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Abstract
Virtual Reality (VR) Head-Mounted Displays (HMDs), also

known as VR headsets, are powerful devices that provide inter-
action between people and the virtual 3D world generated by a
computer. For an immersive VR experience, the realistic facial
animation of the participant is crucial. However, facial expression
tracking has been one of the major challenges of facial animation.
Existing face tracking methods often rely on a statistical model
of the entire face, which is not feasible as occlusions arising from
HMDs are inevitable.

In this paper, we provide an overview of the current state of
VR facial expression tracking and discuss bottlenecks for VR ex-
pression re-targeting. We introduce a baseline method for expres-
sion tracking from single view, partially occluded facial infrared
(IR) images, which are captured by the HP reverb G2 VR headset
camera. The experiment shows good visual prediction results for
mouth region expressions from a single person.

Introduction
Virtual Reality (VR) technology overcomes the limitations

of 2D animation and realizes 3D animation with functionalities to
enhance the spaciousness of objects. 3D Facial animation com-
bined with 3D rendering technology can generate a high-quality
real-time animation video which is now widely used in applica-
tions such as human-computer interaction (HCI), cartooning, and
virtual communications [1]. For the facial animation, it is criti-
cal to keep the facial expressions natural, adhere to human facial
anatomy and correctly match the muscle movement of the per-
son. Facial expression tracking is the process of extracting facial
expression features from data captured by HMDs. The design of
HMDs influences the type and quality of the collected data, while
the selection of facial expression features affects the robustness of
the predictions and the computational complexity.

Head-Mounted Displays (HMDs) include special VR cam-
eras to capture facial expressions located around the eyes and
mouth. Although different VR products each have their own set-
tings for the cameras, they only capture partial face images due
to the occlusion caused by the HMD device itself [2]–[4]. Hence,
most real-world image or video expression recognition methods
requiring full face input will not work, as partially occluded face
data has limited information. Research about occluded facial ex-
pression recognition has also been conducted, including real oc-
clusion and synthetic occlusion. However, the occluded region
is smaller compared to images captured by the HMD device and
most existing works focus on expression classification [5], [6].
Customized methods are developed for facial expression tracking

based on specific HMD devices.

The three main types of headset-mounted cameras (HMCs)
are IR cameras, RGB cameras, and RGBD cameras. The ad-
vantage of IR cameras is that the IR image has a more stable
performance under different lighting conditions than RGB cam-
eras. However, the IR images are single-channel images without
color information. The depth camera is another type of camera to
add distance information for each pixel in the image, with addi-
tional computation needed to calculate depth. Apart from the type
of camera, the number of cameras and their position and angle
are also important factors for facial expression tracking. Hence,
the design of HMDs is a trade-off between memory, computation
cost, and performance.

A widely used tool for coding facial expressions known as
the Facial Action Coding System (FACS) was introduced in [7].
It breaks down facial expressions into individual components of
muscle movements, called Action Units (AUs). One action unit
(AU) represents a facial mesh deformation from a neutral face to
a specific semantically meaningful expression, and the intensity
of the AU indicates the extent of the expression. In total, 46 AUs
are decomposed from facial behaviors in the FACs. There are
complicated correlations among different AUs due to the diver-
sity of facial expressions. Meanwhile, restraint also exists for the
combination of AUs as the AU space is sparse, and any random
combination of AUs may not produce realistic facial expressions
[8]. For real-life expression tracking, we need to ensure the re-
constructed facial expressions are realistic. Therefore, our work
adopts this framework and focuses on realistic facial expressions
prediction of related AUs.

In this paper, we propose a baseline method for facial expres-
sion tracking from IR images captured by the HMC of HP reverb
G2 HMDs. We aim to predict facial action unit intensities to esti-
mate the facial muscle movement of the wearer. We select seven
expressions including mouth smile, smile left, smile right, frown,
pucker, move left and move right. We use a regression network
to predict facial action unit intensities and compare the predicted
facial expressions with the ground truth expressions. The predic-
tion results are also evaluated quantitatively using Mean Absolute
Error (MAE) and Pearson’s correlation coefficient (PCC).

In summary, our main contributions include the following.
First, we provide an overview of current VR expression retarget-
ing works and discuss existing challenges. Second, we propose
a facial expression tracking baseline method for the challenging
case where faces are partially occluded by the HMDs. Third, our
method is evaluated on a single-user dataset both quantitatively
and qualitatively.
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In the following sections, we will first briefly review related
expression tracking works. Then,we introduce our baseline struc-
ture and the regression model. Finally, we show the detailed result
of the performance experiment based on the proposed model, in-
cluding quality comparison and quantity evaluation.

Related Work
In this section, we review two related topics: Head-Mounted

Displays (HMDs) and 3D modeling. We will introduce the design
details of different HMDs inputs and 3D face modeling from these
inputs.

Head-Mounted Displays (HMDs) Inputs
Expression tracking relies on the type of data captured by the

HMDs. Although most research focuses on image or video input,
the electromyography (EMG) signal is another input form that
supports a good prediction of facial expressions. In the following
subsections, we discuss facial expression tracking works using
either HMC or EMG input.

Headset Mounted Cameras (HMCs)
Image or video input of HMCs is the most common method

to detect facial muscle movement. Because the inference process
requires an efficient expression tracking pipeline, the number and
computational cost of HMCs need to be small. A single-view
IR camera is the most lightweight choice for HMCs but it pro-
vides limited information about the facial features when only a
single view is used. Several approaches have been proposed to
compensate for the limitation and occlusion of HMC videos or
images. For example, Wei et al. proposed to enrich the dataset
by designing a training device that is different from the testing
device. They generated an expression tracking model with 9 IR
HMCs for training and 3 IR HMCs for real-time testing [3]. In
addition, the training device collects two more eye region views
and four more mouth region views. While research in [4] used
depth cameras and included 3 RGBD single view cameras. The
design of HMDs for testing and training is also different. Here,
full-face four-channel videos were used as training data and par-
tially occluded face videos were used in testing. This method
has comprehensive information to build an expression tracking
model. Another RGB-based HMC design was proposed by the
same research group in 2016 [9], where a monocular RGB HMC
is placed in front of the mouth to track speech and mouth move-
ment while two IR cameras are used to track eye region motions.
The combination of speech and eye animation shows good pre-
diction results on specific users with selected expressions.

Electromyography (EMG)
Integrated EMG sensors are more lightweight and ergonom-

ically comfortable compared to HMCs, while the disadvantage
comes from direct contact with the skin is required. With elec-
trodes directly placed around facial muscles, the EMG signal has
a large signal-to-noise ratio [10]. Lou et al. proposed an approach
to recover facial action unit intensities from EMG signals in [11].
FACETEQ hardware [12] can be placed on the emotionally salient
facial part (ESFP), which is around the eyes and nose region. Con-
sequently, the sensors cover the forehead, cheek, and outer-eye-
corner regions. Seven action units could be predicted, including
eyebrow movement, eye, and mouth openness, cheek raising, lip

corner puller, and lip pucker.

3D Modeling
Reconstructing 3D facial expressions from a single 2D im-

age is an active research topic in image processing and computer
graphics. In order to construct a fully-rigged 3D mesh, it is nec-
essary to obtain a parameterized representation for 3D face syn-
thesis. Given an input 2D image, one can obtain a representation
that contains information related to face shape and appearance.
Here, we introduce several commonly used 3D modeling meth-
ods, including 3D morphable modeling, active appearance model-
ing, deep appearance modeling, landmark fitting, and AU-related
approaches.

3D Morphable Model (3DMM)
Different methods have been proposed to track facial expres-

sions from monocular inputs. Some focus on using statistical
models for facial texture and shape. A popular method is the 3D
Morphable Model (3DMM) [13]. 3DMM is a statistical model
that builds face shape and appearance based on the facial image
data from 200 people. It parameterizes the human face into high
dimensional subspaces to represent the 3D facial mesh in terms
of face shape and texture. The authors proposed this statistical
model as a parametric linear subspace with point-to-point corre-
spondence that enables 3D face reconstruction from 2D images.
Given a 2D face image, the method finds a point in this high di-
mensional subspace that represents a similar face. This task can
be achieved by regressing the 3DMM face shape parameters using
the 2D input image [14]–[17].

Active Appearance Modeling (AAM)
Active Appearance Modeling (AAM) aims to match a given

image to a statistical shape model that parameterizes the shape
and appearance of an object. For facial expression tracking, AAM
is able to successfully disentangle the shape and appearance using
Principle Component Analysis (PCA) [18]. Similar to 3DMM-
based approaches, given a 2D image, AAM-based methods focus
on fitting AAM parameters accurately to reconstruct a 3D face
with an expression [19]. However, AAM uses the entire face re-
gion to localize facial landmarks in order to establish correspon-
dence between the training 3D face mesh and the input 2D image
for more accurate estimation. In this case, the performance of
such approaches would be restricted when the face is partially oc-
cluded, for example when wearing a VR headset.

Deep Appearance Modeling (DAM)
Recently, with the emerging interest in the intersection be-

tween deep learning and computer graphics, Deep Appearance
Modeling (DAM) has shown success for modeling human faces
in 3D [20]. Using images captured by 40 cameras from differ-
ent viewing angles, a Variational Autoencoder (VAE) [21] is used
to model a data-driven avatar that learns a joint latent representa-
tion of face geometry and appearance. With view-point condition-
ing, VAE is able to disentangle the viewpoint-specific information
from the latent representation of face geometry and appearance.
By manipulating the latent variable, it is able to perform control-
lable synthesis of the facial expression without modifying the fa-
cial geometry and identity of the given avatar.
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Landmark Fitting Approach
Incorporating landmark detection into 3D face modeling can

add constraints for synthesis [22], [23]. Given a set of landmark
points with the correspondence in the 3D face model, some tech-
niques fit the 3D surface with the detected landmarks [24]. These
approaches are accurate in terms of keeping the facial expression.
However, it is unclear how well they perform if the face is par-
tially occluded, especially when the occlusion affects the detec-
tion of facial landmarks.

Action unit (AU) approach
Research about the facial action unit is initially a classifica-

tion problem to detect whether the action unit has been activated.
For instance, Gwen et al. proposed a toolbox for facial expres-
sion recognition and action unit intensity estimation using Gabor
filters and support vector machine (SVM) [25]. As more detailed
datasets such as BP4D [26] and CK+ [27] became available in-
cluding annotated intensity of action units, more researchers have
been exploring AU intensity estimation. The regression problem
associated with AU intensity estimation is typically based on six
levels of intensities, ranging from 0 to 5. A heatmap-based hour-
glass network is proposed as the estimation model which is jointly
combined with landmark detection in [28], [29]. To support high
precision AU intensity estimation, a dataset with higher preci-
sion annotations was proposed which included two decimal points
within the range 0 to 1 [30].

Method
In this section, we illustrate the baseline structure of VR ex-

pression tracking for HP Reverb G2 HMDs1. As shown in Fig-
ure 1, the input to the regression model is an IR image, and the
output expression is reenacted on the neutral 3D model of the tar-
get avatar using the predicted AU intensities from the regression
model. The phrase reenact here means transferring a facial ex-
pression from a source face to a target face while preserving the
appearance and the identity of the target face. The quantity evalu-
ation uses Mean Absolute Error (MAE) and Pearson’s Correlation
Coefficient (PCC) between the ground truth and predicted AU in-
tensities. The quality evaluation assesses the difference between
the expression of the input image and that of the reenacted image
visually.

Figure 1: Overview of the baseline structure. The left side is the
model training part, and the right side is for expression reenact-
ment.

The goal for the model training part is to accurately predict
AU intensity given only a single IR image from an HMC. We will

1https://www.hp.com/us-en/vr/reverb-g2-vr-headset.html

first demonstrate the process of capturing the input IR camera im-
ages for data collection. As shown in Figure 2a, the HP reverb
headset has a total of three IR cameras installed on the device.
One camera is placed in front of the nose as marked by the green
box and the other two are in front of the eyes. The eye cameras
focus on only the eyeball region, and most of the eyebrow is ex-
cluded from the camera view. The eyeball region captured from
the eye camera may deviate from the center of the image or video
as the participant moves when wearing the HMD. The mouth IR
camera captures the mouth region and part of the nose region of
the participant. This view includes the area under the nose except
the partial upper cheek regions. Figure 2b shows an example of
the combined IR image of the eyes and mouth regions.

(a) (b)
Figure 2: (a) The HP Reverb G2 HMD. (b) IR images from HP
reverb camera view. The eyes and mouth images are separately
rendered and combined as one image. The size of eye images is
200×200, and that of mouth image is 400×400.

Data imbalance is a major issue while collecting facial ex-
pressions for model training. The difficulty comes from ensur-
ing the proportions of different expressions are similar in order
to keep the dataset balanced. An imbalanced dataset typically
contains more neutral faces, which results in a bias toward the
prediction of a neutral face.

Since a much larger number of AUs are involved in eye and
mouth combined expressions than only mouth expressions, cur-
rently, we focus on designing models to track mouth movements
in terms of AU intensity prediction. We select 20 AUs corre-
sponding to the mouth region as the regression model output.
They are associated with 7 mouth expressions including smile,
smile left, smile right, frown, pucker, mouth move left, and mouth
move right. These expressions are used to implement expression
tracking for a single person.

The goal of our model is to track facial expressions using a
regression model. The selection of the regression model is based
on the following considerations. For potential deployment on the
device, we need to consider the model size and device compati-
bility. We also need to consider the prediction accuracy of facial
expressions. As a result, we evaluated several deep neural net-
work architectures including Inception-ResNet-V1 [31], EffNet
[32], ShuffleNet [33], VGG-11 [34], MobileNetV2 [35] and Mo-
bileNetV3 [36] in an initial experiment. This initial evaluation
allowed us to test the accuracy of expression prediction using the
regression model trained on one person’s expression data.

Table 1 shows the detailed configuration for each network
structure. Some networks use pre-trained model weights from Im-
ageNet [37], which is indicated in the second column. The epoch
number column shows the speed of convergence of each network.
Each network is set to train for a maximum of 400 epochs, and
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the number in the table represents the actual epoch number when
the training converges. Mean Absolute Error (MAE) and Pearson
Correlation Coefficient (PCC) are used as the metrics to compare
the mean result of 7 expressions. From the comparison result in
Table 1, EffNet, VGG-11, and Inception-ResNet-V1 have a rela-
tively large model size which does not fit our design requirement.
Among the network structures with large model sizes, VGG-11
performs the best, and EffNet has a comparable result. While
comparing the mean MAE loss and mean PCC among the network
structures with a small model size, the result of MobileNetV3
has about the same result as EffNet. Although MobileNetV2 and
ShuffleNet have smaller model sizes, MobileNetV3 is selected as
the backbone network for our baseline due to better prediction
results.

Table 1: Backbone model structure comparison
Network pre-

trained
(Y/N)

# of
Epochs

MAE PCC Model
Size
(M)

EffNet [32] N 167 0.63 0.995 1,878
VGG-11 [34] Y 366 0.62 0.994 1,487
Inception-
ResNet-V1
[31]

N 349 0.92 0.984 272

MobileNetV3
[36]

Y 370 0.64 0.990 53

MobileNetV2
[35]

Y 388 0.87 0.986 29

ShuffleNet
[33]

N 377 0.84 0.987 15

Mean Squared Error (MSE) (Eq. (1)) is used as the loss func-
tion for each model, where G represents ground truth AU intensi-
ties and P represents prediction AU intensities. We aim to predict
a total of 20 AUs with our model.

Loss =
mean( | G−P |2 )

batch size×20
(1)

Data augmentation is also used during the model training. To
maximize the diversity of the dataset and balance the left and right
expressions, we randomly picked half of the images and flipped
the images from left to right. Meanwhile, the left AU intensities
are also exchanged with the right AU intensities. For example,
the mouth smile left intensity is exchanged with the mouth smile
right intensity.

Experiments
In this section, we describe the experimental results of our

proposed VR expression tracking method. Based on the Mo-
bileNetV3 structure, we trained the model in the PyTorch frame-
work. The regression model is trained on 7 expressions from one
person, and the testing expressions are separately collected from
the same person. The training parameters are set to the follow-
ing: learning rate at 0.0001, weight decay at 0.0001, batch size
at 64, and epoch number at 135. The learning rate scheduler is
StepLR with a step size of 47 and a weight of 0.9. The evalua-

tion metrics include Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Pearson’s Correlation Coefficient (PCC).

To evaluate the visual quality of predicted facial expressions,
we transfer the predicted expression to a target virtual avatar. The
process of transferring source expression to the target character is
called facial reenactment. Figure 3 and Figure 4 show the visual
result of predicted expressions after reenactment. We evaluate the
results by comparing the predicted expression with the ground
truth expression and assess whether the two expressions have the
same semantic meaning. Figure 3 shows the output expression
with smile-related input expressions. The first row indicates a
good prediction of mouth openness and intense smile. The sec-
ond row shows two smile left expressions (to the left side of the
person) with a slight difference. From the output, we observe dif-
ferent muscle movements around the right mouth corner. In Fig-
ure 4, the first row shows results of relaxed and stretched mouth
corner prediction. The second row shows the visually correct pre-
diction for mouth pucker and mouth move right expressions.

Figure 3: Predicted smile expressions. For each result image, the
left partial face is the input mouth IR image, the right image is
the predicted expression. Subfigures (a) - (d) correspond to the
results of four expressions: neutral face, smile, smile left, and
slight smile left.

Figure 4: Other predicted expressions. For each result image,
the left partial face is the input mouth IR image, the right image
is the predicted expression. Subfigures (a) - (d) correspond to
the results of four expressions: mouth open, slight frown, pucker,
mouth move right.

We also performed a quantitative analysis based on the eval-
uation metrics: MSE, MAE, and PCC. Figure 5 shows the scatter
plots of predicted values. We list the results of four AUs: mouth
move left, mouth move right, mouth smile left, and mouth smile
right. The diagonal line (shown in black) indicates an exact match
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between the ground truth and our prediction. The closer the pre-
dicted values are to the diagonal line, the better the prediction.
The PCC values for testing images are all higher than 0.96 ex-
cept for several neutral face images as shown in Figure 6. The
cases with small PCC values all have ground-truth AU intensities
equal to zero for all 20 AUs, which result in a large variance of
PCC value for the neutral face. However, the large variance does
not necessarily indicate a bad prediction. In these cases, the pre-
dicted AU intensities for the neutral face are still very small, so
the expressions are correctly predicted as a neutral face from vi-
sual assessment. For expressions other than the neutral face, the
zoom-in plot shows high correlation values. The mean PCC value
is 0.992 and the median PCC value is 0.995.

Figure 5: Scatter plots of predicted AU intensities vs. ground
truth. Subfigures (a) - (d) correspond to the results of four ex-
pressions: mouth move left, mouth move right, mouth smile left,
mouth smile right.

Figure 6: Box plot of the distribution of PCC values of the entire
testing dataset. Each PCC value is the Pearson’s correlation coef-
ficient between the ground truth AU intensities and the predicted
AU intensities of a testing image input. A zoom-in plot shows the
region around the mean PCC value.

To conclude, we trained a regression model to predict 7
mouth region expressions from a single person. We compared
the visual result of each output expression with the ground truth
input expressions. For the selected mouth region expressions, our

method shows good prediction results both visually and quantita-
tively.

Conclusion and Future Work
In this paper, we conducted a comprehensive survey of VR

expression tracking and discussed current challenges. Next, we
proposed a baseline expression tracking method for the HP Re-
verb G2 device based on a regression model trained on a single
person. The regression model uses the MobileNetV3 network
structure combined with data augmentation. Experimental re-
sults show good performance both visually and quantitatively for
7 mouth region expressions from the same person.

Our future work will focus on cross-person expression track-
ing modeling, which is more challenging due to the diversity of
facial features. We are also interested in extending the current
method to eye tracking, cheek expressions tracking, and tongue
movement.

Another potential extension of our proposed work is to trans-
fer from image input to video input, where temporal information
can be taken into consideration to further enhance the prediction
results. Other factors to be considered may include lighting varia-
tion in IR images, movement of the participant when wearing the
headset, etc.. Mouth region expression tracking combined with
speech animation is another important direction to explore, which
would enable virtual communication for HMDs.
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