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Abstract
The Magdalena Ridge Observatory Interferometer (MROI)

utilizes Shack-Hartmann Wavefront Sensing (SH-WFS) for the
back-end stability of its beam relay systems in a unique design.
The SH-WFS, however, is sensitive to atmospheric turbulence
scintillation which can drastically affect its precision in calcu-
lating the position of the beam profile it sees. A large number of
images are needed to counteract the turbulence effect. Here we
use deep learning as an alternative to long averaging cycles. A
CNN was trained to map from a number of initial images of a
series of star frames to the average image of the entire series at
different positions of the beam profile. Under typical seeing con-
ditions expected at MROI, the results showed that the network can
map 10 input frames to the average of 100 within the permissible
error margin of 0.1 pixels and furnish proper generalization to
beam position movements not seen during training. The network
can also perform better than the averaging technique when both
techniques operate on small numbers of input frames such as 10
or 20.

Introduction
Stellar interferometers are facilities that consist of multiple

telescopes. They recover the angular resolution that a large sin-
gle dish can achieve, but without the engineering complexity and
cost. The Magdalena Ridge Observatory Interferometer (MROI)
will have 10 telescopes when completed. Light will be collected
by these telescopes and relayed over hundreds of meters in vac-
uum pipes which are part of the Beam Relay System (BRS). Beam
angle in the BRS for any of the 10 beam lines cannot drift by
more than 1 µrad at any point during the night. Figure 1 shows
a schematic of a single beam relay line that conveys light from a
telescope to beam combiners for science observations. As illus-
trated in the figure, starlight exits the telescope in a parallel beam
and is reflected by relay mirrors M4 and M5 towards a delay line
that imparts a variable optical path up to 380 m. Subsequently,
the beam is reduced in diameter by a beam compressor before be-
ing directed towards a set of beam combiners, which interfere to-
gether light from all the 10 telescopes for science measurements.
The Fast Tip-Tilt (FTT) system is integrated to perform closed-
loop correction of atmospheric tip-tilt (angle of arrival) fluctua-

tions on the light collected by the telescope [1].
The Automated Alignment System (AAS) is intended to

counteract any optomechanical drifts in the beam lines with min-
imal human intervention [2]. The term alignment in the BRS is
fully defined by two parameters: angle (tilt) and position (shear).
The principal source of optomechanical drifts are the two flat mir-
rors M4 and M5 in (as depicted in Figure 1) that direct each beam
from the telescope to a laboratory because they are exposed to
outdoor temperature swings. The alignment of these two mir-
rors is queried by the Back-End Alignment System for Shear and
Tilt (BEASST) which features a Shack-Hartmann Wavefront Sen-
sor (SH-WFS). A SH-WFS consists of an array of microlenses
(lenslets) with the same focal length which generate focused spots
ultimately landing on a 2D camera. The beam profile underfills
the sensor. This allows us to measure beam position because some
lenslets are illuminated while others are unilluminated. Our algo-
rithm reduces the image of the grid of focal spots to an image of
the beam profile where each pixel is the summed brightness of a
microlens [3]. The image is first segmented based on the location
and size of the microlenses, then all pixels within each segment
are summed. The reduced segments are restitched into a 2D im-
age and the centroid is computed as an estimator for beam posi-
tion. The offset of the beam from the optimal position is known

Figure 1. Schematic of a single beam train of Magdalena Ridge Observa-

tory Interferometer
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(a) (b)
Figure 2. Microlens array illuminated under a) undisturbed and b) atmo-

spherically disturbed light sources

as beam shear. As another output of this process, the software
calculates the beam tilt, but it is outside the scope of this paper.

This method of position finding is, however, rather sensitive
to intensity modulation across the beam profile [4]. Thus, the
calculated shear is prone to error due to atmospheric turbulence
scintillation. Figure 2 shows the microlenses illuminated in ab-
sence (a) and presence (b) of atmospheric turbulence. It should be
noted that while the profile shown in Figure 2(a) remains consis-
tent over time, the profile in Figure 2(b) changes randomly from
frame to frame due to turbulence. Due to the atmospherically dis-
turbed modulation of light intensity in a starlight frame, the BE-
ASST software would take tens of seconds to average out the at-
mospheric perturbations to acquire the precision within the shear
error margin of ±0.1 pixels (microlenses). Beam misalignments
will be routinely counteracted every 10 min or so with the aid of a
stable reference light source in place of atmospherically-disturbed
starlight. However, the shear of this reference beam must be cal-
ibrated against the shear of the stellar beam once per hour. This
procedure is only allocated two min of operational time, including
re-pointing of the telescope from a science target to a bright star
(20 sec) and image acquisition (60 sec to 100 sec). The aim of this
research work is to utilize deep learning in a way that the BEASST
software would require less frames for shear calculation but have
comparable output to the conventional averaging technique. As a
result, the amount of time needed for measuring shear on starlight
would be reduced. Figure 3 illustrates our intended outcome in
the pipeline which replaces the averaging technique with CNN.

Related Works
Deep learning techniques have offered promising solutions

to many image processing problems where accuracy and effi-
ciency are essential. Several deep convolutional network-based
solutions have been proposed in the literature for similar prob-
lems involving light aberrations in SH-WFS applications. Suárez
Gómez et al. [5] used a deep convolutional network and success-
fully predicted the centroids on a SH-WFS for wavefront recon-
struction. Deep convolutional networks have shown the ability to
effectively model optical processes irrespective of the complex-
ity of the underlying physics [6, 7, 8, 9, 10, 11]. U-Net, which
is primarily used for image segmentation [12], was extended by
Swanson et al. [13] for SH-WFS wavefront reconstruction. In
their modified architecture, the X and Y slopes of the microlenses
of SH-WFS were input separately into the network. DuBose et al.
[11] extended this work by adding a third encoder arm that uses
the total intensity of each subaperture.
Zhang et al. [14] developed a feed-forward Denoising Convolu-

tional Neural Network (DnCNN) which can be trained to perform
Gaussian denoising with unknown noise level (i.e., blind Gaus-
sian denoising). One single DnCNN exhibits high effectiveness in
general denoising tasks such as Gaussian denoising, single image
super-resolution and JPEG image deblocking and it can be effi-
ciently implemented on GPU. Li et al. [15] combined DnCNN
with the Phase Diversity (PD) algorithm to improve wavefront
sensing accuracy. They report significant accuracy enhancement,
their composite PD algorithm with DnCNN showed up to 82.35%
better accuracy compared with the traditional PD algorithm.

As mentioned earlier, the MROI uses SH-WFS in a unique
fashion to maintain the stability of its beam relay system. Sub-
sequently, our purpose of measuring shear is different from any
other work reported in the literature. However, the works men-
tioned earlier enhanced our incentive by indicating that SH-WFS
data can be learned by deep neural networks despite the presence
of light intensity modulation. Our objective is to acquire a de-
noised image from a series of images disturbed by atmospheric
noise, which is modeled as Additive Gaussian Noise (AGN). We
used the DnCNN which is a denoising network designed for AGN.
The simulation results presented in this paper confirm the effec-
tiveness of this proposed approach.

Proposed Approach
As illustrated in Figure 4, the DnCNN consists of a convolu-

tion layer with a Rectified Linear Unit (ReLu), a variable number
d of convolution layers each with batch normalization and ReLu,
and a single convolution layer. The problem to solve was de-
fined as a translation from a number of initial frames of a batch of
starlight frames into a single image that contains the average of all
of the frames in that batch. The initial frames, whose quantity n
was to be determined by the network’s performance, were used as
the input and the average frame as the output or the ground truth
in the training of the network. Each of the initial input frames and
also the average frame were introduced as tensors to the network.
The input consisted of a tensor of n×32×32 dimensions, with n
indicating the number of input frames. When fed to the network,
the channels increased to 64 and dimensions reduced to 16× 16,
both remaining constant throughout the entire network. The net-
work’s output was a tensor with one channel (i.e. grayscale), as
in camera output, with dimensions upscaled to 32×32. A kernel
size of 3, padding of 1 and batch size of 32 were used in training
of the network. The optimizer was Adam [16] with the learning
rate of 2×10−4. The mean square error was used as the loss func-
tion. In terms of the network’s depth d, two values 17 and 20 have
been mentioned in the work by Zhang et al. [14]. We will show
later that these two depth values cannot furnish proper general-
ization and instead the depth of five layers is optimal for our data.
Separate comprehensive analyses of our findings are presented in
the subsequent sections.

Train Dataset
In order to generate training, a simulation code was used

to model atmospheric turbulence on the frames seen by the SH-
WFS. The training dataset consisted of extreme shear scenarios
in X and Y directions as well as zero shear (i.e. centroid of the
pupil being at the frame’s center). To accommodate all possible
shear values occurring in the BRS, the simulation was set up to
generate pupil frames sheared at −60 µm and 60 µm in X and Y
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Figure 3. Schema of the placement of CNN in our pipeline to replace averaging technique

Figure 4. DnCNN architecture with depth d and n input frames

directions as well as zero shear. All the shear values in between
the extremes were left up to the neural network to interpolate af-
ter training. The simulation modeled each iteration of sheared
starlight at 16 sec of exposure time with 0.04 sec of subexposure,
yielding 400 frames each containing a pupil with constant shear
and random turbulence effect. The turbulence was modeled using
the Python module MegaScreen developed by D. Buscher [17]
with 1.22 µm wavelength, the Fried parameter r0 = 30 cm and
wind speed of 10 m/s. The ground truth for each iteration of shear
was represented by the average of each batch of 400 frames. This
iteration was repeated 1000 times for each of the aforementioned
shear scenarios.

Test Dataset
The testing dataset was simulated similarly but in order to

save processing time, generate more data and be able to evalu-
ate the networks on data with unseen exposure characteristics,
the simulation modeled four sec of exposure time with 0.04 sec
of subexposure, which yielded 100 frames. Each batch of 100
frames still had pupils with constant shears, but this time the sim-
ulation generated 25 batches to model shears of −60 µm to 60 µm
at 30 µm intervals in X and Y directions. Each of the 25 batches
was repeated 100 times to accommodate as much randomness as
possible. Figure 5 shows a schematic of all the positions where the
red circles denote the positions (or shear scenarios) the network
saw during training. Figure 6 shows the shear X and shear Y val-
ues associated with each position number. The position number
corresponds to increments in shear values in Shear X and Shear
Y plots. The simulation incremented shear X and Y in sequential

steps, it increased shear Y values in five steps while keeping shear
X constant and then incremented shear Y by one step, repeating
the entire process for 25 steps. For each of the 25 position num-
bers, 100 batches (datapoints) each containing 100 frames with a
constant shear value were generated. Each blue dot on the plots
represents the shear value of an image that is equivalent to the
average of all of the 10,000 frames corresponding to a position
number. The Centroid (px) values are the distance between the
centroid of the pupil and the image center in X and Y directions
in pixels. It is observed that the range −60 µm to 60 µm trans-
lates to approximately −0.2 to 0.2 pixels in X and Y directions. It
should be noted that the imperfect flatness occurring in Shear X,
which might be due to unavoidable noise in centroiding, yields an
error of at most 0.01 pixels which is an order of magnitude less
than our goal of 0.1 pixels.

Image Reduction Technique
Each of the simulated starlight frames was 512 × 640 in

shape which is identical to the output of the BEASST camera.
The image processing pipeline overlays a square grid with 20
pixel spacing to represent the microlens array. The grid is aligned
such that the spots are positioned close to the center of each box.
The image is then segmented into the constituent boxes of the
grid. For each box, the algorithm records the (X,Y) coordinates
and the enclosed intensity (sum of all enclosed pixels). A new
image is formed from the box coordinates and intensities, then
saved to disk with dimensions of 32×24. Compared with the full
640×512 images, these reduced frames saved memory (8 GB to-
tal GPU memory), allowed large training sets and accelerated the
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training and testing processes. Prior to feeding the image to the
neural network, each frame was placed at the center of a 32×32
black canvas so that it became square in shape, conforming to a
common practice in deep learning with images.

Evaluation of the Network
As the optimal number of initial frames n was unknown, it

was determined based on the network’s evaluation performance.
As the output of the network is a single image representing the
average of all starlight frames in a batch, the performance of the
network was evaluated based on the distance between the cen-
troid of the actual average frame and that of the network’s output
in X and Y directions. The required measurement accuracy of
BEASST is 0.5% of the pupil diameter. The pupil diameter in an
input star frame in its compressed form measures approximately
20 pixels. Thus, the maximum error translates to ±0.1 pixels for
the entire pupil.

Experimental Results
The DnCNN with five layers was trained in five different

configurations where the network architectures were the same but
the number of input frames was varied as n = 10, 20, 40, 60 and
80. Each configuration was then tested on the 25 position num-
bers aforementioned. In order to mitigate the effect of noise on
centroid calculation, the output image of each network was sub-
ject to a thresholding technique where 30% of the maximum pixel
value of the image was subtracted from all of the pixels and any
resulting negative pixel was set to zero.

Performance on the Average of 100 frames
Figure 7 shows the performance of the network configura-

tions in form of the difference between the average of the cen-
troids of 100 network output frames at each position number and
that of the average image of 10,000 frames corresponding to that
position number. Given the maximum acceptable error of 0.1 pix-
els, the DnCNN architecture exhibits evidently good performance
with almost every configuration tested, with only one exception
occurring with n = 10 at position number 21 in shear Y where
the error is approximately 0.13 pixels. Another case is with n =
20 at position number 24 in shear Y where the error is roughly
0.105 pixels which is hardly significant considering the overall
performance of the configuration. It can be concluded that the
DnCNN architecture with five layers can generate the average

Figure 5. Position numbers used in training and testing

Figure 6. Position numbers and shear values

Figure 7. DnCNN Performance with d = 5 layers and varying number of

input frames (n)

Figure 8. DnCNN Performance with d = 17 layers and varying number of

input frames (n)

of 100 frames in one data point with at least any number of in-
put frames between 10 and 20 and its performance improves with
higher n values as expected. As mentioned earlier, the DnCNN ar-
chitectures with 17 and 20 layers as proposed by Zhang et al. were
trained and tested with our data but did not provide generalization
accuracy within our error margin. Figures 8 and 9 show the per-
formance of these two architectures when trained and tested with
the same varying n values. They both show an interesting trend of
difference between the network and target output which increases
in magnitude at extreme shear values both in Shear X and Shear
Y plots. The trend is in form of a systematic error in both shear X
and shear Y.

Performance on the Average of n frames
Although the primary objective of utilizing DnCNN was to

map from n number of frames to 100, it was decided to com-
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Figure 9. DnCNN Performance with d = 20 layers and varying number of

input frames (n)

pare its performance with the average of n frames. A different
series of analysis was carried out to evaluate the performance of
the proposed approach with n number of input frames against the
average of the same n frames. The performance was evaluated
by comparing the distributions generated by the network and the
averaging technique. Box plots were used to represent the distri-
butions of the average images and the network outputs. The box
plots in each position numbers were to show how each distribu-
tion is more concentrated around its median at different n values.
The median for each distribution was adjusted according to the
median of 100 frames such that both distributions will have me-
dians roughly around zero. As shown in Figure 10, this analysis
revealed that the network can produce more concentrated distri-
butions than the averages only for low n values of 10 and 20 and
it is gradually outperformed by the averaging technique starting
from n = 40. This observation holds true for any position num-
ber regardless of whether seen or not seen by the network during
training. Therefore, for the sake of brevity in this paper, the box
plots of only the first position number are presented as this trend
is very similar with any position number whether seen or not seen
by the network in training. It should be noted the error in Y di-
rection is larger than in X, which can be due to the fact that the
simulation blows frozen turbulence in X direction.

Conclusions
The DnCNN network was trained on simulated data for the

problem of light intensity modulation facing the SH-WFS hard-
ware serving a critical back-end stability for the light relay sys-
tems of the MROI. The results showed that the network learned
the shear in turbulent-disturbed star frames and with 10 input
frames, its performance was within the error margin of 0.1 pix-
els and improved with more input frames. The training was per-
formed on only five position numbers but the network provided
reasonable results for 25 evaluation positions. The network also
showed to perform better than the image averaging technique for
n = 10 and n = 20. Our sensitivity analysis on the the network’s
depth indicated that the network architecture with the depth of five
layers yields optimal results for our data.

This work used only one condition of the atmosphere (a sin-
gle combination of r0, wind speed and wind direction). In the
near term, the network should be trained with a range of simu-
lated atmospheric conditions. In the long term, the ultimate test
will be to gather a library of real SH-WFS images under a range
of conditions.
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