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Abstract 
This paper proposes a landslide detection method by UAV-

based visual analysis. The fundamental strategy is to detect ground 
surface elevation changes caused by landslides. Our method 

consists of five steps: multi-temporal image acquisition, ground 

surface reconstruction, georeferencing, elevation data export, and 

landslide detection. In order to improve efficiency, we use Visual 
Simultaneous Localization and Mapping for ground surface 

reconstruction. It can perform faster than conventional methods 

based on Structure-from-Motion. In addition, we introduce 

convolutional neural network (CNN) to detect landslides robustly in 
the multi-temporal elevation data. The experimental results in a 

simulation environment show that the proposed method runs 5.5 

times as fast as the conventional methods. In addition, the CNN-

based model achieved F1 score of 0.79-0.84, showing robustness 

against reconstruction noise and registration error. 

Introduction 
Landslides have been a great threat to human lives and 

economy [1]. Due to heavy rainfalls and earthquakes, the number of 

landslides in Japan is increasing [2]. In addition, because of labor 

shortage in forestry, landslides in remote areas tend to be left 
unfound for a long time. Considering the circumstances, fast and 

accurate detection of landslides is crucial for efficient disaster 

management. 

Research on landslide detection adopts either ground-based 
methods or remote-sensing methods. The former methods monitor 

the ground displacement by placing sensors directly in the target 

regions [3] [4]. On the other hand, remote-sensing methods analyze 

the ground surface data which is remotely acquired from satellites, 
aircraft, or unmanned aerial vehicles (UAVs).  The main advantage 

of remote sensing is the capability to provide spatially continuous 

data with high precision [5].  Among them, UAVs equipped with 

optical cameras are powerful platforms as they enable high-
resolution, low-cost, and flexible visual analysis [6]. 

Structure from Motion - Multi View Stereo (SfM-MVS) [7] is 

an important 3D reconstruction technique to analyze an UAV image 

set. In the SfM process, tie points, such as SIFT [8] features, are first 
detected and matched within the image set. Then, bundle adjustment 

estimates the camera models, the camera orientations, and the sparse 

point-cloud [9]. MVS densifies the point-cloud and reconstructs the 

3D terrain model with color. Since the obtained model is in relative 
coordinates, georeferencing process based on Ground Control 

Points (GCPs) is applied. The resulting model can generate an 

orthophoto and a Digital Surface Model (DSM). A DSM represents 

an elevation data of ground surface, including surface components 
such as vegetation and buildings. In addition, by filtering out these 

objects, a Digital Elevation Model (DEM) can be obtained.  

James et al. [9] compared 3D models derived from SfM 

workflow with data acquired by laser scanning, showing the relative 

precision (measurement precision: observation distance) of 1:1000. 
D’Oleire-Oltmanns et al. [10] applied SfM workflow to UAV image 

sets taken from 70 m above ground level(a.g.l.) and achieved 3 cm 

precision. As it enables highly accurate measurement without expert 

knowledge, SfM workflow has become the standard tool for 

landslide detection by UAV analysis [5] [11] [12] [13].  

Tanteri et al. [5] [11] used SfM workflow to monitor landslides 

by multi-temporal UAV surveys. They focused on elevation change 

caused by landslides. They calculated difference of DEMs between 
the surveys and detected landslides in the target slope. Xu et al. [13] 

used a similar approach based on DEM difference to detect 

landslides in a wide area of 32 km2. 

However, SfM workflow has the major drawback of heavy 
workload. Rossi et al. [11] reported that it took several hours to 

apply SfM workflow to a 0.0186km2 area with a workstation (CPU 

2x Xeon 2.93 GHz, 32 GB RAM, GPU Radeon HD 5870). The long 

computation time makes it difficult to cover large areas efficiently. 
Other difficulties arise in georeferencing and filtering phase. Xu et 

al. [13] installed 160 GCPs to perform georeferencing in 32 km2. 

However, it is uncertain whether sufficient GCPs can be captured 

during disasters.  Tanteri et al. [5] pointed out that the filtering 
algorithm [14] is less effective on photogrammetric point-clouds 

than on laser scanning data, causing 20-30 cm errors in DEMs. As 

the detection approach based on DEM difference is vulnerable to 

noise, such errors can lead to misdetection.  
Visual Simultaneous Localization and Mapping (Visual-

SLAM) and convolutional neural network (CNN) are promising 

techniques to overcome these problems. Visual-SLAM can map the 

environment and calculate the camera orientations in parallel with 
image input. While SfM workflow prioritizes accuracy by using 

sufficient images, Visual-SLAM focuses on processing the input 

frames in real time [15]. CNN is known to be effective in change 

detection between two images [16]. Change detection task is 
complex in that variations caused by extrinsic events need to be 

ignored. Compared to difference-based detection, CNN is robust to 

variations such as noise, registration, and occlusion [17]. 

In this paper, we propose a landslide detection method based 
on Visual-SLAM and CNN. Our method has the following 

advantages. 

- Visual-SLAM enables fast reconstruction of 3D terrain models. 

- Fusion of trajectories by Visual-SLAM and Global Navigation 
Satellite System (GNSS) enables georeferencing without GCPs. 

- CNN enables robust landslide detection compared to methods 

based on DEM difference. 
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Proposed method 
The proposed method is shown in Fig. 1. It consists of five 

steps: image acquisition, ground surface reconstruction, 
georeferencing, DSM export and landslide detection. The 

fundamental strategy is patch-based change detection on pre- and 

post-landslide DSMs. Each step is detailed in the following. 

 

 

Figure 1. Overview of the proposed method 

Image acquisition 
UAV surveys are made at fixed intervals to obtain a ground 

surface image set. In addition, emergency mission is conducted in 

case of heavy rainfalls and earthquakes, when the risk of landslides 
is high. This step outputs pre- and post-landslide ground surface 

image sets. 

Ground surface reconstruction 
UAV images are resized into 640×360 pixels and processed by 

Direct Sparse Odometry (DSO) [18], a kind of Visual-SLAM. 

Direct formulation of DSO leads to robustness in sparsely textured 

environments. Sparse reconstruction of DSO prioritizes large-scale 
accuracy over local smoothness [18]. These features are suitable for 

reconstructing broad ground surface. Since obtained point-cloud 

contains some noise points caused by calculation errors, statical 

outlier point removal is applied. This step outputs the colorless 3D 
terrain model and the localization result in relative coordinates. 

Georeferencing 
Georeferencing transforms the terrain model into world 

coordinates. Georeferencing methods without GCPs have been 

proposed in numerous studies (e.g., [19] [20]). In this research, 

georeferencing is conducted by simple fusion of trajectories. The 

detailed process is as follows. 
Coordinate transformation is calculated by Eq. (1). 
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where 𝑇  is the transformation matrix, (𝑥, 𝑦, 𝑧)  is the position in 

relative coordinates, and (𝑋, 𝑌, 𝑍)  is the position in world 
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and columns. Thus, it can be calculated as shown in Eq. (2) by 
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where the determinant of the matrix in relative coordinates is not 0. 

This condition means that the selected four points are not to be on a 

same plane. 
 Our method uses the trajectory by Visual-SLAM, that is, the 

localization result, and the trajectory by integrated log of 

GNSS/IMU (Fig. 2). Corresponding points are selected using time 

stamps in both trajectories. This step outputs the terrain model in 

world coordinates. 

 

 

Figure 2. Fusion of trajectories 

DSM export 
A DSM is generated by extracting elevation data from the 

terrain model. First, the terrain model is split into grids. Each grid 

corresponds to a pixel in the DSM. Second, the pixel value is 
determined by the average height of the corresponding grid. Finally, 

missing values which occurred in sparse regions in the terrain model 

are filled by the inpainting technique based on Fast Marching 

Method [21]. This step outputs the DSM as a gray scale image. 

Landslide detection 
Previous four steps outputs pre- and post-landslide DSMs. 

Landslide detection is conducted on them. First, two DSMs are 
concatenated in the channel dimension. Second, this two-channel 

data is split into 32 pixel-sized patches. The CNN-based detection 

model, which is inspired by AlexNet [22], conducts binary 

classification (landslide or non-landslide) on each patch (Fig. 3). 
This process is exploited for elevation change detection caused by 

landslides while ignoring variations caused by reconstruction, 

georeferencing and vegetation growth. 
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Figure 3. Architecture of the detection model. Conv(n) is convolutional layer 
with n filters of spatial size 3×3 applied with stride 1. MP is max-pooling layer 
of size 2×2 applied with stride 1. FC(n) is fully connected linear layer with n 

output units. Batch-normalization follows all the Conv layers and the first and 
the second FC layers. 

Experiments 
We conducted two kinds of experiments to verify the 

effectiveness of the proposed method. Experimental field was 20 m2 

of sandy area with two mounds of sand (mound-A, mound-B), 
which were 1.5 m in height (Fig. 4a). Three checkpoints (Fig. 4b) 

were set in the field. A quadrotor UAV, DJI Phantom 4 Pro, was 

used for image acquisition. Frame rate was set at 30 fps. Mouse G-

Tune HN-Z (CPU CoreTM i9-10900K 3.70GHz, GPU NVIDIA 
GeForce RTX 3070, RAM 32GB) was used for image processing. 

 

  

(a) mound                                              (b) checkpoint 
Figure 4. Experimental field 

Registration accuracy 
In this experiment, we evaluated the registration accuracy of 

the proposed georeferencing method.  

Procedure 
First, UAV took a flight on the three-dimensional trajectory as 

shown in Fig. 5 and acquired an image set. There was 60% overlap 

between images in the lateral direction. Second, a terrain model was 

reconstructed and georeferenced by the proposed method. This 
procedure was repeated three times and three terrain models were 

obtained. Lastly, registration error was calculated as relative 

location difference of the three terrain models. To be specific, mean 

location difference at the three checkpoints was calculated.  

Result 
Figure 5 shows one of the obtained georeferenced models. The 

trajectories by Visual-SLAM (green in Fig. 5) and GNSS/IMU 
(blue) mostly matched. Table 1 shows that the proposed method 

yielded approximately 1 m and 1.2 m registration error in the 

horizontal and vertical directions, respectively. The main error 

factor would be accuracy of GNSS. GNSS data of Phantom4Pro 
depends on stand-alone GPS, which has positional accuracy of 

5-10 m [23]. Using more precise positioning technology such as 

real-time kinematic GPS could improve the registration accuracy. 

 

 

Figure 5. Georeferenced model. brown) Terrain model; blue) GNSS/IMU 
trajectory; green) Visual-SLAM trajectory. UAV was controlled at varying 
altitudes of 7-20 m a.g.l. 

Table 1. Registration error at the checkpoints 

Direction Registration Error (m) 

East 0.77 

North 1.06 

Elevation 1.22 

Efficiency 
In this experiment, we evaluated the processing time and the 

detection ability of the proposed method. Landslides were simulated 

in one-tenth scale (Table 2). Elevation change includes the effect of 

fallen trees as well as mass movement caused by landslides. 

Registration error was set based on the result of the former 

experiment. The result was compared with the conventional 

approach which is based on DEM difference derived from SfM 

workflow. 

Table 2. Simulation scale.  

 
Case 

DSM 
resolution 
(cm/pixel) 

Elevation 
change 

(m) 

Registration 
error 
(m) 

Actual 20 15 (max.) 
Horizontal: 1.0 

Vertical: 1.2 

Simulated 2 1.5 (max.) 
Horizontal: 0.10 

Vertical: 0.12 

 

Procedure 

(a) Image acquisition 
Landslides were simulated by collapsing a part of the mounds 

in five steps. In each step, the UAV acquired an image set with 60% 

overlap in the lateral direction. The flight altitude was set at 7 m a.g.l. 

Six image sets, Step1 (non-collapsed) to Step6 (fully collapsed), 
were obtained. 

(b) Data processing 
Each image set was processed by DSO. Terrain models were 

georeferenced manually, so that they contained no registration error.  

DSMs were exported at the resolution of 2 cm/pixel and  

1.2 cm/intensity. 

In addition, SfM workflow was applied using an open source 
SfM software, OpenDroneMap [24].  Input frames were resized to 

2560 ×1350 pixels and extracted at 3 fps, which yielded 90% 

overlap. The process was accelerated by using GPU for SIFT 

extraction and pre-matching neighboring 96 frames based on Exif 
data. DSMs and orthophotos were exported at the same resolution. 
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(c) Training and Test 
 Figure 6 shows the process to create training datasets. Step1 

was considered as pre-landslide state and other steps were 

considered as post-landslide state. First, ground truth masks of 
landslide areas were made based on the SfM-derived orthophotos. 

Landslide areas were marked in white color. Second, the DSO-

derived DSMs and the ground truth masks were divided into 42 

pixel-sized patches (including 10-pixel margin) with a stride of 10 
pixels. The DSM patches were labeled as 0 (non-landslide) or 1 

(landslide) based on the ground truth patches. In detail, when the 

change rate (the ratio of white color region) in the central 32 pixel-

sized area was more than 10%, the patches were labeled as 1. This 
process generated 1561 patches of datasets for each class.  

Table 3 shows the training condition of the detection model. 

Hyperparameters were optimized by grid search. Two kinds of 

training, fixed training and loose training, were conducted in order 
to improve robustness against registration error. In the fixed training, 

the central 32 pixel-sized area of the DSM patches were cropped and 

input into the detection model. In the loose training, the pre-

landslide patches were randomly cropped using 10-pixel margin. In 
addition, random intensity ranging between -10 and 10 was added 

to them (Fig. 7). This random augmentation is used for simulating 

the registration error shown in Table 2.  

The ability of the trained models was evaluated on the test data 
(step5 of mound-A). The four test patterns (A to D in Table 4) were 

prepared by manually adding different registration errors.  

 

 

Figure 6. Dataset creation 

 

Figure 7. Augmentation in loose training 

Table 3. Learning condition 

Framework Pytorch 

Optimizer Adam 

Loss function Binary cross entropy 

Batch size 32 

Weight Initialization He 

Bias Initialization 0 

Data Augmentation flip 

Validation data ratio 20% 

Learning rate fixed: 1×10-6 / loose: 1×10-5 

Regularization L2-norm (0.01) 

Epoch 100 

Table 4. Test data 

Pattern 
Registration error (m) 

East North Elevation 

A 0 0 0 

B 0.10 0.10 0 

C 0.10 0.10 0.12 

D 0.10 0.10 -0.12 

Result 
Table 5 compares the processing times for SfM workflow and 

DSO. In our settings, DSO processed 5.5 times as fast as SfM on 

average. Another important difference is that while SfM workflow 

is applied after the flight mission is finished, DSO can be applied in 
parallel with image acquisition. 

Figure 8 and Fig. 9 show the images in the test case with no 

registration error. DSM difference can be regarded as DEM 

difference in this simulation as there was no change in surface 
components. Concerning the SfM-derived DSM difference, 

binarization using the threshold of 30 cm successfully removed most 

noise areas.  However, higher threshold led to overlook outer edge 

of the landslide area.  On the other hand, the DSO-derived DSM 
difference contained many noise areas even with the threshold of 30 

cm. This is because the reconstruction accuracy of DSO is less than 

that of SfM workflow. Considering that registration error can further 

increase noise areas, it is difficult to detect landslides by simple 
binarization. 

Figures 10, Table 6, and Table 7 show the detection result. The 

detection ability of the fixed training model dropped on the test 

pattern with registration error. On the other hand, the loose training 
model showed higher robustness against registration error. The F1 

score of the loose training model was 0.79-0.84. Erroneous detection 

mostly occurred on the surrounding patches of the landslide. In other 

regions, the model successfully detected landslides while ignoring 
variations such as reconstruction noise and registration error.  

Table 5. Processing time 

Image 
sets 

Processing time (sec) Ratio 
SfM/DSO SfM DSO 

Step1 934 155 6.01 

Step2 810 203 4.00 

Step3 966 101 9.59 

Step4 867 155 5.59 

Step5 865 184 4.71 

Step6 1034 193 5.36 

Average 912.7 165.0 5.53 
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(a) pre-landslide      (b) post-landslide  (c) ground truth mask 
Figure 8. Orthophotos and a ground truth mask 

 

(a) pre-landslide    (b) post-landslide      (c) Difference         (d) Difference 
DSM                        DSM               threshold:20 cm     threshold:30 cm 

Figure 9. Comparison between SfM (top row) and DSO (bottom row). The red 
circles show the landslide area. DSO-derived DSM difference contained more 

noise areas (white areas exterior to the circle). 

 

(a) pattern A           (b) pattern B            (c) pattern C         (d) pattern D  

Figure 10. Detection result of fixed training (top row) and loose training 
(bottom row). blue) Ture positive; green) True negative; red) False Positive; 
yellow) False negative. The results are projected on the DSM difference with 
the threshold of 30 cm. 

Table 6. Detection result (fixed training) 

Pattern Precision Recall F1 

A 0.731 0.864 0.792 

B 0.667 0.818 0.735 

C 0.477 0.955 0.636 

D 0.739 0.773 0.756 

Table 7. Detection result (loose training) 

Pattern Precision Recall F1 

A 0.826 0.864 0.844 

B 0.792 0.864 0.826 

C 0.731 0.864 0.792 

D 0.810 0.773 0.791 

 

 

 

Conclusion 
This paper has proposed a landslide detection method by UAV-

based multi-temporal surveys. The key point is the use of Visual-
SLAM and CNN to enable efficient detection.  

First, we have confirmed the registration accuracy of the 

georeferencing method which is based on fusion of trajectories. 

Second, we have evaluated the detection performance in an outdoor 
simulation environment. Experimental results showed that our 

method works faster than the conventional method. In addition, the 

CNN-based model detects landslides robustly against variations 

such as reconstruction noise and registration error. 
In our future work, we aim to evaluate the proposed method in 

a practical environment.  

References 
 

[1]  M. Scaioni, L. Longoni, V. Melillo and M. Papini, "Remote Sensing 

for Landslide Investigations: An Overview of Recent Achievements 

and Perspectives," Remote Sensing, vol. 6, no. 10, pp. 9600-9652, 

2014.  

[2]  Ministry of Land, Infrastructure, Transport and Tourism, 

"Occurrence of sediment-related disasters in 2020," 2020. 

[3]  J. P. Malet, M. Olivier and E. Calais, "The Use of Global Positioning 

System techniques for the continuous monitoring of landslides. 

Application to the Super-Sauze earthflow," Geomorphology, pp. 33-

54, 2002.  

[4]  I. T. Yang, J. K. Park and D. M. Kim, "Monitoring the symptoms of 

landslide using the non-prism total station," KSCE Journal of Civil 

Engineering, vol. 11, p. 293–301, 2007.  

[5]  L. Tanteri, G. Rossi, V. Tofani, P. Vannocci, S. Moretti and N. 

Casagli, "Multitemporal UAV Survey for Mass Movement Detection 

and Monitoring," in Workshop on World Landslide Forum, 

Ljubljana, Slovenia, 2017.  

[6]  C. Li, G. ZHANG, T. LEI and A. GONG, "Quick image-processing 

method of UAV without control points data in earthquake disaster 

area," Transactions of Nonferrous Metals Society of China, vol. 21, 

pp. 523-528, 2011.  

[7]  M. J. Westoby, J. Brasington, N. F. Glasser, M. J. Hambrey and J. 

M. Reynolds, "‘Structure-from-Motion’ photogrammetry: A low-

cost, effective tool for geoscience applications," Geomorphology, 

vol. 179, pp. 300-314, 2012.  

[8]  D. G. Lowe, "Distinctive Image Features from Scale-Invariant 

Keypoints," International Journal of Computer Vision, vol. 60, pp. 

91-110, 2004.  

[9]  M. R. James and S. Roboson, "Straightforward reconstruction of 3D 

surfaces and topography with a camera: Accuracy and geoscience 

application," Journal of Geophysical Research: Solid Earth, vol. 

117, no. F3, 2012.  

[10]  S. D'Oleire-Oltmanns, I. Marzolff, K. Peter and J. Ries, "Unmanned 

Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco," 

Remote Sensing, vol. 4, no. 11, pp. 3390-3416, 2012.  

IS&T International Symposium on Electronic Imaging 2022
Intelligent Robotics and Industrial Applications using Computer Vision 2022 307-5



 

 

[11]  G. Rossi, L. Tanteri, V. Tofani, P. Vannocci, S. Moretti and N. 

Casagli , "Multitemporal UAV surveys for landslide mapping and 

characterization," Landslides, vol. 15, no. 5, p. 1045–1052, 2018.  

[12]  A. Lucieer, S. Jong and D. Turner, "Mapping landslide 

displacements using Structure from Motion (SfM) and image 

correlation of multi-temporal UAV photography," Progress in 

Physical Geography: Earth and Environment, vol. 38, no. 1, pp. 97-

116, 2014.  

[13]  Q. Xu, W. Li, Y. Ju, X. Dong and D. Peng, "Multitemporal UAV-

based photogrammetry for landslide detection and monitoring in a 

large area: a case study in the Heifangtai terrace in the Loess Plateau 

of China," Journal of Mountain Science, vol. 17, no. 8, p. 1826–

1839, 2020.  

[14]  N. Brodu and D. Lague, "3D terrestrial lidar data classification of 

complex natural scenes using a multi-scale dimensionality criterion: 

Applications in geomorphology," ISPRS Journal of Photogrammetry 

and Remote Sensing, vol. 68, pp. 121-134, 2012.  

[15]  K. Kado and G. Hirasawa, "Applying pose estimation techniques 

with Structure from Motion in architectural fields," AIJ Journal of 

Technology and Design, vol. 24, no. 57, pp. 873-876, 2018.  

[16]  S. R. Klomp and D. W. J. M. van de Wouw, "Real-time small-object 

change detection from ground vehicles using a siamese 

convolutional neural network," Journal of Imaging Science and 

Technology, vol. 63, no. 6, 2019.  

[17]  A. Varghese, J. Gubbi, A. Ramaswamy and B. Purushothaman, 

"ChangeNet: A Deep Learning Architecture for Visual Change 

Detection," in Computer Vision – ECCV 2018 Workshops, Munich, 

Germany, 2019.  

[18]  J. Engel, V. Koltun and D. Cremers, "Direct Sparse Odometry," 

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE 

INTELLIGENCE, vol. 40, no. 3, pp. 611-625, 2018.  

[19]  D. P. Shepard and T. E. Humphreys, "High-precision globally-

referenced position and attitude via a fusion of visual SLAM, carrier-

phase-based GPS, and inertial measurements," in 2014 IEEE/ION 

Position, Location and Navigation Symposium - PLANS 2014, 

Monterey, CA, USA, 2014.  

[20]  D. Turner, A. Lucieer and L. Wallace, "Direct Georeferencing of 

Ultrahigh-Resolution UAV Imagery," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 52, no. 5, pp. 2738-2745, 

2014.  

[21]  A. Telea, "An Image Inpainting Technique Based on the Fast 

Marching Method," Journal of graphics tools, vol. 9, no. 1, pp. 25-

36, 2004.  

[22]  A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet 

Classification with Deep Convolutional Neural Networks," Advances 

in Neural Information Processing Systems, vol. 25, no. 2, 2012.  

[23]  B. Grayson, N. Penna, J. Mills and D. Grant, "GPS precise point 

positioning for UAV photogrammetry," The Photogrammetric 

Record, vol. 33, no. 84, 2018.  

[24]  OpenDroneMap, https://github.com/OpenDroneMap/ODM.  

 

 

Author Biography 
Yosuke Yamaguchi is now an undergraduate student of the Department of 

Modern Mechanical Engineering, the School of Creative Science and 

Engineering, Waseda University, Japan. His research interests include deep 

learning, image processing, and robot vision. 

 

Kai Matsui received his Bachelor degree from Department of Modern 

Mechanical Engineering, Waseda University in March 2021. He is now a 

master student of the same department and exploring a method for detecting 

land collapses by analyzing images acquired by a Drone camera. 

 

Jun Ohya received B.S., M.S. and Ph.D. degrees in precision machinery 

engineering from the University of Tokyo, Japan, in 1977, 1979 and 1988, 

respectively.  He joined NTT Research Laboratories in 1979.  He was a 

visiting research associate at the Computer Vision Laboratory, University of 

Maryland, USA, from 1988 to 1989.  He transferred to ATR, Kyoto, Japan, 

in 1992.  In 2000, he joined Graduate School of Global Information and 

Telecommunication Studies, Waseda University, Japan as a professor.  He 

was a guest professor at the University of Karlsruhe, Germany, in 2005.  

Since 2014, he has been a professor of Department of Modern Mechanical 

Engineering, Waseda University. His research areas include computer 

vision and machine learning.  Dr. Ohya is a Life Member of IEEE, a Fellow 

of IIEEJ, a member of IPSJ, IIEIC and VRSJ. 

 

Katsuya Hasegawa 

B.S., JAPAN Coast Guard Academy; Ph.D., Department of Biomedical 

Engineering, Kawasaki Medical School; Ph.D., Department of Applied 

Chemistry, Tokyo University of Agriculture and Technology; Japan Coast 

Guard officer; appointed as a researcher at the Japan Aerospace 

Exploration Agency; research fields include metrology and biophysics.  He 

is a part-time lecturer at several universities, teaching mathematics, physics, 

and life sciences. 

 

Hiroshi Nagahashi received his BEE (1975) and DE in information 

processing (1980) from Tokyo Institute of Technology, Japan. Since then, he 

has worked in the fields of image processing, computer vision, computer 

graphics and machine learning. He is now a Specially Appointed Professor 

in the School of Computing, Tokyo Institute of Technology. 

 

 

307-6
IS&T International Symposium on Electronic Imaging 2022

Intelligent Robotics and Industrial Applications using Computer Vision 2022


