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ABSTRACT

The number of spikes, spikelets per spike, number of spikes
per square meter are essential metrics for plant breeders and
researchers in predicting wheat crop yield. Evaluating the
crop yield based on wheat ears counting is still done man-
ually, which is a labor-intensive, tedious and costly task.
Thus, there is a significant need to develop a real-time wheat
spikes/ears counting system for plant breeders for effective
and efficient crop yield predictions. This paper proposed
two deep learning-based methods based on EfficientDet and
Faster-RCNN to detect and count the spikes. The images
are taken using high-throughput phenotyping techniques un-
der natural field conditions, and the algorithms localize and
automatically count wheat spikes/ears. Faster R-CNN with
Resnet50 as backbone architecture produced an overall accu-
racy of 88.7% on the test images. We also used recent state-
of-the-art models EfficientDet-D5 and EfficientDet-D7, hav-
ing backbone architectures EfficientNet-B5 and EfficientNet-
B7, respectively. A comprehensive quantitative analysis is
performed on the standard performance metrics. In the anal-
ysis, the EfficientDet-D5 model produces an accuracy of
92.7% on the test images, and EfficientDet-D7 produces an
accuracy of 93.6%.

Index Terms— Wheat Spikes, Deep Learning, Faster R-
CNN, EfficientDet.

1. INTRODUCTION

Wheat is one of the most important and widely utilized crop
species consumed daily by the public. 762.7 million tons of
annual wheat production was recorded by [1] in 2020. Wheat
is cultivated every year in around 215 million hectares, and
the global trade of wheat is estimated at nearly 50 billion
US dollars every year [2]. It is estimated that nearly 750.1
million tons of wheat is consumed every year globally [1].
Every coming year, the demand for grain is increasing. At
the same time, extreme weather situations and variations in
climate changes increase the risk of an uncertain supply of
grains. Complex, multivariate, and unpredictable agricultural
environments need to be better studied to solve these chal-
lenges by monitoring, measuring/analyzing, and constantly
evaluating different physical aspects and phenomena. This

helps researchers and plant breeders to know and recognize
better-yielding and more stress-tolerant plant species. With
the availability of large scale dataset, deep learning has revo-
lutionized many fields including but limited to tracking [3–7],
virtual reality [8, 9], cybersecurity [10, 11], crowd analysis
[12–14], animal farming [15,16], segmentation [17–19], clas-
sification [20, 21], facial emotion recognition [22, 23]. How-
ever, in agriculture sector, it is not exploited yet. In several
research problems related to plant phenotyping, conventional
Machine Learning (ML) methods have been used widely. ML
models, including SVM, decision trees, Bayesian, and in-
stance base model, have been used in crop yield prediction,
disease detection, weed detection, plant species detection, and
crop quality analysis [24]. Some ML-based techniques exist
to automatically detect heading and flowering in wheat [25]
to distinguish growth stages in field-grown wheat; a bag-of-
visual-words method is used. Low-level characteristics are
collected using the SIFT algorithm. Finally, to classify the
growth levels in plants, the classification of support vector
machines is used. Hyperspectral imaging systems with a five
waveband of 20nm are also explored to examine symptoms
of yellow rust disease, and nitrogen stress using hyperspec-
tral features [26]. Crop growth characteristics are measured
based on online multilayer soil data of satellite imagery, an
unsupervised learning algorithm was used, and field varia-
tions in wheat yield were predicted [27]. However, Smart
agriculture and plant phenotyping have progressed into the
big data era. Massive data is sourced from open field tri-
als, indoor plant phenotyping using advanced platforms such
as UAV, satellite imagery, grounded robot vehicles, gantries,
etc. With the availability of a large amount of data and recent
high-end computing power of hardware [28]. Deep learning
models are preferred as their performance increases with the
increase in the data we provide to the model. This is one of the
main reasons why deep learning approaches took over the tra-
ditional machine learning approaches. Secondly, Deep learn-
ing surpasses the need of manually selecting and defining
handcrafted features [28]. Instead, deep learning approaches
perform optimization in a complete end-to-end way by map-
ping input data samples to outputs targets. The detection of
wheat heads from images in itself is a challenging task. It in-
volves several factors like the observational conditions, geno-
typic differences, and development stages of the plant. Wheat
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head density (the number of wheat heads per unit ground
area) is a significant yield component. However, because the
process of evaluation of this parameter is still manual and
labor-intensive, measurement errors of around 10% can be
observed. [29] [30] Thus, developing automated image-based
methods that can bring this error down is essential so that
breeders can manipulate the balance between yield parame-
ters in their breeding selections. In this paper, we use the
Global Wheat Detection Dataset (GWHD) [31] which con-
tains images taken at 90 degrees from above of a wheat field
with the wheat head annotated using bounding boxes. These
images contain occlusions, overlapped wheat ears, blurred
background, etc., which makes it a perfect dataset for train-
ing any deep learning model. We used two different deep
learning models, Faster-RCNN [32] and EfficientDet [33] for
the detection of wheat ears and trained them with the Global
wheat head dataset. The main objective of this study was to
build a data-driven, efficient system that will detect the wheat
ears with good performance and accuracy. The rest of the pa-
per is organized as follows. In section 2, the detection model
adopted in the study are briefly explained. In section 3 the
data pre-processing, model architecture, training, and evalua-
tion methods are elaborated. The quantitative results are listed
in section 4 and section 5 concludes the paper with the final
remarks.

2. DETECTION MODELS

In this paper, along with Faster R-CNN for detecting wheat
ears, we used the recently published state-of-the-art deep
learning model purposed by google brain researchers called
EfficientDet which has a robust backbone architecture called
EfficientNet. [34].

2.1. Faster R-CNN

Faster R-CNN, developed by Ren et al [32] is an object detec-
tion network composed of a feature extraction network which
is typically a pre-trained CNN. It consists of two networks:
a regional proposal network(RPN) for generating region pro-
posals and a convolutional network which takes the proposed
regions to detect objects almost in real-time. Thus, in ad-
dition to convolutional neural network, Faster R-CNN has a
RPN which is inserted after the last convolutional layer mak-
ing it different from its predecessors. RPN efficiently predicts
region proposals with a wide range of scales and aspect ratios.

2.2. EfficientDet

EffificientDet consists of three parts as shown in Figure 1.
The first part is the pre-trained EfficientNet as the backbone
architecture of the model. The second part is BiFPN, which
do the top-down and bottom-up feature fusion multiple times
for the output characteristic of Level 3-7 in EfficientNet. The

third part is the classification and detection box prediction
network, to regress and classify the wheat ear frame.

Fig. 1: Architecture of EfficientDet [34]

3. DATA PREPARATION & TRAINING

To perform the wheat head detection and counting, we fol-
lowed three steps: starting with the exploratory data analy-
sis and preprocessing, followed by training the deeplearning
models, and finally using several evaluation metrics to evalu-
ate the results.

3.1. Data Analysis and Preprocessing

In detecting objects of interest, such as wheat spikes, ambient
noise poses significant challenges for computer vision-based
techniques. Some challenges include the following:

• The movements of plants and/or the stability of hand-
held cameras are likely to cause blurred images.

• Due to natural conditions and light variations in the
field, dark shadows or sharp brightness can appear in
images.

• Overlaps between the ears due to the floppy attitude of
the ears can also give rise to additional difficulties es-
pecially with the presence of awns in certain cultivars.

• Over development phases, spikes in various varieties
change dramatically, as spikes display no correlation
between the early and later growth phases.

Pre-processing is a preliminary phase in the analysis of im-
ages, which helps to arrange data properties in order to en-
able subsequent steps and also to achieve fair final results. At
first, the GWHD dataset was analysed. The dataset is gather
from several parts of the world, with a total of 4698 squared
patches extracted from the 2219 original high-resolution RGB
images. It contains 188,495 labelled heads with an average of
20 to 60 heads per image. There are also around 100 images
that don’t contain any heads to represent actual capturing con-
ditions and make the task more difficult. We tried several data
augmentation techniques to improve the performance of our
models. In addition to the usual data augmentation methods
employed in normal computer vision tasks along with other
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transform methods, the ones used in our approach were hor-
izontal/vertical flips, cropping and resizing, change to gray,
cutout [35], cutmix [36], hue/saturation value changes, and
brightness/contrast changes. The data augmentation and im-
age pre-processing will help in producing more samples and
variations and help in training the models to decrease over-
fitting and increase the generalization of our models.

3.2. Training

3.2.1. Faster R-CNN

For training, we used a normal simple random sampling from
the dataset we obtained from the above step. We used 80%-
20% splitting for training set and validation data. Initially, we
started from the pre-trained model on the pedestrian images
and did some fine-tuning to adapt to our use case.

We studied the results of the model using a Resnet50
backbone, learning rate of 0.005 and CosineAnnealing sched-
uler [37] with Stochastic Gradient Descent (SGD) as the op-
timizer. The main reason behind using a cosine function for
the learning function is the idea that for each batch of the
SGD, the network should get very close to the global mini-
mum value for the loss, means we don’t want the algorithm to
overshoot and the learning rate should get smaller helping the
loss value settle to some point. Cosine annealing decreases
the learning rate following the cosine function and helps in
making this global minimum stable.

We also tried the Adam optimizer and tried to see how it
performs in comparison to SGD. Using these parameters, we
trained the model for 40 epochs with the batch size of 8.

The results are represented in the plots below.

Fig. 2: Faster R-CNN training and evaluation with SGD

3.2.2. EfficientDet

EfficientDet- D5 and EfficientDet-D7 were used as our de-
tection models for detecting wheat ears effectively. We used
wheat ears GWHD dataset with images of 15 different wheat
varieties captured under different environment conditions.

Fig. 3: Faster R-CNN training and evaluation with Adam

We utilized all those images for training and validation of the
model. In this study, EffificientDet-D5 and EffificientDet-
D7 were trained respectively. We used Pytorch framework
version 1.6.0 and Python 3.7. we use the CUDA/10.0.130
version for graphics cards. we trained our model using Idun
high performance computing cluster at NTNU Trondheim
using only one GPU which was NIVIDIA V100 Tensor Core.
The images with input size of 512x512 was introduced to the
model and the model is trained for 40 Epochs. The Average
loss error on both of the model is saved and its shown in the
below figures 9, 10.

Fig. 4: EfficientDet-D5 training and loss error

4. EVALUATION AND RESULTS

For the evaluation of the results, we used the training error
along with the mean average precision (mAP) from the stan-
dard MS COCO metrics [38] for the validation set. The mAP
values relies on the Intersection over Union(IoU) values. The
IoU value is the area of intersection between the actual bound-
ing box divided by their union’s area. A True Positive predic-
tion is the one with IoU > threshold, whereas False Positive
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Fig. 5: Efficient-D7 training and loss error

refers to one with IoU < threshold.

IoU =
Area of Overlap
Area of Union

(1)

Similarly, we used the regular precision, recall, and accu-
racy for the test set.

4.0.1. Precision and Recall

Precision is the ratio between true positives and all positives,
whereas recall is the measure of a model identifying true pos-
itives.

Recall =
TP

TP + FN
=

TP
# ground truths

(2)

Precision =
TP

TP + FP
=

TP
# predictions

(3)

4.0.2. Accuracy

Accuracy, the simplest of the metrics, is the ratio of total num-
ber of correct predictions to the number of predictions.

Accuracy =
TP + TN

TP + FP + FP + FN
(4)

We used 10 test images that were not used during the
training or evaluation phase and calculated the above met-
rics.We achieved overall 87.4% accuracy using Faster-RCNN
with SGD optimizer and 88.7% accuracy using Adam op-
timizer. For EfficeintDet Models, The EfficientDet-D5
achieved overall accuracy of 92.7% . EfficientDet-D7 pro-
duce better results than Faster-RCNN with Resnet as its
backbone architecture and EfficientDet-D5.The EfficeintDet-
D7 model achieved 93.6% accuracy on the test images. The
results are represented in tables below.

According to our findings, trained models struggle to de-
tect wheat ears that are extensively overlapped and occluded,
and the shape structure of the wheat ears is completely mor-
phed amongst each other. Also the trained models completely
neglect the clipped wheat ears in test images.

Table 1: Faster R-CNN with SGD Optimizer on Test Data

ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 1.0 0.89 88.9%
51b3e36ab 27 29 0.86 0.93 80.6%
51f1be19e 18 18 1.0 1.0 100.0%
53f253011 31 29 1.0 0.94 93.5%
348a992bb 37 36 0.97 0.95 92.1%
796707dd7 31 23 1.0 0.74 74.2%
aac893a91 24 21 0.95 0.83 80.0%
cb8d261a3 24 21 1.0 0.88 87.5%
cc3532ff6 26 29 0.9 1.0 89.7%
f5a1f0358 28 31 0.9 1.0 90.3%
Total 273 261 0.95 0.91 87.4%

Table 2: Faster R-CNN with Adam optimizer on Test Data

ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 1.0 0.89 88.9%
51b3e36ab 27 29 0.9 0.96 86.7%
51f1be19e 18 18 1.0 1.0 100.0%
53f253011 31 29 1.0 0.94 93.5%
348a992bb 37 36 0.97 0.95 92.1%
796707dd7 31 25 1.0 0.81 80.6%
aac893a91 24 21 0.95 0.83 80.0%
cb8d261a3 24 21 1.0 0.88 87.5%
cc3532ff6 26 29 0.9 1.0 89.7%
f5a1f0358 28 31 0.9 1.0 90.3%
Total 273 263 0.96 0.92 88.7%

Table 3: EfficientDet-D5 results on Test Data

Precision, Recall and Accuracy of the EfficientDet-D5 Model
ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 0.88 0.88 88%
53f253011 31 30 0.96 0.96 96%
51b3e36ab 27 25 0.92 0.92 92%
51f1be19e 18 18 1.0 1.0 100%
348a992bb 37 38 0.97 1.0 97%
796707dd7 31 26 0.83 0.83 83%
aac893a91 24 19 0.79 0.79 79%
cb8d261a3 24 24 1.0 1.0 100%
cc3532ff6 26 25 0.92 0.96 92%
f5a1f0358 28 28 1.0 1.0 100%
Total 273 257 92.7% 93.4% 92.7%
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Table 4: EfficientDet-D7 results on Test Data

Precision, Recall and Accuracy of the EfficientDet-D7 Model
ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 0.88 0.88 88%
53f253011 31 30 0.96 0.96 96%
51b3e36ab 27 25 0.92 0.92 92%
51f1be19e 18 18 1.0 1.0 100%
348a992bb 37 35 0.94 0.94 94%
796707dd7 31 26 0.83 0.83 83%
aac893a91 24 21 0.87 0.87 87%
cb8d261a3 24 24 1.0 1.0 100%
cc3532ff6 26 25 0.96 0.96 96%
f5a1f0358 28 28 1.0 1.0 100%
Total 273 256 93.6% 93.6% 93.6%

5. CONCLUSIONS

Agriculture plays a critical role in the global economy, and
pressure on the agricultural system will increase with the con-
tinuing expansion of the human population. Digital Agricul-
ture or precision farming has arisen as new scientific fields
that use intense data approaches to drive agricultural produc-
tivity while minimizing its environmental impact. The data
generated in modern agricultural operations is provided by
various sensors that enable researchers to understand the mor-
phological properties of the crops better, leading to more ac-
curate and faster crop yield predictions. In this study, we
use a data-driven deep learning approach to accurately iden-
tify and count wheat ears/spikes in digital images taken in
an open field environment. We used two variants of Faster-
RCNN, EfficientDet-D5, and EfficientDet-D7, to detect the
target ears/spikes in the wheat crop images. We achieved
an accuracy of 88.7% using Faster-RCNN, 92.7% accuracy
on EfficientDet-D5, and 93.6% accuracy on efficientDet-D7,
respectively. The proposed model performance can be en-
hanced by introducing more data during the training phase
with varying illuminations and environmental conditions (oc-
clusions, overlapping, blur) to learn rich feature representa-
tions of wheat ears. Introducing an attention module to back-
bone architecture can be another way of enhancing the perfor-
mance of these models. Also, increasing the contrast between
the wheat canopy and wheat’s ears will boost the accuracy of
the already trained models.
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