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Abstract 

Roadway “corners” are common for pedestrian use, whether 
designated with markings or not. Different types of markings have 
been deployed, ranging from simple parallel lines to more complex 
designs. Understanding the impact of different types of crosswalks 
is important for public safety. In this work we explore methods to 
improve the logging of marked crosswalk types. We used the 
Roadway Information Database from the Second Strategic Highway 
Research Project and used active learning methods with transfer 
learning to identify the crosswalk types (marked or unmarked). 
Upon completion we found our classifiers were unable to perform 
above roughly 90% correct classifications. To improve their 
efficacy, we separated the crosswalks into their “fine grained” types 
and used Gradient-Weighted Class Activation Mapping to isolate 
and study the features that classified the crosswalks. We compared 
this with sampled manually marked crosswalks and present 
findings.  We believe this use case can represent a process to 
improve the active learning method for some visual machine 
learning applications. 
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Introduction 
Roughly 35,000 people die on roadways in the United States of 
American annually [1].  In 2019, as an example, there were 36096 
motor vehicle deaths, including 6205 pedestrian deaths [2].  A 
crosswalk is defined as “…the extension of the sidewalk or the 
shoulder across the intersection, regardless of whether it is marked 
or not. … Most jurisdictions have crosswalk laws that make it legal 
for pedestrians to cross the street at any intersection, whether 
marked or not, unless the pedestrian crossing is specifically 
prohibited”[3].  There have been various studies in how to better 
protect pedestrians and a large focus has been on signage and 
markings to create safer conditions; as an example, in [4], the 
visibility of different crosswalk marking patterns was investigated. 
 
Additional insights can be obtained from actual data collected in the 
field under real driving conditions.  Naturalistic Driving Studies 
(NDS) collect data by recording driving information using a variety 
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of instrumentation [6].  One particular NDS, the Second Strategic 
Highway Research Project (SHRP2) [1], was conducted with 
approximately 3000 drivers in 6 data collection sites in the US 
between 2010 and 2013 [7]. The SHRP2 data is a valuable resource 
for researchers to use in their analyses of traffic and transportation 
conditions.  An accompanying dataset, the Roadway Information 
Database (RID), was created [8] by driving an instrumented van on 
the main expected roadways of the SHRP2 study.  The RID is a 
geospatial database of roadway features and high-resolution 
imagery, and contains other information including weather 
information, crash histories, etc. depending on the collection site.  
Several researchers have used these and similar resources to explore 
the relationships between roadway features and actual driving 
events particularly for pedestrian / driver interactions [10][11][12]. 
 
In our case, we had a scientific support goal of simply categorizing 
all the intersections in the RID and determining if they were marked 
crosswalks or unmarked crosswalks.  We also had a secondary goal 
of identifying the type of markings used, with some examples shown 
in Figure 1.  We explored a simple but effective method of 
performing this ground truth, leveraging the binary nature of our 
original goal (marked vs unmarked crosswalk) and then separating 
the subsequent classification of crosswalk types into additional 
binary classes (i.e., standard vs not-standard, then taking the not-
standard set and separating into continental vs not-continental, etc.) 
 

 
Figure 1.  Examples of different crosswalk markings [13]. 
 
We used a machine-learning assisted method which we devised ad-
hoc to complete this task.  We obtained overhead imagery of each 
intersection, then sampled several cases to separate them into 
marked and unmarked examples.  We used transfer learning to train 
a convolutional neural network (CNN), then sorted the unlabeled 
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examples and manually corrected them.  We repeated this process 
until all the imagery were classified.  The marked crosswalk types 
were classified completely manually but in a binary fashion.  Upon 
completion, we had some outstanding questions about the labeling 
process, as well as the effectiveness of the transfer learning.  We 
explore these concepts here by using this pragmatic labeled data set 
as a case study in automated labeling and active learning methods, 
as well as trying to understand the transfer learning feature 
extraction process.  We also explore whether explainable Artificial 
Intelligence (AI) methods such as gradient class activation mapping 
(GradCAM) [14] could be used to help inform and assist 
classification problems which move from coarse detections to more 
fine-grained classifications.  We note that [15] pursues a similar 
objective of labeling marked crosswalks, particularly for a single 
marking pattern type; we believe our main difference is a focus on 
methods to improve annotation and transition from coarse to fine-
grain classification, as opposed to developing a network for 
crosswalk classification.  In the rest of this paper, we discuss the 
data set, followed by the process for the automated labeling effort in 
separating marked / unmarked crosswalks with different strategies 
on sample selection.  We extend this approach to marked crosswalk 
types.  We compare using explainable methods with more brute-
force methods for the fine-grained classification of the marked 
crosswalk types.  We conclude with a discussion on findings and 
future work. 

Data Set 
The geospatial database of the RID features 40,387 intersections 
which were exported to comma separated value files.  Each 
intersection has a latitude-longitude coordinate which was used to 
retrieve an overhead image using the Google Static Map API [15] 
with a function developed for the MATLAB environment [17].  
Some intersections were not retrievable, so we were limited to 
roughly 30,007 intersections of interest.  An example of a set of 
downloaded images is shown in Figure 2.  The images ranged in size 
from 448x448 pixels to 640x640 pixels in size.  The types and 
number of crosswalks are shown in Table 1 below. 

 
Figure 2. Set of RID overhead intersection images retrieved from the Static 
Google Map API [15]. 
 
Table 1. Types of Crosswalks and Quantities 

Type Quantity 
Unmarked 26528 
Standard 3805 
Continental 3755 
Ladder 2411 
Zebra 61 
Dash 35 
Multiple/Unknown 412 

Methods 
Image Review Statistics 
Our first method involves estimating the time to mark errors in a 
classified / labeled set of images.  Given the size of the images and 
the nature of the labeling process (i.e., pick out unmarked vs marked 
crosswalks), we executed our hand labeling processing by 
displaying 16 images in a 4x4 array. We leveraged the nature of the 
labeling process and created an interface where the labeler could 
pick out the incorrect entries; for example isolate the unmarked 
crosswalks in an array of images from the marked crosswalks.  If all 
entries are marked crosswalks, then no interfacing is needed (the 
user simply confirms all labels are correct).  The approach we took 
has some similarities to active learning [18][19].  We also note that 
there are existing assisted annotation tools, but we sought to mimic 
our initial ad-hoc approach. In Figure 3 we show the mean time to 
mark the incorrectly classified images in a 4x4 grid.  This was 
generated by experimental trials using a graphical-user interface 
with simple user instructions to mark errors, then indicate when the 
review was complete. There is a clear performance gain by allowing 
access to multiple images, as we note we also conducted an 
experiment with a single image marked correct or incorrect which 
averaged 1.5 seconds (which is consistent with the result below for 
a 1-error case.) Evaluating a worst-case 16 errors takes roughly 8 
seconds on average and thus there is an approximately 3x time 
savings on a per-image basis. We used these statistics in our 
subsequent tasks described below. 
 

 
Figure 3.  Mean time to confirm/correct in 4x4 image array for a 2 class problem. 

Labeling Process 
Our second method concerns how we execute the labeling process.  
Our overall approach is to (1) create a ground-truth data set, (2) train 
a classifier on the set, (3) machine label the remaining entries in the 
data set, (4) present the results in a specific manner based on the 
machine predictions to allow a user to correct / confirm the 
decisions, and (5) use the corrections / confirmations to repeat the 
process with a new ground truth data set  (Figure 4).  The main 
variable in this process which we investigated was the presentation 
manner of step 4.  We used convolutional neural networks for the 
machine learning method, so for each image, we received a value 
between 0 and 1 for the membership in each of the two candidate 
classes.  Thus, we used one of these measures as our score.  We used 
two evaluation methods for presenting the results to the user, shown 
in the graph at step 4 in Figure 4.  In the first method (dubbed 
“extremes”), we focused on the extreme results where the score was 
high for one of the classes.  In the second method (dubbed 
“middle”), we focused on the cases where the scores were most 
ambiguous (choosing the middle images from the region around the 
“cross over” point where the scores are nearly equal).  Our rationale 
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was that the extreme cases would be easier to confirm/correct with 
fewer errors and thus decrease the time as indicated in Figure 3.  We 
also hoped that capturing gross errors would help direct the classifier 
in a more nuanced manner.  On the other hand, the middle approach 
would capture more problematic, ambiguous cases and perhaps 
increase the variation the classifiers used.  As opposed to active 
learning, we are not seeking to choose the best candidates for a 
training set, but rather we want to reduce the overall time needed for 
evaluation by exploring how to select training set samples.  We 
targeted confirmation / correction on a fixed number of samples for 
both approaches and doubled this from the seed set which was 
chosen arbitrarily as 1000 data points (thus we used training sets of 
1000, 3000, 7000, etc with the new number of points doubling each 
time).  Our experiments consisted of using these two approaches on 
the marked vs unmarked crosswalk problem, and we then repeated 
them on a ‘fine grained’ classification of the marked crosswalks as 
well, using standard vs ladder/continental and then ladder vs 
continental.  (We omitted the underrepresented classes for 
illustrative purposes; generally, this would be more difficult in an 
actual application of this method.) 

 
Figure 4.  Flow diagram of method.  (1) start with set of labeled images; (2) train 
CNN; (3) use trained CNN to perform prediction on unlabeled set; (4) user 
interface to correct / confirm results, based on strategies depicted in graph 
either using extreme cases or cases in the middle of the distribution (fold-over 
point); (5) new labeled set is fed back to step 1 and process is repeated. 

Fine-Grained Classification 
For the final methods, we investigated how the results of the coarse 
marked / unmarked crosswalk problem may be leveraged to perform 
a more “fine grained” classification, specifically, into the different 
types of crosswalks shown in Figure 1.  We sought to leverage 
explainable methods, which seek to identify important regions in 
images where CNNs concentrate learning. Previous methods for 
pixel-space gradient visualizations such as Guided Backpropagation 
[22] and Deconvolutional networks [20] are high-resolution and 
highlight fine-grained details in the image, but are not class-
discriminative [14]. Deconvolutional networks aim to 
approximately reconstruct the input of each layer from its output by 
understanding neuron activations in feature maps [20]. Guided 
Backpropagation leverages which elements are positive in the 
preceding layer with Deconvolutional networks by setting the 
gradient and negative gradients to zero to highlight the pixels that 
are important in the image [22]. 
 
In contrast, Class Activation Mapping (CAM) are class-
discriminative, which localizes the category or class of the image by 
using global average pooling in CNNs [23]. CAM works by global 
average pooling on the convolutional feature maps just before the 
final output layer and use those as features for a fully-connected 
layer that produces the importance of the image regions by 
projecting back the weights of the output layer on to the 
convolutional feature maps. However, CAM requires feature maps 
to directly precede the prediction layer and is only applicable to 
CNN architectures performing global average pooling over 
convolutional maps immediately prior to the prediction layer. 

Instead, Gradient-weighted Class Activation Mapping (Grad-CAM) 
highlights important regions of an input image for CNN’s prediction 
using the gradients of any target concept, flowing into the final 
convolutional layer to produce a coarse localization map 
highlighting the important regions in the image for predicting the 
concept [14]. Grad-CAM may be combined with existing pixel-
space visualizations to create a high-resolution class discriminative 
visualization (Guided Grad-CAM) [14]. Grad-CAM forward 
propagates an input image to obtain a raw score for a class of interest 
setting gradients to zero and the desired class to 1, then the signal is 
backpropagated to the rectified convolutional feature maps of 
interest to create heatmaps of where the model looks for the class of 
interest. Guided Grad-CAM visualizations are created by 
performing a pointwise multiply on the heatmap with guided 
backpropagation. Grad-CAM is further improved by other works, 
such as Grad-CAM++ [21] and Ablation-CAM [24]. 
 
We specifically applied GradCAM to our final labeled dataset and 
used the heatmaps produced as proxies for bounding box data, by 
using a simple threshold of 0.80 and computing the bounding box 
around the threshold area.   We compared these with a sample of 
hand-drawn oriented bounding boxes on the image features of 
interest for the marked crosswalks.  Our hope was that these 
bounding boxes could be leveraged for an improvement on the fine-
grained classifier; thus we tested how effective the GradCAM 
regions were at localizing those features that were unique to each 
fine-grained class. 

Results 
The estimated times to correct / confirm a 4 x 4 array of images are 
shown in Figure 3, so we simply note that this method allows an 
operator to perform a more rapid per-image confirmation / 
correction than the review of a single image would allow.  As a 
comparison, we estimated a single image takes 1.5 s to estimate, so 
the entire dataset of 37007 images would require 55,510 seconds to 
label (15.4 hours).  Moving to our “divide and conquer” 
experiments, the times to complete each step of the assisted 
annotation are shown in Figure 5 through Figure 7.  We summarize 
these results in Table 2.  Each row represents the labeling objective 
(Marked vs Unmarked for coarse, then Standard vs Cont/Ladd and 
Continental vs Ladder for fine), with the two approaches shown and 
the total time for each method and objective presented.  
 
Table 2. Timing for Different Approaches and Test Classes 

Test Case Approach 
Extreme Middle 

Marked vs Unmarked 4150 s 4696 s 
Standard v Cont/Ladd 981 s 1367 s 
Continental v Ladder 373 s 560 s 

 
Overall, the extreme approach saves time, in all cases.  However, 
the time savings occur at the initial phases where the training set is 
smaller and likely has less variation.  The intermediate CNNs used 
here (based on Alexnet [25]) were created by splitting the available 
set into 4 pieces.  The unlabeled data was set aside for prediction 
only for the next iteration.  The labeled data was split by taking the 
minimum number of entries for the two classes, then dividing that 
into 50% for training, 25% for validation, and the remaining was 
used for testing.  This created balanced training and validation sets, 
but resulted in an unbalanced testing set (and obviously an 
unbalanced unlabeled set).  Since the overall data set was 
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unbalanced, this meant the testing set was more unbalanced than the 
overall set.  We note that while we were not focused on the 
performance of the CNN, the CNNs used in the intermediate steps 
here (based on Alexnet) were typically better performing on the 
validation data for the extreme approach than the middle approach 
– which makes intuitive sense because they likely had an easier data 
set for the initial iterations, but eventually ran into the more difficult 
sets later in the process and thus the operator had to work harder in 
latter stages than in earlier stages.  Meanwhile, the middle approach 
took more time initially because there were more difficult training 
data at the start, which was harder to correct and confirm.  
 

 
Figure 5. Timing for marked vs unmarked experiments 
 

 
Figure 6. Timing for Standard vs Continental/Ladder fine-grain experiments 
 

 
Figure 7. Timing for Continental vs Ladder experiments 
 

 

 
Figure 8. Examples of Grad-CAM based heatmaps and localization.  Left 
column are the original images, with the heatmaps in the middle and the isolated 
bounding boxes on the right.  Top row shows a good localization.  The second 
row shows a good localization for the entire intersection, but does not 
distinguish the individual crosswalks.  The third and fourth rows scored at 0.63 
and 0.50 for the marked crosswalk class, and in both cases do not localize the 
key feature well although they do focus on the intersection itself. 
 
We performed several experiments to understand the potential of 
using GradCAM to direct from the coarse classification problem to 
the fine-grained problem.  These experiments were conducted more 
to determine the efficacy of the approach rather than as a full-scale 
implementation, but we note that regardless our goal was to classify 
/ review the data, not generate the best classifier.  We first trained a 
final coarse classifier (this time using the InceptionV3 topology 
[26]) and used its weights to generate GradCAM heatmaps.  Some 
examples are shown in Figure 8, along with the bounding box drawn 
by simple thresholding the heat map at 0.8.  Generally we noted that 
when the class score for marked crosswalk was high, the GradCAM 
heatmap showed a good mapping to the fine-grained crosswalk.  
But, when the score was lower the result was not as promising, and 
even when the scores were high the heatmap did not always separate 
the features into separated crosswalks.  We quantified this by 
performing hand-segmentation of a sample of 1979 crosswalks in 
the data set.  We created a custom interface that allowed crosswalk 
segmentation by clicking the four corners of the crosswalk.  The 
time to generate these bounding boxes is shown in Figure 9.  We 
compared the hand boxes with the automated ones using the 
Intersection over Union (IoU) score, and Figure 10 shows a plot of 
the IoU score as a function of the GradCAM score.  This reveals that 
many IoU are low (which is not unexpected, especially since the 
hand-drawn results are oriented boxes and the GradCAM are not), 
but significantly the higher IoU scores occur more frequently when 
the GradCAM score is high, suggesting that high GradCAM does 
indeed localize the image features well.  A visual review of the 
GradCAM bounding boxes found that roughly 75% of the 
GradCAM boxes gave good localization, and thus the localization 
property for this particular application is reasonably good. 
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As a final check, we compared the classification of the GradCAM 
localized data set for fine-grained classification to the non-localized 
set.  We used an InceptionV3 classifier model, with transfer 
learning, and trained a single instance on the GradCAM focused 
images (made by extracting the bounding box) and the entire image.  
Our rationale was that the GradCAM focused cases may allow better 
control of undesired variation in the data set, such as the surrounding 
imagery and other roadway infrastructure and markings. However, 
the results are comparable (Table 3 and Table 4), suggesting that the 
GradCAM focused imagery has too much clutter as well; while 75% 
of the images localize well, that leaves 25% that do not. 
 

 
Figure 9.  Median time to draw marked crosswalk features, based on the 
number of marked crosswalks in each image. 
 
Table 3. Fine Grained Using GradCAM Focused Images 

Actual Predicted 
Continental Ladder Standard 

Continental 0.92 0.02 0.05 
Ladder 0.02 0.90 0.08 
Standard 0.06 0.07 0.86 

Table 4. Fine Grained Using Uncropped Images 

Actual Predicted 
Continental Ladder Standard 

Continental 0.91 0.03 0.06 
Ladder 0.03 0.99 0.08 
Standard 0.05 0.06 0.89 

 

 
Figure 10.  IoU score for hand drawn crosswalks plotted as a function of the 
GradCAM score.  While many IoU are zero, we see that non-zero IoU are 
more common when the GradCAM score is near unity on the right side of the 
plot.  

Conclusions 
There are many factors to consider when executing hand-labeling or 
confirmation/ correction of a data set. Our experiments showed that 
the extreme method seems to save time at the beginning of the 
process, while the middle method takes longer initially but improves 
over time.  The extreme method did take less overall time in our 
experiments, and both were superior to hand-labeling with no 
automation assistance.  There are open-source and commercial tools  
(for example [27][28]) that can be used for image annotation as well, 
and they may be well suited for this but we focused on the particulars 
of this application. 
 
The GradCAM results showed that high scoring results were often 
good at picking out fine-grained features of interest – and thus, the 
coarse classifier truly learned important features of interest that 
defined the fine-grained problem. However, we were not able to 
leverage this to effectively assist a fine-grained classification 
system.  One promising idea is the concept of using the GradCAM 
boxes as an initial approach to hand-drawn boxes.  This method 
would work by having a user manually review GradCAM boxes for 
confirmation / correction, then using an object-based CNN method 
to iteratively generate additional examples.  There would likely be 
considerable time savings with this approach if it could be 
implemented.  Finally, there remain many unanswered questions; a 
more thorough literature review is likely needed.  The training time 
needed for each step is a consideration that we did not address.  
Other ideas include sampling from both the middle and the extreme 
ends; leveraging the GradCAM analysis for sample selection; and 
studies on the impact of more flexibility in the number of samples 
selected in each step. 
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