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Abstract
Making it possible to use images in which the calibration

chart is only partially visible makes the geometric calibration of
multi-camera system much more efficient as well as more accurate
and robust. This is particularly true in the case of systems involv-
ing a larger number of cameras and wide field of view cameras
with significant radial distortion. The calibration tool developed
by us that uses a checkerboard chart with AprilTags is described,
and the benefits of using such a tool compared to the traditional
checkerboard chart calibration are demonstrated. The provided
examples using both synthetic and real data sets illustrate the im-
pact of the requirement that all chart points must be detected on
the spatial distribution of the corner points used for calibration
and the accuracy of the geometric calibration.

Introduction
Highly accurate geometric calibration of a camera system is

crucial for a wide range of computer vision and computational
imaging applications. The most common method uses a checker-
board calibration chart. While various other methods exist, e.g.
[1], [2] and other methods using structured light, or methods em-
ploying different types of calibration targets, like [3], the calibra-
tion with a checkerboard chart is very popular because it does
not require any expensive equipment, only a simple checkerboard
chart that can be easily manufactured, and the calibration software
is widely available. It is included in common software packages
like OpenCV [4] or Matlab Computer Vision Toolbox [5] and it
easy to use. It does not require any detailed camera specifications
that may be hard to obtain or any educated guesses for initial pa-
rameter values, and it can be used with many different camera
types, including fisheye cameras.

The main drawback of the geometric calibration with a
checkerboard chart is that it is very labor intensive and slow. In or-
der for the calibration process to converge and provide an accurate
characterization of the camera, the chart needs to be captured in
a number of different poses, including different orientations with
respect to the camera, and the resulting set of calibration points
must cover well the entire field of view (FOV) of the camera.
Obtaining points that are very close to image borders, however,
can be challenging. Since a captured image can be used only if it
shows the entire chart and all the checkerboard corners can be suc-
cessfully detected, the chart needs to be carefully aligned to the
FOV boundaries. When a larger number of cameras need to be
calibrated, calibration chart image capture may quickly become
impractical. This is particularly true in the case of wide FOV
cameras, since they not only require capturing more calibration
images, but also require more careful positioning of the chart due
to the large geometric distortion. Proper lighting also presents a
bigger challenge in case of systems with very large FOV, as light

Figure 1. Camera array comprising 15 miniature camera modules with the

120° field of view.

Figure 2. ChArUco AprilTag chart for calibration employing the images of a

partially visible chart.

reflections on the chart can render images of chart in certain posi-
tions and orientations unusable.

Besides making the calibration image capture more difficult,
the requirement that all the checkerboard corner points must be
successfully detected in an image leads to calibration points sets
that are very center-heavy and contain only a small number of
points close to image boundaries. This can have a negative impact
on the accuracy of the estimated geometric distortion, as the outer
regions of the image are under-represented and carry lower weight
in the optimization producing the calibration. Moreover, in the
regions where there are no or almost no points, the calibration
can be completely off because highly flexible distortion models
that are needed to accurately match strong distortion in modern
high resolution cameras are very bad for extrapolation.

Creating calibration tools that can use also images in which

IS&T International Symposium on Electronic Imaging 2022
Imaging Sensors and Systems 2022 231-1

https://doi.org/10.2352/EI.2022.34.7.ISS-231
© 2022, Society for Imaging Science and Technology



Figure 3. When the calibration chart can be partially outside of the field of the view of a camera, a single chart pose can produce points close to the image

boundaries for multiple cameras.

some of the checkerboard corners are not visible or cannot be
detected helps to make geometric calibration with a chart much
more efficient as well as more accurate and reliable. It allows
obtaining more points close to image borders without carefully
positioning the chart, producing much better point sets with sig-
nificantly less effort. While this is true also when a single camera
is calibrated, when calibrating a multi-camera system that cap-
tures synchronized frames, this makes a particularly big differ-
ence. With such systems, when the chart is carefully aligned with
respect to one of the cameras, for other cameras the chart position
is less than ideal – the chart is either far from the border, or it
is partly out of the field of view. When the images in which the
chart is partly out the picture can be used, not only the number of
captured images that get discarded drops to a small fraction, but
a single chart position can produce points close to image borders
for multiple cameras, as shown in Figure 3.

Calibration Chart Design and Point Detection
To be able to use images in which the chart is only partially

visible, it is necessary to modify the test chart. The periodic
checkerboard pattern needs to be replaced by a pattern making
it possible to reliably identify what part of the chart has been de-
tected in a captured image. The chart that we use has AprilTags
[6] embedded in all white squares of the checkerboard, as shown
in Figure 2. We use OpenCV ChArUco-ArUco library [7] for the
chart design and the initial point detection. We found the OpenCV
implementation better supported and suitable for our needs than

other available alternatives, such as the Kalibr toolbox.
4x4 ArUco tag dictionary offers a sufficient number of tags

to fill our chart and provides patterns that can be successfully
detected even when the chart is farther from the camera, when
it is distorted, and when the captured images are downsampled.
In general, we found the tag detection to be very robust, except
for a couple of the most simple tags which do not have distinct
enough shape, especially the last one in the third row in Figure2.
In spite of careful tuning, these tags can be occasionally mistaken
for other features on the chart and elsewhere in the scene, produc-
ing gross outliers in the obtained point sets, which can break the
calibration process. This tag and others that are similar to it either
need to be avoided in the chart design, or the calibration process
needs to be made robust to the outliers that they sometimes cause.

Although the new chart design contains more features that
potentially could be detected and used for calibration, we choose
to use only the checkerboard square corners. The main reason
for this is that their position can be detected with higher accu-
racy than the position of the corners of the AprilTags and features
within the tags. Also, the resulting point set is then a subset of the
checkerboard chart point set, which makes adapting the existing
algorithms and code easier.

The corner point detection requires subpixel refinement,
which becomes computationally expensive for a large number
of images. However, as each image can be processed com-
pletely independently, any software parallel processing scheme
(e.g., OpenMP) with hardware optimized image processing li-
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Figure 4. Typical point distributions in calibration sets obtained with the traditional checkerboard chart, requiring that the entire chart is within the camera field

of view (left), and when the chart that can be only partially visible (right). When the chart is allowed to be partially outside the field of view, it helps to produce

more points in the outer regions of the camera field of view, all the way to image borders.

braries (e.g., IPP, CUDA) can speed up the detection time signif-
icantly. The images also can be resized to achieve higher speed,
but this tends to cause some loss of accuracy and we thus prefer
to process full size images.

Geometric Calibration Algorithm
For the robust initialization of the calibration that can han-

dle cameras with large distortion, including fisheye cameras, and
does not require any camera specifications that may be hard to ob-
tain, we use a modified version of the camera model proposed by
Scaramuzza et. al. and their initialization algorithm [8]. Although
it has been developed specifically for omnidirectional cameras, it
works well also for other cameras, including those with normal
FOV.

For a given point (x,y) in the ideal image plane, with the dis-
tance ρ =

√
x2 + y2 from the principal point, the model provides

a point (x,y, f (ρ)) on the ray that gets projected to this point. We
use a slightly different model than [8] and set

f (ρ) =
M

∑
m=0

f2mρ
2m, (1)

as it tends to yield more accurate calibrations with the same num-
ber of parameters. If R j and t j is the rotation and translation of
the chart in the j-th calibration image, then for the n-th chart point
(Xn,Yn) and the corresponding point (xn, j,yn, j) extracted from j-
th calibration image we have

R j

 Xn
Yn
0

+ t j = dn, j

 xn, j
yn, j

f (ρn, j)

 , (2)

with some unknown distance dn, j > 0. This unknown distance
can be eliminated by taking the cross product of the left and right
hand side and setting it equal to zero. One of the three resulting
equations,

(r( j)
11 Xn+r( j)

12 Yn+t( j)
1 )yn, j −(r( j)

21 Xn+r( j)
22 Yn+t( j)

2 )xn, j = 0, (3)

does not involve the unknown distortion polynomial f and is lin-
ear in the unknowns that it involves. When these equations are
collected for all chart points detected in an image, the resulting

system of linear equations can be solved in the least squares sense,
producing the estimates of rotation and translation coefficients
r( j)

11 , r( j)
12 , r( j)

21 , r( j)
22 , t( j)

1 , and t( j)
2 up to an unknown scale factor.

However, this scale factor and the remaining rotation coefficients
are uniquely determined because R j is a rotation matrix satisfying
R jRT

j = I and det(R j) = 1. The obtained rotation and translation
coefficients make it possible to calculate the unknown distances
dn, j by using the top two rows in (2). Then, the last rows of (2)
for all n and j can be collected, forming a single linear system that
can be solved to estimate the coefficients of polynomial f and t( j)

3
for all j.

This algorithm does not rely on any particular arrangement
of the points on the chart, it only requires that the points are not
collinear. It can be adapted to the case of partially visible charts
in a straightforward manner, collecting only the equations corre-
sponding to successfully detected chart points and allowing the
systems of linear equations to be of different sizes. To avoid de-
generate cases and cases where these initial estimates may not be
accurate enough, we include only images in which at least 25%
of the chart points have been successfully detected. Also, we ex-
clude the corner points adjacent to AprilTags with the most simple
shapes that are prone to misdetection, as these gross outliers cause
the algorithm to fail.

To obtain the final calibration, the estimated initial distortion
is first converted to the target model used for calibrating the partic-
ular camera. Many different models that can be used have being
proposed in the literature. See, e.g., [9], [10], [11], [12], [13],
or [14]. The parameters of the camera model and the extrinsic
parameters, three rotation angle parameters and three translation
parameters representing the chart position in each image, are re-
fined by a non-linear optimization process. We use the most com-
mon approach, used by Zhang, [15], and many others, minimizing
the total square reprojection error. The resulting non-linear least
squares problem can be solved, for example, by using Levenberg-
Marquardt algorithm (see, e.g., [16]). This process can also be
easily adapted to the partially visible chart case. It only requires
making it possible to use a variable number of points per image
and including in the cost vector only the successfully detected
points.

Other cost functions also can be used, similar to those pro-
posed in literature for bundle adjustment. For example, when
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Figure 5. Left to right: (a) Ground truth radial distortion spline curve modeling the distortion observed in our camera modules. (b) The result of radial distortion

calibration using full chart images. (c) The result of radial distortion calibration using images in which the chart may be only partially visible.

backprojection type models are used, such as the fisheye model
of Scaramuzza et al. or our modified version of it (1), a cost func-
tion involving angular error [17] or other spatial domain error can
be much more computationally efficient than the reprojection er-
ror. We have also experimented with robust costs that can reduce
the impact of outliers in the data, similar to those described in
[18] and [19]. However, we have found these robust costs unre-
liable for our purposes. They are unable to distinguish between
true outliers in the data and the data points that are valid but are
challenging for the selected camera model to match. In the case
of difficult distortions, instead of improving the robustness of the
calibration, they can undermine it by diminishing the contribution
of certain points that are critical for its success.

Our tool can also perform joint calibration of the entire ar-
ray, producing simultaneously estimates of intrinsic and extrinsic
parameters of all the cameras, which are very robust thanks to
incorporating multi-camera geometry constraints. After each in-
dividual camera is calibrated, to initialize the array calibration it is
necessary to turn the pair-wise chart-to-camera rotation and trans-
lation estimates into a set of geometrically consistent rotations and
translations describing each camera position and chart pose in the
selected global coordinate system. This is a rotation averaging
problem, common in SFM and SLAM, for which a number of so-
lutions have been proposed (see, e.g., [20], [21]). We take the ad-
vantage of the fact that in our case the relative poses produced by
calibrating individual cameras are always between a chart and a
camera and improve the estimated global chart and camera poses
iteratively, alternating between updating the camera poses and the
chart poses. The variable number of calibration points per image
plays no role here at all and no modifications are thus needed to
accommodate partially visible charts.

The final joint non-linear refinement of all parameters that
follows is then performed by a technique similar to the non-linear
refinement for an individual camera – by minimizing the total
square reprojection error or other cost that includes valid points
only. The joint optimization of all parameters is costly, but it pro-
duces the most accurate results. We have observed that in situ-
ations when the accuracy of the camera model used for the cal-
ibration is limited, for example when a central projection model
is used for calibrating fisheye cameras that exhibit some incident
angle dependent pupil shift, when an individual camera is cali-
brated, errors in intrinsics and extrinsics may partly offset each
other. Joint calibration of the array forces the extrinsics to be
geometrically consistent and helps to prevent this. Furthermore,

having an initial calibration for the array that is robust and al-
ready relatively accurate makes it possible to include in the final
refinement also points that were previously excluded because they
presented a risk in the earlier stages. We check the corner points
adjacent to AprilTags that occasionally get misdetected and in-
clude those that appear to be correct in the final refinement. Also,
the points from images in which only a small part of the chart
is visible can be incorporated in the joint refinement, if another
camera could see at least 25% of the points with the same chart
pose. This helps to increase the number of points in outer regions
of the camera field of view used for the calibration.

Experiment Results

1. Point Distribution

To demonstrate the impact of incorporating in the calibration
images in which the chart is only partially visible on the accuracy
and the reliability of the calibration, we are going to show here
the results of experiments with both simulated and real-life data
that analyze the performance for multi-camera devices that we
built. Figure 1 shows a camera array consisting of three such
devices that have been daisy-chained. Each of them includes five
13 Mpix miniature camera modules with diagonal field of view
approximately 120°.

Figure 4 illustrates the difference in the typical spatial distri-
bution of points in the calibration image sets captured with such
an array. In this example, both sets were obtained by capturing
the chart in 120 different positions, trying to cover well the entire
field of view of all the cameras. In the first case, we have kept
the chart within the FOV of the array and extracted chart points
only from the images in which the full chart is visible, as it is
done when using the commonly available calibration tools. In the
second case, we have intentionally exceeded the FOV of the array
and extracted all visible checkerboard corner points. As you can
see, the first approach produces only a small number of points
near the image boundaries and, without going to extreme mea-
sures that would make the image capture impractical, some areas
may get missed completely. The second set, comprising images
in which the chart may be only partially visible, not only provides
significantly more points near the image boundaries, but also cap-
turing it was much easier, as it did not require aligning the chart
to image borders.
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Table 1: Real-life data experiment, extrinsics re-calibration mean reprojection error

Full chart calibration Partial chart calibration
3 RD params 3 RD params 6 RD params 3 RD params 6 RD params 6 RD params

joint joint
MRE (pixels) 3.76 1.73 1.38 3.08 0.84 0.83

Table 2: Real-life data experiment, point position prediction error (in pixels)

Full chart calibration Partial chart calibration
3 RD params 3 RD params 6 RD params 3 RD params 6 RD params 6 RD params

joint joint
median 3.29 1.78 1.72 2.85 1.15 1.01
90% 11.77 5.52 5.14 9.61 3.32 2.72
99% 52.09 18.27 16.31 25.25 8.75 7.43
99.9% 812.27 515.19 382.89 57.34 15.63 13.55

2. Calibration with Synthetic Data
For the calibration experiments described in this paper, both

with synthetic and real data, we have used the most common dis-
tortion model, supported by both OpenCV [4] and Matlab [5],

xd = xu(1+K1r2
u +K2r4

u + · · ·)+2P1xuyu +P2(r2
u +2x2

u) (4)

yd = yu(1+K1r2
u +K2r4

u + · · ·)+P1(r2
u +2x2

u)+2P2xuyu.

Here, (xu,yu) are the coordinates of the scene point projected to
plane z = 1 and (xd ,yd) are the coordinates of the correspond-
ing distorted point, which is then mapped to image pixel coor-
dinates using the intrinsic matrix. Our experiments have shown,
though, that three radial distortion coefficients Km that are com-
monly used and supported by both OpenCV and Matlab, are not
sufficient for accurate enough characterization of the distortion of
our wide FOV camera modules (see our real-life data experiment
results in the next section). We have thus increased their number
to six.

Our synthetic data experiment simulates an array similar to
the one shown in Figure 1, formed by three our five-camera de-
vices. To make the camera parameters and the chart positions
realistic, we have used for generating the synthetic image points
the intrinsic and extrinsic parameters obtained when calibrating
a similar real-life array, only for the radial distortion we have
replaced the calibration output by a cubic spline curve approxi-
mately matching the distortion observed in the real camera mod-
ules, see Figure 5 (a). This spline curve provides a realistic dis-
tortion approximation that is not biased towards the model used
for the calibration. For both the calibration with full chart images
only, and for the one including images of partially visible chart,
we simulated points corresponding to the chart being captured by
all the 15 cameras forming the array in 120 different poses, which
also come from our experiments with a real-life array. The result-
ing point sets are similar to shown in Figure 4. Gaussian noise
with the standard deviation of 0.5 pixels has been added to the
generated image point coordinates to simulate limited accuracy
of point detection.

When these point sets are used for calibration, the mean re-
projection error (MRE) is about 0.6 pixels in the case of full chart

set, and 0.8 pixels in the case or partial chart set. This may give an
impression that the full chart set provides more accurate calibra-
tion. However, the opposite is true. The MRE not only does not
provide a complete picture, but also is not directly comparable in
this case because it is measured in each case using a different set
of points. The error is deceptively low in the case of the full chart
image set because this set lacks points in the regions that are most
challenging for the calibration model to fit. In reality, the cali-
brated geometric distortion is completely invalid in the areas near
the corners of the frame, as shown in Figure 5 (b). This type of
calibration error, although it impacts a relatively small part of the
image frame, can cause serious problems in computational imag-
ing and other applications, as it can cause bad artifacts or make
algorithms to fail. When the partial chart set is used for calibra-
tion, the outer regions of the image frame are sufficiently covered
with the detected points, and this problem is avoided. The cali-
brated distortion curves look as shown in Figure 5 (c).

3. Real-life Data Experiment
For the real-life data experiment we have used two our de-

vices, forming an array of 10 cameras. In the absence of ground
truth for the calibration we have used for the objective evaluation
of the quality of the resulting calibration a simple practical 3D
computer vision task, the accuracy of which we can measure. Our
experiment simulates the way the array is used in practice. The
array calibration obtained by the method described in this paper
serves as the “factory” calibration for the array, providing the in-
trinsic parameters for each of the cameras that are stored within
every device. Each time the array is used for capturing some con-
tent, the camera positions are re-calibrated using these intrinsic
parameters and a faster calibration process that requires capturing
only a small number of images.

The obtained calibrations have been evaluated using the
same test image set consisting of 60 frames (i.e., 600 images in
total). A small set of five frames captured at the same time as
the test set was used for re-calibrating the array extrinsics. Simi-
larly as the test image set, the set used for re-calibration was the
same for all compared factory intrinsic calibrations. The intrinsic
calibrations have been produced using calibration image sets de-
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picting the calibration chart in 120 different positions. Similarly
as in the previous experiments, we have produced two separate
calibration sets, one for the traditional checkerboard chart calibra-
tion using only images showing the entire chart, and one taking
the advantage of the chart being allowed to be partly outside of
the field of view. We compare both types of calibration using the
standard geometric distortion model (4) with 3 and 6 radial dis-
tortion coefficients, respectively, and in the case of 6 coefficients,
we compare also the individual camera calibration and the result
of joint optimization of the parameters for all the cameras.

The differences in the accuracy of the calibrated intrinsics
start showing already during the re-calibration of camera posi-
tions. As shown in Table 1, the MRE during re-calibration is
noticeably higher in the case of the calibration with full chart im-
ages. It exceeds one pixel, suggesting possible issues with the
accuracy of calibration. While the calibration MRE may not pro-
vide the full picture, here it is more indicative than in our synthetic
data experiment, as it is calculated using the same set of points.
We also note that the MRE is high in both cases when only three
radial distortion coefficients are used, which indicates that this
common distortion model with three radial distortion coefficients
only is not enough for these cameras.

The task that we have used for evaluating the accuracy of
calibration involves using stereo pairs to estimate the positions
of points in 3D space and then predicting their location in im-
ages captured by other cameras. In the captured test image set,
we have detected 37,960 points, distributed fairly uniformly over
the entire area of each image frame, which form 4139 trails of
3 or more matching image points. With this point set, we could
make the total of 1,230,105 matching image point position esti-
mates that we could compare to the real detected matching point
positions. The statistics of the error of these predictions when dif-
ferent factory calibrations are used are shown in Table 2. Some
errors exceeding one pixel are to be expected here, as in some
cases the 3D position is triangulated using a pair of cameras that
are close to each other, but this estimate is then used to predict the
matching point location in the image captured by a camera that is
much farther away. However, we see that in the case of full chart
calibration between 0.1% and 1% of cases the position estimate is
completely off, making it impossible to find the correct matching
point by searching the neighborhood of the predicted location.
The calibration with partial chart images both helps to resolve
this issue, and improves the overall accuracy.The results in Table
2 also confirm that more than three radial distortion coefficients
need to be used for these cameras and that the joint optimization
for the entire array provides most accurate calibration.

Comments and Conclusions
Geometric calibration with a chart is inherently a slow pro-

cess and is suitable only for off-line use. The main bottleneck is
the image capture and the robustness and accuracy of the calibra-
tion are more important than the software execution time. Our
method of calibration with images of partially visible chart makes
the calibration image capture significantly easier and faster. It also
helps to improve the robustness and accuracy of the calibration.
The Matlab prototype of the calibration algorithm that we have
implemented is already sufficient for the practical use in our con-
ditions, even though it has not been optimized for speed. It does
not require any human intervention to produce reliable results and

even the joint optimization for the entire array is fast enough not
to create a new bottleneck in the calibration process. As we have
shown, the modifications that are required generally involve only
keeping track of the points successfully detected in the calibra-
tion images and using arrays of variable size. With proper im-
plementation optimized for speed the computation times should
be comparable to existing standard calibration tools. Some ad-
ditional computations are required in the point detection stage.
With our existing code, on a laptop with Intel(R) Core(TM) i7-
8850H CPU @2.60Ghz 6 Core processor, with 48GB or memory,
running Windows 10, the chart point detection takes about 0.2 s
per image with the 13 Mpix images captured by our array and
the chart design shown in Figure 2. As we have mentioned in
the section discussing the point detection, there is still room for
improvement and higher speeds are achievable.

The calibration tool described in this paper is still under de-
velopment. However, it has already helped us to make our multi-
camera system calibration more efficient, reliable, and accurate,
and it has provided many valuable insights for further improve-
ments.
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