optimizer.

MaskPortraitNet takes the segmentation mask from the
previous frame as the auxiliary input. We train this model on
image datasets and video datasets respectively. For training this
model on image datasets, training details are set to be the same
as that in the baseline PortraitNet except that the training prior
mask is randomly generated from the ground truth mask. We also
train this model on the VideoMatte240K video dataset, where the
training prior mask comes from the ground truth mask of the pre-
vious frame. We only train the model for 50 epochs with a fixed
learning rate of 0.00001, which shows good convergence. Since
a prior mask is not always available in real-world application, the
trained model should work without a valid prior mask. Therefore,
we apply an empty mask as the training prior mask for 30% of the
training data to improve the robustness of the model.

GRUPortraitNet learns from video sequences. For every
epoch, we randomly pick 20 different subsets of video frames
from each video in the VideoMatte240K dataset. Each subset in-
cludes continuous frames of a certain number. We apply a tempo-
ral augmentation method on video sequences including randomly
adjusting the video frame rate and reversing the video sequence,
in addition to the contextual augmentation for individual frames
such as rotation, resizing, and etc. We set the initial learning rate
to 0.0001 for the first 50 epochs where the video subset length is

set to 15. Then the learning rate is reduced to 0.00001 for another
50 epochs where the video subset length is increased to 25.

FlowPortraitNet also takes an additional fourth channel in-
put, which is the processed motion feature map. Unlike other
methods we introduced in this paper that do not require pre-
computed results, training for FlowPortraitNet relies on the time-
consuming process of optical flow estimation and motion feature
extraction. If trained on the VideoMatte240K dataset, which has
around 240K video frames in total, the computation is too large.
Instead, we follow the original training setup in [11], which trains
the model on the relatively small ConferenceVideoSegmentation-
Dataset. Due to the small dataset size, the model converges in 10
epochs.

Table 2: mIoU results on the evaluation videos using different
methods. PortraitNet is the baseline method without any tem-
poral guidance. The other methods are based on PortraitNet
and are modified to utilize different temporal guidance.

Method Dataset Guidance mIoU
PortraitNet image None 90.5%
MaskPortraitNet image Prior mask 92.6%
MaskPortraitNet video Prior mask 96.7%
GRUPortraitNet video Memory 95.4%
FlowPortraitNet video Optical flow 94.3%

Results and Discussion
We report the mIoU results on the evaluation videos using

different methods in Table 2. Since the baseline PortraitNet does
not incorporate any temporal information to improve segmenta-
tion robustness for video frames, it has the lowest test accuracy
among all methods we implemented. Using the same training im-
age dataset and strategy, MaskPortraitNet which utilizes the piror
mask as the auxiliary input channel achieves a 2.1% increase on
the test accuracy compared to the baseline PortraitNet trained with
the same image dataset. In addition, MaskPortraitNet trained on
the video dataset achieves the best result, which shows that train-
ing on video datasets helps further improve the performance com-
pared to training on image datasets. This is likely due to the ben-
efit of learning from real prior masks in the video dataset com-
pared to the simulated prior masks from images. GRUPortraitNet
and FlowPortraitNet both show improved results compared to the
baseline method. A visual comparison of the segmentation qual-
ity among these methods is shown in Fig 5.

To compare the efficiency of different methods in our experi-
ment, we also conduct the runtime analysis as is shown in Table 3.
For the runtime measurement, an Intel i7-1185G7@3GHz CPU is
used where the latency is obtained by averaging over 100 itera-
tions after the initial 10 warmup iterations. Since these methods
are all based on PortraitNet, their model sizes are expected to be
very close. FlowPortraitNet requires an additional CNN model
PWC-Net [19] to estimate optical flow, thus we report their com-
bined model size. It is also worth noting that PWC-Net is not
originally designed for mobile devices and can only achieve real-
time inference on high-end GPUs. Future work can focus on im-
plementing other optical flow estimation methods, which achieve
a balance between the computation and quality.

263-4
IS&T International Symposium on Electronic Imaging 2022

Imaging and Multimedia Analytics at the Edge 2022



Figure 6. Visual comparison of segmentation results of a sample video using the different methods proposed. Apparent segmentation regions of error are

indicated with red blocks.

Table 3: Comparison of model size and inference latency of
the proposed methods on an Intel i7-1185G7@3GHz CPU. Op-
tical flow estimation in FlowPortraitNet requires an additional
computation-intensive PWC-Net, thus the latency is reported
on an NVIDIA GTX TITAN V GPU.

Method Size Latency
PortraitNet 1.9M 57ms
MaskPortraitNet 1.9M 58ms
GRUPortraitNet 2.3M 66ms
FlowPortraitNet 10.6M 45ms (GPU)

Conclusion
In this paper, we proposed different strategies to incorporate

temporal information in portrait video segmentation such as opti-
cal flow, visual memory, and prior mask guidance. Our methods
are implemented on the image based PortraitNet. Experimental
results show that the use of a prior mask will not introduce signif-
icant latency and shows the best improvement compared to an im-
age based method without temporal guidance. In addition, train-
ing on video datasets shows a future advantage compared to using
image datasets when incorporating prior mask for video segmen-
tation.

Our experiments are conducted on public video datasets that
are generated from green-screen videos and composited on back-
ground images. They may not represent the more dynamic and
complex background scenes in real-world portrait videos. Our
future work will include a dedicated real-world portrait video
dataset to evaluate the performance of proposed portrait video
segmentation methods.
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