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Abstract—Given a suitable dataset, transfer learning using
deep convolutional neural networks is an effective method to
develop a system to detect and classify objects. Despite hav-
ing models pretrained on large general-purpose datasets, the
requirement to manually label an application-specific dataset
remains a limiting factor in system development. We consider
this wider problem in the context of the purity analysis of canola
seeds, where end users wish to distinguish species of interest
from contaminants in images taken with optical microscopes.
We use a Detector network, trained only to detect seeds, to help
label the dataset used to train an Analyzer network, capable
of both seed detection and classification. We present results,
over three experiments that involve 25 contaminant species,
including Primary and Secondary Noxious Weed Seeds (as per
the Canadian Weed Seeds Order), to validate our incremental
approach. We also compare the proposed system to competing
ones in a literature review.

Index Terms—Artificial intelligence; neural network; object
recognition; content detection; canola seeds; image analysis.

I. INTRODUCTION

Automated analysis and sorting systems have been devel-
oped [1], [2], [3], [4], [5], [6], [7], [8] for mm-sized objects,
such as seeds, beans, and kernels, in the agriculture and food
sector. Instead of artificial neural networks (ANNs), some
works favour non-ANN image processing [2], [3], [6] or signal
processing with multi-spectral sensors [8]. A relative advan-
tage of these approaches is the analysis efficiency. Other works
use ANNs but not convolutional neural networks (CNNs) [4],
[5], even though such deep-learning ANNs have launched a
revolution in object classification [9]. Because this revolution
was still underway at the time it was written, a review paper
on seed inspection methods [7] does not even address CNNs.
A relative advantage of the ANN approaches, whether CNN
or not, is the analysis accuracy.

Heo et al. [1] do exploit CNNs for seed analysis and sorting.
Their work, the most relevant at the time of this research,
combines non-ANN image processing for object detection,
i.e., image segmentation, with CNNs for object classification.
However, they do not take advantage of developments in
semantic segmentation [10], whereby CNNs are used for
both object detection and classification [11], [12], [13]. Also,
like other authors, Heo et al. do not employ magnification.
In contrast, Jahnke et al. [6] emphasize the importance of
the objective lens, which they coupled to a camera, in a

system they designed to analyze canola seed (B. napus) and
contaminants. Jahnke et al. also relied on a complex imaging
setup that involved a pick-and-place robot.

In addition to this paper’s relevance to its application,
namely seed analysis and sorting, it is also significant to the
computer vision discipline of object detection and classifica-
tion using CNNs, which falls under image understanding. We
propose an incremental two-network approach to reduce and
even eliminate manually-labelled bounding boxes (MLBBs).
A proposed Detector network is trained, validated, and tested
using some images. Subsequently, we use it to generate
automatically-labelled bounding boxes (ALBBs) for additional
images, where objects in each image belong to one class only.
An Analyzer network is then trained on all of these images to
perform object analysis on new ones.

From the multitude of CNN architectures that are avail-
able, we restrict the scope of our Applicability and Anal-
ysis experiments to the single-shot detector (SSD), faster
region-convolutional neural network (FRCNN), and region-
based fully convolutional network (RFCN). The former two
architectures are featured in a review paper by Forson [14].
As for the RFCN architecture, we chose it because it was faster
during training and inference than the FRCNN one [11]. As it
also outperforms the other two in terms of accuracy, we restrict
our attention to just the RFCN architecture for our Reduction
of Effort experiments.

II. APPLICABILITY AND ANALYSIS

We present our approach using three experiments: F0, K1,
and K2. In this section, we introduce our dataset and focus on
the F0 experiment. This experiment demonstrates the applica-
bility of a selected CNN architecture, as well as four proposed
metrics, for the fully-automatic detection and classification of
all mm-sized objects in an optical microscopy image. Together
with qualitative analysis, we propose a quantitative figure of
merit (FoM) to establish a baseline for the Reduction of Effort
experiments, K1 and K2, presented in the next section. The
objects we use are canola seeds and contaminants.

In Table I, we divide the species of seeds in our dataset
into four classes, as per the Canadian Weed Seeds Order [15]
and a Canola Council of Canada FAQ [16]. Common names
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are taken, firstly, from the US Department of Agriculture’s
PLANTS Database [17] and, secondly, from Wikipedia.

Figure 1 presents sample images of all species listed in
Table I. The nine species considered in the F0 and K1
experiments are grouped into three classes, i.e., Classes 3, 6,
and 7, whereas the K2 experiment has 18 additional species
grouped into four classes, i.e., Classes 2, 3, 6, and 7. We
compute what we call class-based results. This means that
classifications are considered incorrect only if a species that
belongs to one class is assigned a different class.

Table II indicates how one dataset of 315 images, collected
incrementally, is used in three experiments. The F0 experiment
uses the first 45 images, comprising 1,107 seeds. This exper-
iment involves MLBBs only. The K1 and K2 experiments are
discussed in the next section. (In addition to MLBBs, they
involve ALBBs.) Though it may be done by a non-specialist,
MLBB assignment requires substantial human effort for the
large number of objects in a dataset suitable for the training,
validation, and testing of a deep CNN for object detection and
classification. In our dataset, we had a total of 2,893 mm-sized
objects, i.e., canola seeds and contaminants.

We proposed a FoM to account not only for the classifica-
tion errors but also for the detection errors. One can take for
granted the ability of a human specialist to detect foreground
objects perfectly from background ones. Even a non-specialist
can detect seeds in an optical microscopy image. As we should
not assume a computer can, we proposed four metrics, which
we called Sensitivity, Accuracy, Specificity, and Precision, to
help compute and explain the FoM:

Sensitivity =
True Detections

Total Seeds
, (1)

Accuracy =
True Classifications

Total Seeds + Extra Detections
, (2)

Specificity =
True Detections

Total Seeds + Extra Detections
, (3)

Precision =
True Classifications

Total Seeds
. (4)

Each metric ranges from 0 to 100%, where 100% is ideal.
The metrics of Equations 1 to 4 use several measures:

True Detections, Total Seeds, True Classifications, and Extra
Detections. Apart for the last one, they are basically self-
explanatory. To count the Extra Detections, we first calculate
the intersections-over-unions (IoUs), using the areas covered
in pixels, of the nearest MLBBs and the ALBBs, i.e., the
bounding boxes after object detection, as follows:

IoU =
MLBB ∩ ALBB
MLBB ∪ ALBB

. (5)

The Extra Detections comprise Extra True Detections, where
the IoU is greater than or equal to 50%, and Extra False
Detections, where the IoU is less than 50%. Examples are
given in Figure 2. As indicated, exactly one of the Extra True
Detections is counted instead as the one True Detection.

While Sensitivity is the bottleneck in Equations 1 to 4,
Accuracy is limited also by Specificity and Precision, which

offer additional insight into observed inaccuracies. This can
be seen from the following mathematical relations:

Accuracy ≤ Sensitivity, (6)
Specificity ≤ Sensitivity, (7)
Precision ≤ Sensitivity, (8)
Accuracy ≤ Specificity, (9)
Accuracy ≤ Precision. (10)

To define the FoM, we use the product of Sensitivity and
Accuracy or, what turns out to be equal, the same of Specificity
and Precision. We call this FoM the Analysis Score:

Analysis Score = Sensitivity× Accuracy, (11)
= Specificity× Precision. (12)

As it proves to be a limiting factor, we propose the Specificity
could be increased, in future work, by post-processing CNN
output to eliminate Extra True Detections. This would raise
the Accuracy, thereby raising the Analysis Score.

Table III lists the Analysis Scores of Class 7 for multiple
scenarios and Monte Carlo trials. Class 7 has the species of
interest, i.e., B. napus and B. rapa, for our Purity Analyzer
System, which initially used a one-network approach to per-
form object detection and classification. Each trial represents
a random partitioning of the available images into training,
validation, and test sets. For every five images, three images
(60%) are assigned to the training set, one image (20%) to the
validation set, and one image (20%) to the test set.

We focus on the RFCN architecture in subsequent experi-
ments, one of the three deep CNN architectures we evaluated
for the Purity Analyzer System, because it outperformed both
the FRCNN and the SSD architectures on median Analysis
Score. This is visible in Table III. As an example, the 86.36%
value, in the table, is calculated as follows:

Analysis Score = 100.00%× 86.36%, (13)
= 97.73%× 88.37%, (14)

(15)

where

Sensitivity =
43

43
= 100.00%, (16)

Accuracy =
38

43 + 1
= 86.36%, (17)

Specificity =
43

43 + 1
= 97.73%, (18)

Precision =
38

43
= 88.37%. (19)

These numbers correspond to the median RFCN result for
Class 7 seeds in the F0 experiment.

Although we emphasize the Analysis Score in this paper,
we examined metrics and measures besides those used by our
proposed FoM. For example, with the RFCN network in the
F0 experiment, a standard confusion matrix shows that Class 7
seeds were misclassified primarily as Class 3 seeds.
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TABLE I
CLASSES AND SPECIES OF SEEDS IN THE DATASET. THE CANADIAN WEED SEEDS ORDER MEANINGFULLY GROUPS SPECIES INTO CLASSES. CLASSES 2

AND 3 ARE PRIMARY AND SECONDARY NOXIOUS WEED SEEDS, RESPECTIVELY. WHEREAS CLASS 6 SPECIES ARE ALSO WEEDS (CONTAMINANTS),
CLASS 7 GROUPS SPECIES (CANOLA) OF INTEREST TO END USERS (PURITY ANALYSTS) OF THE PURITY ANALYZER SYSTEM.

Class Species Common Name Experiment
2 Cirsium arvense Canada thistle K2 only
2 Datura stramonium Jimsonweed K2 only
2 Raphanus raphanistrum Wild radish K2 only
3 Daucus carota Wild carrot K2 only
3 Galium spurium False cleavers F0, K1, K2
3 Silene noctiflora Night-flowering catchfly K2 only
3 Sinapis arvensis Wild mustard F0, K1, K2
3 Thlaspi arvense Stinkweed K2 only
3 Vaccaria hispanica Cow cockle F0, K1, K2
6 Amaranthus retroflexus Redroot amaranth K2 only
6 Axyris amaranthoides Russian pigweed F0, K1, K2
6 Bassia scoparia Burningbush F0, K1, K2
6 Brassica juncea Brown mustard K2 only
6 Brassica oleracea Wild cabbage K2 only
6 Camelina sativa False flax K2 only
6 Chenopodium album Lambsquarters F0, K1, K2
6 Crepis tectorum Narrowleaf hawksbeard K2 only
6 Dracocephalum parviflorum American dragonhead K2 only
6 Fallopia convolvulus Black bindweed K2 only
6 Neslia paniculata Ballmustard K2 only
6 Persicaria lapathifolia Curlytop knotweed K2 only
6 Plantago major Broadleaf plantain K2 only
6 Raphanus sativus Wild radish K2 only
6 Sinapis alba White mustard K2 only
6 Solanum nigrum Black nightshade F0, K1, K2
7 Brassica napus Argentine canola F0, K1, K2
7 Brassica rapa Polish canola F0, K1, K2

TABLE II
NUMBERS OF IMAGES AND SEEDS IN THE DATASET. THE F0 EXPERIMENT IS DISCUSSED UNDER Applicability and Analysis. THE K1 AND K2

EXPERIMENTS ARE DISCUSSED UNDER Reduction of Effort, WHICH HAS Additional Images AND Additional Species SECTIONS.

Images Seeds
Class Species F0 K1 K2 F0 K1 K2
2 C. arvense +10 +60
2 D. stramonium +10 +70
2 R. raphanistrum +10 +41
3 D. carota +10 +28
3 G. spurium 5 +10 106 +64
3 S. noctiflora +10 +66
3 S. arvensis 5 +10 133 +66
3 T. arvense +10 +87
3 V. hispanica 4 +10 79 +82
6 A. retroflexus +10 +119
6 A. amaranthoides 4 +10 98 +63
6 B. scoparia 4 +10 94 +60
6 B. juncea +10 +63
6 B. oleracea +10 +67
6 C. sativa +10 +112
6 C. album 7 +10 244 +102
6 C. tectorum +10 +56
6 D. parviflorum +10 +45
6 F. convolvulus +10 +49
6 N. paniculata +10 +50
6 P. lapathifolia +10 +62
6 P. major +10 +68
6 R. sativus +10 +41
6 S. alba +10 +52
6 S. nigrum 4 +10 93 +72
7 B. napus 5 +10 94 +69
7 B. rapa 7 +10 166 +72

Subtotal: 45 +90 +180 1,107 +650 +1,136
Total: 45 135 315 1,107 1,757 2,893
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Fig. 1. Sample images of all species in the dataset. These images correspond, from left to right and then top to bottom, to the 27 species listed in Table I,
from top to bottom. Two different optical systems were used, which accounts for some variability in the backgrounds and foregrounds of images.

TABLE III
SELECTED ANALYSIS SCORES (100% RELATIVE EFFORT). UNDER Applicability and Analysis, THREE ARCHITECTURES ARE EVALUATED. AS THE

REGION-BASED FULLY CONVOLUTIONAL NETWORK (RFCN) OUTPERFORMED THE SINGLE-SHOT DETECTOR (SSD) AND FASTER
REGION-CONVOLUTIONAL NEURAL NETWORK (FRCNN), IT IS THE ONLY ARCHITECTURE USED UNDER Reduction of Effort.

Exp. ConvNet Species Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
F0 SSD B. napus 66.48 0.00 0.00 26.32 27.37
F0 SSD B. rapa 50.17 39.39 84.03 27.04 34.02
F0 SSD Class 7 57.11 17.02 40.88 26.72 31.40
F0 FRCNN B. napus 89.47 52.00 30.00 84.76 66.67
F0 FRCNN B. rapa 78.57 85.33 85.19 100.00 78.57
F0 FRCNN Class 7 85.11 71.49 82.98 95.51 73.47
F0 RFCN B. napus 94.74 51.59 37.06 85.27 89.47
F0 RFCN B. rapa 80.00 100.00 92.00 100.00 85.19
F0 RFCN Class 7 86.36 81.85 72.09 93.38 86.96
K1 RFCN B. napus 64.52 71.34 69.21 75.00 57.20
K1 RFCN B. rapa 65.22 100.00 93.02 97.30 87.15
K1 RFCN Class 7 72.43 89.84 86.02 87.67 78.55
K2 RFCN B. napus 42.35 67.04 53.63 67.04 79.93
K2 RFCN B. rapa 97.67 84.26 82.05 69.92 88.59
K2 RFCN Class 7 80.39 83.79 82.58 82.85 93.61

For each scenario in Table III, the median Analysis Score
across trials is underlined. In addition to the Class 7 results,
Analysis Scores are shown for B. napus and B. rapa when
they are treated as individual species. We determined that it
made most sense to focus this paper on class-based results.
Meaningful aggregation of species, considering the numbers
of seeds, results in more robust conclusions.

III. REDUCTION OF EFFORT

Having demonstrated the applicability of our Analyzer
network, and introduced our method of analysis, we now
turn our attention to the incremental development of a Purity
Analyzer System using an incremental dataset. This involves
an Analyzer network, which is incrementally retrained, and
a Detector network. Together, the software and hardware
comprise the Purity Analyzer System of Figure 3.

A. Additional Images

We consider two incremental steps. The first is the addition
of new images, to the training, validation, and test sets, without
changing seed species. This K1 experiment builds on Trial 4
of the F0 experiment detailed previously. We chose Trial 4
because, at the time we ran the K1 experiment, we were

focused on the median B. napus result. Only later, after
completing the Applicability and Analysis work, did we switch
to a class-based approach.

Using the initial F0 dataset, we trained a Detector network
to automatically label all seeds in an image with bounding
boxes. This deep CNN detects the seeds without assigning
their class. It implements region-based binary classification
using an identical architecture to the Analyzer network except
at the output layer. The Detector network has fewer nodes and
weights than the Analyzer network and yet must cope with the
diverse appearance of seeds.

At each incremental step, we have n images per species.
Suppose we trouble ourselves to assign an MLBB to each
seed in only m of these images, where 0 ≤ m ≤ n. If we
compute ALBBs for the remaining images, the relative effort
(RE) is m/n. Because MLBBs are precious, we assign the m
images, first, to the training set and, second, to the validation
set. Assigning them to the test set is least important because,
unlike the other two sets, this set does not influence any weight
of the Detector or Analyzer network.

For each Monte Carlo trial of the K1 experiment, the n
images are in a specific random order. Only the first m images
get MLBBs. Images are assigned to the training, validation,
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Fig. 2. Examples of True and Extra Detections. True detections are (blue)
automatically-labelled bounding boxes (ALBBs) that overlap sufficiently
with (green) manually-labelled bounding boxes (MLBBs). When a seed has
multiple true detections, all but one are called Extra True Detections. The
remaining one box is called the True Detection. An Extra False Detection is
an ALBB that does not overlap sufficiently with any MLBB.

and test partitions in the same order. When m equals n, the
incremental K1 dataset is partitioned and labelled in the same
manner as was the initial F0 dataset during the Applicability
and Analysis work.

Figure 4 illustrates, after the K1 experiment, that the overall
Analysis Score value, computed over all classes of the F0&K1
test set, is consistently 80% or higher for all RE values. As
with the F0 experiment, we reserved 20% of the K1 images
for validation and 20% for test. Because n equals ten, there
are two additional validation and two additional test images.
The RE is varied by incrementing m from zero in steps of
one, initially, and from six in steps of two, finally.

The K1 experiment involves additional images of nine
species for which the Analyzer network was already trained.
Class labels were easy to assign because each image com-
prised seeds of one class. To further validate our two-network
approach to develop a Purity Analyzer System, we verify that
it is beneficial to retrain the Analyzer network, using ALBBs
assigned by the Detector network. For this purpose, Figure 4
includes a reference one-network result, computed using the
original Analyzer network, on the same test set.

Considering the reference result, as shown in Figure 4, the
K1 experiment demonstrates that our incremental two-network
approach outperforms, especially at 0% RE, a non-incremental
one-network approach. For the reference result, because there
is no Analyzer retraining, or Detector training, only F0&K1
test-set data is required. At 100% RE, test-set results of the
two-network approach are identical to those of a one-network
approach retrained with the additional images.

B. Additional Species

We added to the dataset new images that comprise new
species. This K2 experiment builds on Trial 3 of the K1 exper-

iment and Trial 4 of the F0 experiment. For each increment,
we chose the trial that yielded the median B. napus result.
Training, validation, and test proceed as before.

Figure 5 presents the test-set results of the K2 experiment.
Although we manually labelled all seeds of the initial F0
dataset, and all seeds of the incremental K1 dataset, we need
not manually label seeds of the incremental K2 dataset because
we can create a Detector network from the combined F0&K1
dataset and use it to automatically label all of the incremental
K2 dataset, additional test-set images included.

The incremental K2 dataset has species, including Primary
Noxious Weed Seeds (Class 2), not present in either the initial
F0 dataset or the incremental K1 dataset, i.e., the combined
F0&K1 dataset. The initial F0, the combined F0&K1, and the
combined F0&K1&K2 datasets all have Secondary Noxious
Weed Seeds (Class 3), in addition to canola seeds (Class 7),
whose purity matters to end users, and other contaminants
(Class 6). Noxious Weed Seed and contaminant species are as
listed in the Canadian Weed Seeds Order [15].

The Analysis Score is computed using a test set only. For the
K1 and K2 experiments, we incorporated ALBBs into test sets
to enable the automatic testing of incremental improvements to
the Analyzer network. This idea worked consistently well for
the Additional Images scenario (K1 experiment), summarized
in Figure 4, and inconsistently well for the Additional Species
scenario (K2 experiment), summarized in Figure 5.

For the Additional Species scenario, Figure 6 provides an
Analysis Score using MLBBs in the test set, irrespective of the
RE. As it demonstrates that the ground-truth Analysis Score,
when test-set data uses MLBBs, is consistently higher than was
otherwise thought (Figure 5), our hypothesis that automatic
testing is less useful for this scenario is proven correct.

In the K2 experiment, no new Class 7 (canola class) seeds
were added. The reason the Analysis Score of Class 7 differs,
in Figures 5 and 6 compared to Figure 4, is that even though
training, validation, and test sets use the same bounding boxes
for Class 7 seeds, all MLBBs, detection performance of the
Analyzer network on Class 7 is affected by retraining per-
formed with the additional species. Moreover, the proportion
of MLBBs for the additional species varies with RE.

Finally, we note that at 0% RE, i.e., with no MLBBs for
the Additional Species images, our incremental two-network
approach is able to detect and classify novel species. In terms
of the end application, it is significant that the new species
include Primary and Secondary Noxious Weed Seeds.

IV. CONCLUSIONS

We proposed a method to train, validate, and test a CNN for
detection and classification of mm-sized objects using a dataset
that is grown over time. Initially, there is an F0 dataset (45
images). Later, we add a K1 dataset (+90 images), yielding
a combined F0&K1 dataset. Finally, we add a K2 dataset
(+180 images), yielding a combined F0&K1&K2 dataset. The
method may be generalized to other object datasets.

Although we manually labelled all the initial F0 dataset, we
did not have to manually label all the incremental K1 dataset
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Fig. 3. Prototype of a Purity Analyzer System. Software (illustrated left) includes a CNN, called the Analyzer network, for object detection and classification.
Another CNN, called the Detector network (not shown), facilitates training, validation, and testing. Hardware (illustrated right) comprises a seed container
(not shown), a custom dispenser, a mini conveyor, an optical microscope, a ring illuminator, a digital camera, and a desktop computer (not shown).
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Fig. 4. Analysis Score vs. RE on the F0&K1 test set. At 0% relative effort
(RE), all the additional K1 images use ALBBs. At 30% RE, half the additional
K1 training images use MLBBs whereas, at 60% RE, all of them use MLBBs.
At 80% RE, all the additional K1 training and validation images use MLBBs
whereas, at 100% RE, all K1 images use MLBBs. The overall class-based
Analysis Score is representative of each class-based Analysis Score.

because we created a Detector network, using all of the F0
and none (or some) of the K1 data, and leveraged it to train,
validate, and test an Analyzer network, on all of the combined
F0&K1 data (135 images of 1,757 seeds). A similar approach
is taken when the K2 data is incrementally added.

The main significance of our two-network approach is a
Reduction of Effort. With a Detector network, we automati-
cally labelled the bounding boxes of all mm-sized objects in
images taken with optical microscopes. These images are used
to train, validate, and test an improved Analyzer network to not
only detect but also to classify similar objects. Representing
two different ways to reduce effort, our research included
Additional Images and Additional Species experiments.

We investigated the impact of RE, defined as the ratio of
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Fig. 5. Analysis Score vs. RE on the F0&K1&K2 test set. By varying which
K2 images use ALBBs and which ones use MLBBs, the RE is varied. Perhaps
because the additional K2 images comprise additional species, using ALBBs
with the additional K2 test images proves less useful here – it lowers the
Analysis Score of Class 2 especially, even though there is still a benefit to
using ALBBs with additional Class 2 training and validation images.

automatically-labelled to total bounding boxes, i.e., ALBBs to
MLBBs plus ALBBs. Moreover, we introduced a FoM, i.e.,
the Analysis Score, to assess the impact of both classification
and detection errors on overall system performance.

We conducted Monte Carlo analyses composed of five trials
each, in which the partitioning of our dataset into training, val-
idation, and test sets, and the ordering therein, was randomly
varied. For each incremental experiment, we used the partition
from a prior experiment that yielded a median Analysis Score.
Consequently, the Monte Carlo analyses enhance the statistical
robustness and, therefore, validity of our conclusions.

Our experiments featured 25 contaminant species, including
Primary and Secondary Noxious Weed Seeds, as determined
by the Canadian Weed Seeds Order. This also demonstrates

265-6
IS&T International Symposium on Electronic Imaging 2022

Intelligent Robotics and Industrial Applications using Computer Vision 2022



0 20 40 60 80 100
Relative Effort

0

20

40

60

80

100
An

al
ys

is
 S

co
re

Overall
Class 7
Class 6
Class 3
Class 2

Fig. 6. Analysis Score vs. RE on the F0&K1&K2 test set. Whereas the
experiment is otherwise identical to that of Figure 5, MLBBs are used for all
seeds in the test-set images. The higher and more stable Analysis Score results,
in this figure compared to the previous, confirms a benefit of the proposed
incremental two-network approach even for additional species. Class 2 results
correspond to previously-unseen Primary Noxious Weed Seeds.

significance, especially to potential end users from Canada,
like the Purity Analysts with whom we engaged.
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