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Abstract
Event sensing is a novel modality which is solely sensitive

to changes of information. This redundancy reduction can be uti-
lized to achieve high temporal resolution, reduce power consump-
tion, simplify algorithms etc. The hardware-software co-design of
event sensors and algorithms requires early simulation of the sen-
sor system. It has been shown that high-speed video is well suited
to derive such event data for temporal contrast based event sen-
sors, but the simulators published so far neglect phenomena such
as readout latency or refractory period. This paper presents on-
going modeling activities at OmniVision Technologies.

Introduction
Event sensors have recently been gaining lots of popular-

ity [1,2]. The idea of using bio-inspired visual sensing dates back
to Prof. Carver Mead’s work around 1986-1991 [2, 3]. Given the
recent advances in CMOS imaging and especially 3D integration
technologies such as sensor stacking, event sensing has become an
increasingly promising technology for e.g. power efficient high-
speed data acquisition or high dynamic range [4, 5]. Numerous
use-cases have been reported such as gesture recognition, SLAM,
surveillance or ADAS [1, 2]. Significant research is directed to-
wards novel algorithm and hardware developments by academia
as well as industry. Accurate system simulation enables improved
understanding of the underlying hardware and enables early al-
gorithm development. Event simulators for generating training
data from high-speed video have been reported [6–8]. These sim-
ulators employ pre-processing such as re-sampling to a desired
resolution and input frame-rate as well as color-space conversion
to generate the equivalent of photo-current and "front-end" volt-
age proportional to log-intensity for each pixel. Both simulators
also consider threshold mismatch for individual pixels and can
furthermore generate noise events. It is noteworthy that the V2E
simulator considers a light-dependent latency model [6,8]. These
works treat pixels independently which enables distribution of the
calculations to e.g. different cores of a GPU. However, an implicit
drawback of this approach is that it neglects the finite latency of
the readout by means of peripheral circuitry. Also refractory pe-
riod is not considered in today’s simulators. The simulator in [7]
is designed to be a generic simulator offering "typical" event data.
This simulator is not linked to an actual hardware implementation
and is hence, not calibrated. The V2E simulator has been indi-
rectly calibrated by adjusting e.g. comparator threshold settings
to yield similar order-of-magnitude event rates as expected from
a known event camera.

This paper presents a simulator that considers realistic sys-
tem limitations such as finite latency of the peripheral readout cir-
cuitry as well as refractory period. The impact of these phenom-
ena on event rate is studied for a set of high-speed video data.

Figure 1. Schematic pixel operation. (blue circle: reference voltage; red

circle: triggered event; C: voltage threshold)

Methodology

Fig. 1 schematically explains the operation of an event
pixel. It assumes that the pixel was activated at t = 0 where
the log-intensity is sampled and stored as a reference voltage.
A difference-detecting circuit continuously tracks the difference
of the momentary log-intensity compared to the stored reference
level. If at a subsequent time point (t1) the log-intensity exceeds
the sampled log-intensity plus/minus a predefined temporal con-
trast level C an event is triggered. The event firing exhibits a la-
tency relative to the ideal firing time-point which is determined
by a) the front-end latency as well as b) the overall congestion
of the readout periphery and hence, is highly scene dependent.
Once a pixel has been read (t2) a programmable refractory period
is started. The pixel is then automatically re-activated at the end
of the refractory period (t3) and a new reference log-intensity is
sampled. The refractory period can help suppress readout band-
width occupation by very active or noisy pixels in order to allow
less active pixels to communicate at lower latency.

The simulator is composed of three essential modules. The
first module estimates photocurrents for each pixel based on a
given input video-frame-set at known frame rate. Similarly to
[7, 8] the optical flow method described in [9] can be used to in-
terpolate the input video. Then, based on an inverse model irra-
diance spectra are estimated and mapped onto quantum efficiency
(QE) curves of a target sensor and scaled according to a desired
illuminance. The second module models analog circuit imper-
fections such as finite pixel latency through bandwidth limitation,
noise and mismatch. It converts the photocurrent maps of the first
module into front-end voltage maps representing the input of the
difference detecting circuit of an event pixel. The third module
ultimately models the peripheral readout circuitry such as event
scanning operation, refractory period, event formatting etc. The
following three sections will highlight key aspects of those mod-
ules.
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Figure 2. Program flow explaining the generation of photocurrent transients.

Photocurrent Estimation
Typically high speed video frames are available in a stan-

dard color space, e.g. sRGB. In previous works, a simple sRGB
to luma conversion is carried out to obtain the corresponding (lin-
ear) luma frames [6]. The luma frames are subsequently treated
as pixel irradiance map for further simulation. This scheme, al-
though being convenient and illustrative, doesn’t take into account
the discrepancy between the luminosity function and the sensor’s
QE curve. Also it lacks flexibility for custom illumination set-
tings.

To address these issues, we implement the process shown in
Fig. 2. Here for each input frame, we first convert it to a linear
color space, e.g. XYZ, and then apply a Moore–Penrose pseudo-
inverse of the corresponding color matching functions (CMF) to
obtain a least-norm estimate of the spectral irradiance map. The
spectral irradiance is then converted to spectral photon irradiance
according to the photon energy. Finally, we obtain the pixel pho-
tocurrent by projecting the spectral photon irradiance onto the QE
curve and scaling according to pixel size and illuminance level.

In equations, we first write down the image plane illumi-
nance using the CIE photopic luminosity function [10]:

Ev = κ · Êe

∫
ȳ(λ ) · Ẽe(λ ) ·dλ (1)

Here, κ = 683.002lmW−1 [11], ȳ(λ ) is the luminosity function,
Êe and Ẽe(λ ) are the peak and normalized spectral irradiance on
pixels, respectively. Meanwhile, the photocurrent of a pixel can
be written as:

ip =
∫

e ·Φph(λ ) ·q(λ ) ·dλ =
a · e
h · c
· Êe

∫
λ ·q(λ ) · Ẽe(λ ) ·dλ (2)

Here Φph is photon flux, a is the pixel area, e is the elementary
charge, h is the Planck constant and c is the speed of light. Com-
bining Eq. 1 and 2, we obtain:

ip =
a · e
h · c
·Ev ·

∫
λ ·q(λ ) · Ẽe(λ ) ·dλ

κ ·
∫

ȳ(λ ) · Ẽe(λ ) ·dλ
(3)

Now discretizing Eq. 3 with the least-norm estimation for spectral
irradiance, we have

ip =
a · e

h · c ·κ
·Ev ·

qT ΛM†p
ȳT M†p

=
a · e

h · c ·κ
· Ev

Y
·qT

ΛM†p (4)

Here, Λ ∈ Rn×n is a diagonal matrix containing the wavelengths;
q∈Rn represents the sensor’s QE curve; p∈R3 contains the pixel
values in XYZ space and M† ∈ Rn×3 is the pseudo-inverse of the
XYZ CMF’s denoted as M ∈ R3×n.

Figure 3. (a) Selected sample spectra. From top to bottom: sun, sky, blue

LED, phosphor, leaf, blue paper, skin. (b) Sample QE curve and XYZ CMFs.

By convention, we set Y = 1 for the white point in the im-
age, and denote the corresponding absolute illuminance as Ew

v .
Assuming constant normalization across the pixel array, we have:

Ev

Y
=

Ew
v
1

= Ew
v (5)

Using Eq. 5, Eq. 4 can be further simplified as:

ip = α ·Ew
v ·qT

ΛM†p , α =
a · e

h · c ·κ
(6)

Here α depends on the sensor pixel size. Eq. 6 gives us a sim-
ple linear relation between photocurrent and pixel values and ac-
counts for different sensor parameters. We provide the variable
Ew

v for users to specify the global illumination level, as in practice
CIS camera settings would adjust according to overall illumina-
tion, but EVS sensor’s behavior would vary significantly.

To compare with the photocurrent estimation in [6], we col-
lected spectra of some common targets shown in Fig. 3(a). In
Fig. 3(b) we plot a sample EVS sensor QE curve along with the
XYZ color matching functions. Note that the luma measurement
essentially originates from the ȳ(λ ) luminosity curve, which is
usually different from the sensor’s QE curve.

The recovered photocurrents are shown in Fig. 4. The ground
truth values are obtained by directly applying the QE curve to the
spectra. For a fair comparison, all photocurrents are normalized
to the "sun" photocurrent obtained by the same method. Accord-
ing to the plot, for "phosphor", "leaf" and "skin", the two methods
result in similar photocurrent estimate, likely because the X and
Z CMFs don’t provide extra information of the original spectra.
However, for "sky", "blue LED" and "blue paper", there is appar-
ent improvement in the estimation accuracy by using the pseudo-
inverse method. This is most likely because large portions of the
spectra are not sufficiently measured by the luminosity curve.

Figure 4. Comparing photocurrent reconstruction results.
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Figure 5. Simplified event-sensing circuitry after [12]

Front-End Voltage Simulation
This section addresses the modeling of the latency of a typi-

cal event-sensing front-end circuit (c.f. Fig.5). Fundamentally, the
readout circuitry converting the incoming photocurrent into a log-
arithmic voltage vFE may have more than one pole. For low pho-
tocurrents the logarithmic amplifier may have a dominating pole
due to the small photocurrents charging/discharging the feedback
loop. At higher currents the bandwidth limitation of the buffer
may start to play a role. Nonetheless, for this work we considered
a first order low-pass filter (LPF) behavior with photocurrent de-
pendent time-constant alike [6]. The presented model is empirical
but calibrated against cadence circuit simulations.

Fig. 6 depicts the transfer characteristic of the logarithmic
amplifier under DC excitation. We express vFE-DC as a polyno-
mial fit vFE-DC = ∑ j α j · [ln([ip + i0])] j in which i0 represents the
dark current. In order to consider latency we update vFE(k+1) =
vFE(k)+∆vFE(k) as follows:

∆vFE(k) = (vFE-DC(k)− vFE(k)) ·
[

1− exp
(
−δ t
τFE

)]
δ t→0≈ (vFE-DC(k)− vFE(k)) ·

δ t
τFE

(7)

with timestep δ t and LPF time-constant τFE. This equation cor-
responds to a step-response of a first order LPF. Using Taylor-
series approximation for δ t→ 0 this converges to the solution that
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Figure 6. Logarithmic amplifier transfer characteristic

could’ve been derived using a classic Forward-Euler discretiza-
tion of the differential equation representation which is a stan-
dard solver used in circuit simulations [13]. The time-constant
τFE is evaluated by simulations of step-response characteristics
ip(0)→ ip(1). Here, 3 · τFE was read from the point where the
relative voltage increase meets 95% as it would for an ideal LPF:
vFE(3·τFE)−vFE(0)

vFE(∞)−vFE(0)
= 95%. Hence, by definition τFE becomes a func-

tion of ip(0) and ip(1). For a given ip(0) we model:

τFE[ip(0), ip(1)] = aip(0)+bip(0) · ip(1)+ cip(0) · [ip(1)]
2, (8)

where aip(0),bip(0),cip(0) are stored in a look-up table. The two-
dimensional τFE[ip(0), ip(1)] approach allows for larger step-size
compared to [6] and is flexible to take several poles as well as
slewing into account which [6] doesn’t address.

Note that the simulator uses frame-based photocurrent maps
as described in the photocurrent estimation section above. These
are first up-sampled using an optical flow based network [9]. Then
linear or cubic interpolation is used generate a time-continuous
photocurrent between adjacent frames. Between each set of adja-
cent frames the photocurrent is resampled at step-size δ t to yield
vFE-DC(k), k ∈ {1, . . .N} used in Eq. 7. After all timesteps be-
tween adjacent frames are calculated a linear fit is determined and
provided to the event-scanner. N � 1 is required in order to en-
sure small error. Fig. 7 demonstrates reasonable resemblance of

0 0 . 5 1

1 . 9 3 0

1 . 9 3 5

1 . 9 4 0

1 . 8 0 5

1 . 8 1 0

1 . 6 6 5

1 . 6 7 0

1 . 6 7 5

 V F
E [V

]

t i m e  [ m s ]

 S p e c t r e  @  i p  =  1 0 0  p A
 M o d e l  @  i p  =  1 0 0  p A

 V F
E [V

]

 S p e c t r e  @  i p  =  1 0  p A
 M o d e l  @  i p  =  1 0  p A

 

 V F
E [V

]

 S p e c t r e  @  i p  =  1  p A
 M o d e l  @  i p  =  1  p A

Figure 7. Verification of first order LPF model with current-dependent time-

constant vs. Spectre circuit simulations using triangular photocurrent at 50%

temporal contrast and 10kHz.
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the simplified first-order LPF model compared to a full circuit
simulation using Spectre. The simplified model offers a balance
between accuracy and scalability required to execute array-level
simulations of entire video streams. We also model noise and FPN
which, however, is beyond the scope of this paper.

Peripheral Event Readout
In our simulator two parallel timelines are maintained. The

timeline Tg is used to track event generation and the timeline
Ts is used to model the event readout by the peripheral scan-
ning circuitry. Both timelines are progressed alternatingly until
new frames have to be loaded and eventually all frames have
been processed. Compared to operating Tg and Ts simultane-
ously at a fix step size this allows for an improved accuracy
vs. computational efficiency tradeoff as the scan timeline doesn’t
need to be processed if no events have been created and Ts can
progress completely independent of Tg which advances in incre-
ments of ∆t. The simulator is initialized based on the first frame:
vref ← vFE(1), tref ← 0. Line 3 in Alg. 1 doesn’t affect anything
initially and its purpose will become clear later. The function
g[vFE(i),vFE(i− 1), t] determines a linear interpolation between
the frames i, i−1 and evaluates said interpolation at t. In case the
scan timeline is equally or more advanced than the event gener-
ating timeline the difference between instantaneous and reference
voltage is compared per-pixel against the contrast threshold C. If
|vins − vref| > C is valid and the reference time lies in the past
(tref < Tg) and a pixel didn’t already trigger an event (ttrg = 0) a
new event is generated and stored temporarily (ttrg = Tg). ||ttrg||00
tracks if there are unread events. Here, || · ||00 measures the amount
of non-zero entries (notation borrowed from L0-"norm" [14]). If
||ttrg||00 > 0 the scanner starts. Otherwise the scan time is set to
the event generating time and the generator progresses (Ts← Tg).
In case events were found a row scanner at location Rs gradually
progresses through all rows and writes events to file. Pixels that
have been read receive an updated reference time depending on
the refractory period tref[Rs]← Ts +∆trefrac. vref is updated if tref

falls into the same frame: tref ∈
(

i−2
f , i−1

f

]
. If the refractory pe-

riod points into future frame intervals vref will be updated upon
loading the corresponding frame (Line 3 in Alg. 1). Note that this
evaluation and the assignment are computed in parallel for each
pixel. The scanner timeline is advanced depending on the amount
of events in a particular row Ts← Ts +∆tcol · ||ttrg[Rs]||00 +∆trow.
Here, ∆tcol and ∆trow are the scan cost per column and row. Events
that have been read are removed from the list of unread events
(Line 19). The event scanner is interrupted if the scan timeline
progresses beyond the event fire timeline or if there are no events
left to be read. Note that line 23 ensures that the scan timeline
is advanced in case all events have already been read and that the
generating timeline was more advanced than the scanning time-
line.

Algorithm 1 Event readout simulator
Input: consecutive front-end voltage maps {vFE(i), i = 1,2, ...,n}
of a high speed video with frame rate f and frame size
Ncols×Nrows.
Initialization:
time step ∆t ∈ R+

timeline of event generator Tg← ∆t ∈ R+

timeline of event scanner Ts← ∆t ∈ R+

event triggering time ttrg← 0 ∈ RNcols×Nrows

reference time array tref← 0 ∈ RNcols×Nrows

reference voltage array vref← vFE(1) ∈ RNcols×Nrows

instantaneous voltage array vins← vFE(1) ∈ RNcols×Nrows

voltage threshold C ∈ R+

row pointer in the scanner Rs← 0 ∈ N
row switching time ∆trow ∈ R+

scanning time per event ∆tcol ∈ R+

refractory period ∆trefrac ∈ R+

i← 1

1: while i < n do
2: i← i+1 . load new frame
3: if tref ∈

(
i−2

f , i−1
f

]
then vref← g[vFE(i),vFE(i−1), tref]

4: while Tg ≤ i−1
f or Ts ≤ i−1

f do
5: if Tg ≤ Ts then . event generator
6: vins← g[vFE(i),vFE(i−1),Tg]
7: mask = if|vins−vref|>C & tref < Tg & ttrg = 0
8: ttrg[mask]← Tg . event fired
9: Tg← Tg +∆t

10: else . event scanner
11: if ||ttrg||00 > 0 then
12: while true do
13: Rs← the next row with events
14: write events (x,y,t,p) on Rs to file
15: tref[Rs]← Ts +∆trefrac

16: if tref[Rs] ∈
(

i−2
f , i−1

f

]
then

17: vref[Rs]← g[vFE(i),vFE(i−1), tref[Rs]]

18: Ts← Ts +∆tcol · ||ttrg[Rs]||00 +∆trow
19: ttrg[Rs]← 0
20: if Ts ≥ Tg then
21: break
22: if ||ttrg||00 = 0 then
23: Ts← Tg
24: break
25: else
26: Ts← Tg
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(a) exploding balloon (b) rotating propeller

(c) spinning basketball (d) running people

Figure 8. Generated event frames with different input videos. Each frame

is formed by accumulating events of 1ms (red: positive event, blue: negative

event).

Figure 9. Event-loss rate VS. scanning speed.

Figure 10. Event-loss rate VS. refractory period.

Results
We evaluated the impact of the scanner as well as the refrac-

tory period on event rate and readout latency using the proposed
simulator on our own dataset.

Dataset
The testing dataset includes 4 videos recorded with a high

speed camera "Photron NOVA S12" [15] at frame-rate of 10kHz
and image size 1024× 1024 (exploding balloon, rotating pro-
peller, spinning basketball, and running people). The experiments
below were evaluated at a resolution of 960×540 and with a con-
trast threshold of 24%. Fig. 8 shows sampled event frames from
this dataset.

Event-Loss Rate
Due to refractory period or readout latency, a pixel may not

yet be ready to trigger a new event shortly after one has already
been registered. This causes an event-loss rate. In this section we
evaluate event-loss with the impact factors of scanning speed and
refractory period. The event-loss rate is computed by the total
number of lost events due to the process of scanning or refrac-
tory period divided by the total number of triggered events when
neither scanning nor refractory period are enabled.

Throughout the study of the scanning speed impact, the re-
fractory period ∆trefrac was set to 0 and ∆τ = ∆tcol = ∆trow. The
scanning speed, here, is defined as 1

∆τ
. Fig. 9 depicts the variation

of the event-loss rate with regard to the scanning speed. At faster
scanning speed the event-loss rate is reduced. Clearly, scenes with
higher information density such as the exploding balloon and the
rotating propeller exhibit increased loss-rates compared to mod-
erately challenging scenes such as the spinning of a basketball
which generates events only locally.

For the analysis of the impact of the refractory period, we set
the column switching time ∆tcol to 1ns and the row switching time
∆trow to 80ns. Fig. 10 shows the relation between the event-loss
rate and the refractory period. Similarly, larger refractory period
can also inhibit the event triggering. Also here, the exploding
balloon and rotating propeller prove most challenging.

Readout Latency
The readout latency stands for the time interval between an

event being triggered and being read, which can be formulated by
∆tdelay = tscan− ttrg, where ∆tdelay represents the time delay, tscan
and ttrg are the timestamps when an event is being read and being
triggered, respectively. We evaluated the readout latency for each
event within the first 20ms of the input videos.

Fig. 11 shows the change of the readout latency with regard
to the scanning speed 1

τ
. For each input video, we calculated the

latency for each event and computed quantiles (median, Q75%,
Q95% and maximum). Note that in general it is not guaranteed
that there is a simple monotonous relationship between increased
readout speed and latency. This can be explained as follows. Con-
sider that at a given time an event fires and coincidentally the
event scanner is ready to read said event shortly after it is be-
ing fired. Increasing the scan speed now may cause the scan-
ner to arrive at said pixel before the event is being fired. Thus a
scan cycle has to be completed before the event can be read. This
explains an increase of latency despite increased scan speed. As-
suming a constant event-rate uniformly distributed in an array, the
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latency, however, is expected to monotonously improve at faster
scan speed.

Fig. 12 evaluates the relation between the readout latency
and the refractory period. Interestingly, an increase of refractory
period can reduce the latency of events that are not lost. This is
due to the excess event-loss rate at longer latency which reduces
congestion of peripheral circuitry (as shown in Fig. 10).

(a) exploding balloon (b) rotating propeller

(c) spinning basketball (d) running people

Figure 11. Readout latency VS. scanning speed (∆trefrac = 0).

(a) exploding balloon (b) rotating propeller

(c) spinning basketball (d) running people

Figure 12. Readout latency VS. refractory period (∆tcol = 1ns,∆trow = 80ns).

Conclusion
The presented work offers several advancements compared

to prior art. A physics based inverse model to estimate photocur-
rents has been shown to outperform luma based models - espe-
cially for spectra with stronger blue content. For the first time
a latency model is presented for event-sensors that is calibrated

and evaluated against circuit simulations. Moreover the presented
work outlines the importance of the peripheral latency. A study
has been presented highlighting the relationships between event-
loss rates, latency and peripheral readout speed as well as refrac-
tory period. The acceptable loss-rates and latency are application
specific and the presented simulator enables the derivation of sen-
sor requirements to meet application targets.
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