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Abstract

For PRNU-based image manipulation localization, the cor-
relation predictor plays a crucial role to reduce false positives
considerably, as well as increasing accuracy of manipulation local-
ization. In this paper, we propose a novel correlation predictor with
a non-parametric learning algorithm, which is Locally Weighted
Regression. Instead of fitting a global set of model parameters, a
non-parametric learning algorithm fits a model dynamically by
sampling the training set based on the pixel in the query image
at which the correlation needs to be predicted. Our experimental
results suggest that building a model dynamically based on the
distance of training examples from the query pixel in the feature
space helps to predict the correlation more accurately. Experimen-
tal results on benchmark datasets indicate that integrating the new
predictor significantly improves the accuracy of predicted correla-
tion, as well as image manipulation localization performance of
PRNU-based forensic detectors.

Introduction

For forensic analysis of digital images, the Photo-Response
Non-Uniformity (PRNU) noise has been embraced by the forensic
researchers as the most valuable characteristics [1], both for the
forensic tasks of source attribution (camera identification) and ma-
nipulation localization. Minute material imperfections and manu-
facturing inconsistencies of the sensing elements of a camera gives
rise to this unique spatially varying noise pattern, which is present
as a fingerprint in every image captured by a digital camera [3].
This is particularly useful for device identification [4-10,15,17],
which is the task of attributing a digital content (e.g., an image or
a video) to the device used to capture it. It is a problem deeply
investigated in forensic research and is useful to fight copyright
infringement or distribution of illicit materials (terrorist threats,
under-age clips etc.). Another key forensic application is to lo-
calize manipulations in digital images. When a copy-move or
splicing manipulation is applied to an image, the manipulation
operation distorts the fingerprint that was originally present in that
region. A fundamental manipulation detector analyzes the query
image in small analysis windows and compares the local noise es-
timate with the corresponding block in the camera PRNU in terms
of a correlation score. A correlation value below a suitably cho-
sen threshold indicates a potential manipulation. In recent times,
more sophisticated detectors have been proposed that takes into
account the neighborhood dependency of pixels for better accuracy
of manipulation localization [11-14].

However, the fundamental problem with adapting a PRNU-
based manipulation detector is that the value of the normalized
correlation also depends on the content. Dark, textured and satu-
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rated regions in an image are likely to yield a low correlation score
even in the absence of a manipulation. As a remedy to this problem,
a correlation predictor has been proposed [15], which predicts the
expected value of the correlation depending upon the texture, inten-
sity and flatness characteristics of an image, assuming the content
to be genuine. If the predicted correlation is low, typically below
some pre-determined threshold, a conservative decision is made
for the corresponding analysis window. Therefore, to ensure low
false positives and improve accuracy of manipulation localization,
it is of paramount importance to integrate an adequate correlation
predictor with the PRNU-based detectors. A more sophisticated
correlation predictor would greatly enhance the performance of
PRNU-based detectors proposed in the literature [11-14]. The clas-
sical correlation predictor proposed by Chen et. al. [15] is a least
square fit to features representing texture, intensity and flatness
characteristics in an image and the quadratic terms involving those
features. A feed-forward neural network with features representing
intensity, texture and flatness was used by Korus and Huang [12].
Recently, a deep learning approach was proposed by the author
of this manuscript [16], where a Convolutional Neural Network
(CNN) was allowed to automatically learn features for predict-
ing the correlation score in a typical manipulation localization
scenario.

In this paper, we propose a non-parametric approach towards
predicting correlations for PRNU-based image forensics. The clas-
sical correlation predictor [15] learns a model based on the entire
training set consisting of features representing texture, intensity
and flatness characteristics and corresponding correlation values,
for genuine image patches in the training set. Once the training
is complete, the correlation score at a new pixel is computed by
plugging in the feature values for the analysis window centering
the query pixel in the learnt model. The prediction accuracy thus
largely depends on the choice of the training set, as well as the
predictor features in the analysis window of the query pixel. We
propose a correlation predictor with Locally Weighted Regres-
sion, which is a non-parametric learning algorithm. With Locally
Weighted Regression, we dynamically build a model from a sub-
set of patches from the training set, which lie in the vicinity of
the query pixel in the feature space. This ensures that analysis
windows which are similar to that of the query pixel alone are con-
sidered when we build the model, leaving out points in the feature
space that are far apart, thus ensuring high prediction accuracy.
This work sets out to investigate the performance of PRNU-based
manipulation localization when the proposed correlation predictor
is integrated with PRNU-based manipulation detectors. Before
we elaborate on the technical aspects of the proposed approach,
we do a literature review of PRNU-based image forensics in gen-
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eral in the next section. Subsequently, we present the proposed
correlation predictor and discuss its advantages over the classical
correlation predictor. In the following sections, we corroborate our
technical findings with experimental results. Finally we draw our
conclusions and discuss future research directions.

Sensor-based image forensics

The camera sensor noise or the fingerprint of a camera can be
estimated from a set of genuine sensor outputs x1,xs,...,x7. We
assume a multiplicative noise model and denote the ideal sensor
output (in absence of noise) by X and the actual sensor output by x.
Under this assumption, the sensor output captured by the device
can be expressed as:

x=(14+K)i+86. 1)

Here, K is the fingerprint or PRNU of the camera and the modeling
noise 0 is assumed to be L.I.D Gaussian. The Maximum Likelihood
Estimate of the PRNU factor K is given by:

R L L -1
K= (Zwm) : <Zx%) , )
=1 =1

where, w; = x; — F(x;) is the noise residual, or the sensor noise ob-
tained by feeding image X; to a de-noising filter. A post-processing
step is often applied to eliminate non-unique artifacts from lens
distortion correction or demosaicing [3, 17].

The task of manipulation localization can be viewed as a
statistical hypothesis testing problem, where a query image is in-
spected in small overlapping analysis windows centering every
pixel, for the presence or absence of the camera fingerprint in the
local noise estimate:

Hp : w =x— F(x) does not contain the PRNU factor K
H, : w contains the PRNU factor K

where, w is the noise residue extracted from the analysis window.
Hy is the null hypothesis which represents that the block under
analysis is manipulated and hence doesn’t contain the camera
PRNU. The hypothesis H; is the alternative hypothesis and repre-
sents the fact that the block under analysis is genuine and hence
indeed contains the camera fingerprint. The hypothesis test can
be decided in favor of Hy or H| based on a computed correlation
statistic and comparing the same to a predetermined threshold 7:

p = corr (w7 (Xk)) . 3)

where, the standard algorithm decides for H; if p > 7 and for H
otherwise.

However, the fundamental correlation-based manipulation de-
tector is inherently limited by the fact that the measured correlation
depends on the content. If the content under analysis is of low in-
tensity, or has texture or saturated pixels, then the correlation score
would be low even if the content is genuine. Thus, to avoid declar-
ing a genuine analysis window as manipulated and reduce false
positives, a correlation predictor has been proposed [15], which
predicts the correlation score that we expect to observe assuming
the content to be genuine, based on the nature of content alone.
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Figure 1: A typical scatter plot of predicted correlation vs. actual
correlation.

The correlation predictor proposed by Chen et. al. [15] is a least
square fit to features representing intensity, texture and flatness
characteristics of the content under analysis. In the following sub-
section, we describe the correlation predictor and its application in
a forensic scenario of manipulation localization.

Correlation Predictor

The correlation predictor can be viewed as a mapping from a
feature space to a real number, where the feature space consists of
features representing the texture, intensity and flatness characteris-
tics of the content. In forensic literature, the correlation predictor
has been expressed as a linear combination of features quantifying
the texture, intensity and flatness of the content under analysis [15].
What follows is a brief description of features used in the classical
correlation predictor.

Image intensity

Due to the fact that the PRNU term xK is multiplicative, the
correlation is typically high in regions of high intensity. However,
the PRNU term is absent in saturated pixels (where we have x; =
255, where x; represents the i-th pixel in the image) and hence is
attenuated over some critical intensity value y (y < x; <= 255).
The critical value of intensity ¥ depends on the camera. The
intensity feature is defined as the average intensity attenuated close
to the maximum dynamic range:

1
f[ = — Zatt(x,-% (4)
1Bl i
where |B| denotes the number of pixels in the image block under
analysis. The attenuation function art(x) is defined as:

att(x) = {eXP(—(X— 7)2/8) ifx>7y

x/y ifx<y. ©)

The parameters y and & vary for different camera models.
Texture

The correlation obeserved is typically low if the analysis
window has textured content. Typically, the textured regions cor-
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Figure 2: Comparing Linear Regression with Locally Weighted Regression. Left: Linear Regression fits a global set of parameters to the
training set. Right: Locally Weighted Regression dynamically builds a model considering only the training examples that lie in the vicinity

of the query point.

respond to high frequency and due to imperfect filtering, some
traces of the textured content is also present along with the noise
residual. This weakens the PRNU signal, which is essentially the
signal of interest for manipulation localization. The texture feature
is defined as:

1 1

=T AT 3 (6)
‘B| icB 1+O','2

Sfr

where, 0; denotes the standard deviation of the image intensity in
a5 x 5 square block centering the i-th pixel in the analysis window
B of the corresponding high-pass filtered image.

Signal flattening

The predictor would overestimate the correlation score in a
flat and unsaturated region in the image. Typically, such areas have
a low variance of intensity. The signal flattening feature is defined
as the ratio of pixels in the analysis window, with average intensity
below a threshold:

L.

ﬁzjﬁh€&@<nﬂh ©)
where, 1) is a constant that depends on the variance of the PRNU
factor K and o; is the intensity variance of the analysis window
centering the i-th pixel, measured from a 5 x 5 neighborhood.

Texture-Intensity

The correlation score is also dependent on the collective in-
fluence of intensity and texture (sometimes textured regions are
also high-intensity regions). Thus, the texture-intensity feature
has been defined to measure the combined effect of intensity and
texture in the analysis window:

1 i
Z art(x;) @®)

.f TI = 1 2

Big1+oi
where, 0; has the same definition as the corresponding term in the
texture feature and the attenuation function has the same definition
as that of the intensity feature in eq. (5).
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With the features defined as above, the correlation predictor
has been defined as simple polynomial multivariate model, where
the coefficients of the model can be obtained by least-squares
regression. If we have a training set consisting of m training
examples (i.e., the feature values for m analysis windows and cor-
responding correlation values), then the correlation can be modeled
as:

plk] = 60+ 61 fi[k] + 6 fr k] + 63 fs[k] + Oa fri[k]+
05 f71k] + 6 f1[K]. fr (K] + -+ wk], ©)

where, y is the modeling noise and 6 is the vector of coefficients
to be determined, 6 € R'>. The above equation can be expressed
in matrix-vector form as:

p=HO+y, (10)

where, H is a matrix of dimension m x 15 and 6 =
(60,61, .., 614)T is the vector of parameters to be estimated. From
Linear regression with least-squares fit, we have:

6=H"H)'Hp. an

The estimate of coefficient vector  is then used to predict the
correlation from the measured features on a given analysis window:

p=HO. (12)

Fig. 1 shows the scatter plot of predicted vs. measured correlation
for a typical consumer digital camera.

Locally Weighted Regression

The least-squares regression solution as given in eq. (11) fits
a global set of parameters for the given training set. Thus, the
parameters set will largely depend on the choice of the training set.
Typically, the features can vary to a significant extent for different
image patches and a linear regression model with quadratic terms
might not always be a good fit. Hence, for a given query pixel
for which the correlation needs to be predicted, a global set of
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Figure 3: Comparing the classical correlation predictor with the predictor based on Locally Weighted Regression in terms of Mean Absolute
Prediction Error for 4 cameras from the Realistic Tampering dataset. From left to right row-wise: a. Canon 60D, b. Nikon D90, c. Nikon

D7000 and d. Sony A57.

parameters doesn’t necessarily yield an accurate prediction of
correlation value. Locally Weighted Regression is a machine
learning algorithm which doesn’t fit a global set of parameters to a
given training set. Instead, it builds a model dynamically based on
the query point at which the prediction needs to be made. Thus, the
model is built by choosing a linear fit to the training set considering
only the points near the vicinity of the query point where we wish
to make a prediction. This lets us build a model even for a very
nonlinear dataset that follows an arbitrary distribution, with piece-
wise linear approximations.

Fig. 2 illustrates the idea of Locally Weighted Regression.
The dataset shown in the figure is 1-dimensional for the purpose
of illustration, but the idea generalizes to any arbitrary dimensions.
Consider two query points x = 0.55 and x = 1.5. The left panel
shows least-square regression fit to the dataset of the form:

y=0p+06;.x

where we have a global set of parameters (6 and 0, in this case).
Clearly, if we make predictions based on the global set of param-
eters, the predictions will not be very accurate. Instead, Locally
Weighted Weighted Regression considers a subset of training ex-
amples from the vicinity of the query point in each case and dynam-
ically builds a model, as illustrated in the figure on the right panel.
For instance, for x = 0.55, it fits the blue line and the predicted
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value of y is given by the y-coordinate of the cyan point on that
line. Similarly, for x = 1.5, the algorithm fits the red line and the
corresponding prediction is again given by the cyan point on that
fitted line. Thus, it is a "non-parametric” algorithm in the sense
that we don’t have a fixed set of parameters of the model that we fit
to the training set. Evidently, for both the cases, the prediction is
much more accurate than the corresponding predictions obtained
by the global linear regression fit (represented respectively by the
red and magenta points on the global linear fit).

For Locally Weighted Regression, the cost function that is
minimized is defined as:

J(0) =Y wi) (1) — 97 x1)2, (13)

i=1

which can be minimized with an optimization algorithm such as
Gradient Descent. Here m is the number of training examples, y@
is the value of the target variable for the i-th training example, x0
is the corresponding feature vector for the i-th training example
and w') is the weight that is assigned to the i-th training example.
Intuitively, the weights wi) are to be assigned very small values for
points in the feature space that are far away from the query point.
On the contrary, w(i) should be large for training examples that
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are in close vicinity to the query point. There are several choices
for the weight function, which is a design choice. One reasonable
approach, which is widely used is to define a weight function of
the following form:

) (1) — x)2
wl) = exp < M) ) (14)

2172

The parameter 7 is known as the "Bandwidth parameter” and
determines how sharply the weights fall with distance from the
query point. It is evident that if x¥ lies in the vicinity of the
query point x, then w(®) will be close to 1 and if x\?) is far from
x then w(®) will be close to 0. This implies O is chosen giving
a much higher weight to training examples close to the query
point x, ignoring training examples that are far apart. This is
shown in Fig. 2 where the algorithm fits two different straight
lines respectively at x = 0.55 and x = 1.5. For the prediction of
correlation in PRNU-based manipulation localization, x is a 4-
dimensional feature vector that we choose, representing intensity,
texture and flatness characteristics [15], leaving out the quadratic
expansion terms involving the 4 features. It is also possible to
obtain a closed form solution for the estimate of the parameter
vector 0, as follows:

6=H"WH) 'HTwp, (15)

where, W is an m x m diagonal matrix obtained by putting the
weights obtained from eq. (14) on the main diagonal. Thus, the
k-th element on the diagonal is the weight of the k-th training

example wik,

Experimental setup

We work with the Realistic Tampering Dataset [12], which
has realistic manipulated images from 4 different digital camera
devices which are: Canon 60D, Nikon D90, Nikon D7000 and
Sony A57. For each camera, there are 55 genuine uncompressed
images and their corresponding manipulated versions. All images
are of size 1080 x 1920 pixels. The fingerprint of each camera was
estimated from a different set of images. For the correlation predic-
tor with Locally Weighted Regression, we used a total of 110000
genuine image patches of size 64 x 64 as our training examples,
for which we had the correlation values and the corresponding 4
features computed for each training example. We compare the
accuracy of the standard correlation predictor and the proposed
predictor based on Locally Weighted Regression in terms of mean
absolute error, defined as:

|
e=5 Yl —p", (16)
i=1

where, p(i) is the true correlation and ﬁ(i) is the predicted corre-
lation for the i-th example in the test set and N is the number of
patches in the test set. For manipulation localization, we report the
MCC score for manipulation localization masks obtained by our
DRF Graph-Cut detector [14], with the two correlation predictors
(classical and Lowess-based). The MCC score is defined as:

TPxTN—-FPxFN

V/(TP+FP)(TP+FN)(TN +FP)(TN +FN)’
a7

MCC =
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Figure 4: A typical plot of € vs. £ (based on Realistic Tampering
dataset).

where, TP, TN, FP and FN respectively represents the number of
True Positive, True Negatives, False Positives and False Negatives.

Results

Fig. 3 shows the comparison of the classical correlation pre-
dictor and the proposed predictor based on Locally Weighted Re-
gression (Lowess) in terms of eq. (16), for the 4 cameras from the
Realistic Tampering dataset [12]. Here, for each camera, we used
a training set consisting of 110000 patches of size 64 x 64 and the
corresponding correlation values, to fit the locally weighted regres-
sion while making the prediction on the test set. The test dataset
consists of 110000 patches which are disjoint from the training
patches. For each camera, we randomly sample 10000 patches
from the test set and make prediction of correlation by the two
predictor, repeating the process for 50 iterations (i.e., we randomly
sampled the test set 50 times and compared the performance of the
two predictors in each iteration). The predictor based on Lowess
was obtained by dynamically fitting the model on examples from
the training set, which are disjoint from the test set. We observe
that the proposed predictor based on Lowess clearly outperforms
the classical predictor by a fair margin, as it consistently yields
a lower prediction error for all 4 cameras. However, since the
predictor is based on a model that is fit dynamically to the train-
ing set as per eq. (15), for every pixel in a query image at which
we need to make a prediction, this appears to be computationally
more expensive than the global fit to the training set. Indeed, the
diagonal matrix W in eq. (15) will be very large if we have a very
large training set and hence it is an expensive algorithm to fit when
the training set is very large. However, it can be implemented
very efficiently even for large datasets with millions of training
examples using algorithms like k-d trees for instance [18]. We used
a different approach to fit the model efficiently, without having
the need to formulate the diagonal matrix. Instead of setting the
bandwidth parameter 7, we select a threshold & for the weights for
each camera and considered all the points near the vicinity of the
query point for which the value of weight is above the threshold &.
We experimented different values of & and chose the value of & as
0.95 for each camera. Indeed, this approach has the same effect of
choosing the points near the vicinity of the query point by varying
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Figure 5: Manipulation localization performance in terms of MCC score comparing the classical predictor and the proposed predictor

based on Lowess, based on Realistic Tampering dataset.

the bandwidth parameter 7. We kept the parameter 7 fixed at 0.05.
Fig. 4 shows how the value of € in eq.(16) varies as a function of
£. We observe that the value of € steadily decreases as we increase
the value of &, which corresponds to considering points nearer and
nearer to the vicinity of the query point x. With this approach, the
model can be implemented very efficiently with vectorized code.

Fig. 5 shows the comparison of manipulation localization
results obtained when we incorporated the proposed predictor,
as well as the classical predictor with our DRF GraphCut detec-
tor [14]. The MCC score obtained on some manipulated images
from Realistic Tampering dataset for the same operating thresh-
old settings (n = 0.025, 7 = 0.04) for the two detectors has been
shown, which reveals that the proposed correlation predictor yields
a better manipulation localization performance than the classical
predictor. We also show some manipulation localization masks
generated by our detector when combined with the proposed cor-
relation predictor.

Conclusion

We propose a correlation predictor for PRNU-based image
manipulation localization based on a non-parametric algorithm,
which is Locally Weighted Regression (Lowess). Instead of fit-
ting a global set of parameters 6 to a quadratic model involving
the 4 features representing the intensity, texture and flatness char-
acteristics, the proposed predictor based on Lowess fits a model
dynamically considering training examples lying in the vicinity
of the query point in the feature space. Thus, while building the
predictor, we consider only the image patches from the training
set that have similar intensity, texture and flatness characteristics
measured by the 4 fundamental features as described before. This
algorithm allows us to fit a model very effectively even for a very
non-linear function with piece-wise linear approximations. Our
experimental results indicate that the proposed correlation pre-
dictor yields a better accuracy of predicting correlations than the
classical predictor that is based on a global set of parameters. Al-
though, for large training sets, the algorithm is computationally
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more expensive than a global fit to the entire training set, it can be
implemented very efficiently using k-d trees even when the training
set is very large. Our manipulation localization results as well as
the low prediction errors based on Realistic Tampering dataset [12]
indicate the efficacy of the proposed correlation predictor.
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