
A video auditing system for display-based voting machines
Scott Craver and Gurinder Bal; Binghamton University; Binghamton, NY USA

Abstract
The use of general-purpose computers as touch-screen vot-

ing machines has created several difficult auditing problems. If
voting machines are compromised by malware, they can adapt
their behavior to evade testing and auditing, and paper trails are
achieved through printing devices under the untrusted machine’s
control.

In this paper we outline and exhibit a prototype of a device
that audits a voting machine through screen capture, sampling
the HDMI signal passed from the computer to the display. This
is achieved through a standard that requires a compliant voting
machine to display signal markers on the summary pages be-
fore a vote is cast; compliance is enforced via alerts to the voter
with a visual and audible signal while the screen is captured and
archived. This direct feedback to the voter prevents a compro-
mised machine from failing to invoke the device. We discuss the
design and prototype of this system and possible avenues for at-
tack on it.

Introduction
It is a difficult problem to guarantee that touch-screen DRE

(direct-recording electronic) voting machines, if compromised,
are correctly tabulating votes as entered by voters. DRE machines
input a voter’s choices and save a vote directly to a memory card,
rather than scanning a paper ballot; because DRE machines as
general-purpose computers may be compromised or infected with
malware, such a machine might record false votes, or otherwise
alter its totals [2]. To this end, an auditing method is needed to
verify that a DRE machine is behaving correctly. The purpose of
this project is to design a reliable auditing method and technol-
ogy for electronic voting machines, under the assumption that the
machine is programmed to record votes unfaithfully, by a mali-
cious actor with full knowledge of the auditing system. An ideal
solution would use existing machines, with minimal additional
participation by voters.

Verification methods include testing a machine before the
election with mock data, isolating one of several machines dur-
ing an election to test with mock data, and comparing tabulated
results with a voter-verifiable printout produced by the machine.
In the first two cases, a compromised machine may behave cor-
rectly if it can determine that it is being tested; in the latter case,
it is necessary for a voter to verify a displayed printout, which
the voter may opt not to do. It is thus challenging to verify tabu-
lated data with voters’ true choices. In [3], the authors propose a
method of executing a DRE machine’s software as a virtual ma-
chine from a hypervisor, and directly examining its video buffer
output to confirm that a vote is displayed as recorded. The au-
thors’ use of a video frame buffer is one step closer to the method
that we employ, except that the authors only use this to confirm
or disconfirm that a ballot matches that which is recorded, rather
than recording the buffer itself for auditing.

In this paper, we propose a novel method of auditing a DRE
voting machine, by capturing the video signal sent from the DRE
machine to the display. This prevents the need for the user to
compare the vote to a recorded printout, and it allows an isolated
device to perform the auditing capture, outside the influence of
the potentially compromised DRE machine. However, to do so
efficiently (and not simply record the entire video output of the
DRE machine,) it is necessary to induce the DRE machine’s co-
operation. We achieve this by establishing a protocol that the ma-
chine must correctly participate in, and enforce this participation
through aural and visual alerts to the user.

Method
In our proposed system, a DRE voting machine is assumed

to be connected to a display device through an HDMI video cable.
The video signal to the display is passed through a capture device
that sits inline on the cable, whose signal is copied to an embedded
computer. This device is programmed to identify vote summary
pages, which must be displayed before a vote is cast; these frames
are captured by the device, and saved to a memory card.

In order for this system to work, it is necessary for the DRE
machine to display, possibly on multiple screens, a summary of
the voter’s ballot before the vote is cast, in such a way that the
device can detect when to take a screen shot. This creates the
obvious problem that a malicious machine may refuse to cooper-
ate, either by not displaying such pages, or doing so in a way that
foils the device’s ability to detect a frame to capture. Our solution
to this problem is to require a device to participate in a protocol
that is made clearly evident to the user, with a notification if the
machine is not in compliance.

Protocol description using state badges
We model the voting process at a DRE machine as a simple

finite state machine, with states described in table 1. These states
simply encode the phases of a voting process, which either culmi-
nates in a vote being cast, or a session being canceled. Only spe-
cific transitions are allowed between these states; the state transi-
tion diagram is shown in figure 1.

Phases (states) in DRE voting process
00 Election has not begun
01 Interim between voters or voting sessions
02 Start of a new voting session
03 Voting session is underway
4x Summary page x is displayed on the screen

for capture
05 Vote has been cast
06 Voting session is completed

IS&T International Symposium on Electronic Imaging 2022
Media Watermarking, Security, and Forensics 2022 323-1

https://doi.org/10.2352/EI.2022.34.4.MWSF-323
© 2022, Society for Imaging Science and Technology



In order for the machine to document that it is following
this state machine, it displays state badges on the screen. A state
badge is a small graphic that encodes the state value, which our
device can recognize in the frame of video passed over the HDMI
connection. Sample state badges are shown in figure 3.

These badges are designed to be easily detected on-screen
in HDMI video. Because of the strictures of the format, it is not
necessary to use a QR or AR code, since the badge is not subject
to geometric transforms [4, 5]. Because of the nature of the dis-
played data, a simple pattern can be detected with a low risk of
either a miss or a false detection.

Our state badge images consist of horizontal bars of pixels,
20 pixels in width, each bar consisting of a constant pixel value
that is easily detectable in YUV color space. In our case we chose
two colors, yellow and cyan, which will present a high Y value
and clearly separated U and V values. The badge consists of two
rows top and bottom as framing data, enclosing eight bits encoded
as eight rows. Eight bits are almost certainly more bits than we
need for our application.

In our proof of concept implementation, we observed that
captured YUV values vary from source to source; the framing
data allows us to fix exact U and V pixel values when decoding.

Protocol enforcement
When a suspect machine displays state badges on screen to

indicate each phase in the voting process, our device identifies the
state communicated through these badges. It then communicates
directly to the user, both with a sound (speech) alert and a light.
This naturally confirms to the user that the DRE machine is doing
what it claims to do.

Table ?? below displays all of the transitions between state
badges, the message announced when the transition occurs, and
the light color displayed in this instance.

The instruction set includes a set of opcodes that indicate
stages in the voting process. They include:

These opcodes can only be displayed in certain valid se-
quences, described by a finite automaton. Each state transition
triggers the device to provide a visual and audio alert. The visual
alert consists of a red, amber, or green light that may be solid or
flashing; the audio alert consists of a voice sample describing the
state to the voter. Example text messages are illustrated in the

Figure 1. State transitions allowed by the voting process.

Figure 2. Example state badge images.

State transitions in DRE voting process
FromTo Meaning Light Message
00,
06

01 Machine
ready

Yellow
flashing

This machine is
available.

01 02 Voting be-
gins

Yellow
solid

Your voting ses-
sion has begun.
Your vote is not
cast until the light
is green.

03,
4y

4x Summary
page X

no
change

You should see
page [x] of your
ballot summary
on the screen.

4x 05 Vote cast Green
solid

Your vote has
been recorded.

05 06 Voting
complete

Green
solid

Thank you, and
goodbye.

02,
03,
4x

06 Voting
canceled

Red
solid

This session
has been can-
celed. No vote is
recorded.

* * Wrong
behavior

Red
flashing

A fault has oc-
curred. Please
contact an elec-
tion worker. No
vote is recorded.

table below.
When a 4x opcode (summary page displayed) is received by

the device, a screen capture of the summary page is taken. Dur-
ing such a state, each new frame is compared to a stored previous
frame to ensure that the summary page is unchanged; if a suffi-
cient change is observed, the new frame is also saved as a screen
capture.

The purpose of the voice-and-light alert system is to force a
machine to display a summary page with a 4x opcode, so that the
auditing device can record a screen capture. A malicious machine
that fails to display a 4x opcode marker will fail to reach a con-
firmation of the cast vote, and result in an error announced to the
voter.

Implementation and testing
Our system was implemented using a laptop computer to rep-

resent our DRE machine, serving as an HDMI source. The HDMI
signal was captured using an Elgato HD60S+ capture card. This
device provides an HDMI video in and out signal, sitting inline
on the cables between a computer and a display. The HD60S+
captures the signal on the display and exports it as a USB camera,
that can then be captured by another device. This forms the video
capture of our test bed, although it should be emphasized that this
is an off-the-shelf technology for a proof of concept. As we will
show below, the conversion of HDMI video to a USB camera out-
put entails complexities in the color space of the video available
for auditing. If implemented as a standalone device, it may be
better to use a device that captures the HDMI signal directly, such
as an FPGA board with direct access to HDMI through data.

Our captured data is then exported as a virtual camera to a

323-2
IS&T International Symposium on Electronic Imaging 2022

Media Watermarking, Security, and Forensics 2022



Raspberry Pi 4B, running a real-time utility to monitor and pro-
cess frames from the camera. The Rasbperry Pi was more than
fast enough to process data at speeds sufficient to monitor, de-
tect and screen-capture a summary page displayed by our HDMI
source.

For the software, we modified and forked a utility called
v4l2grab, an open source project for screenshop capture of USB
camera video. This utility is able to capture a single screenshot
in JPEG format, or run in continuous mode, saving screenshots as
rapidly as they can be acquired. The v4l2grab utility is written
in C, and possesses a very simple structure: it possesses a single
C callback function called imageProcess(), which decodes a
frame from the camera into a YUV 444 color space, and then calls
a method jpegWrite() to write the converted buffer in JPEG
format.

It was a trivial exercise to modify this callback function to
scan the image looking for a state badge, and then returning im-
mediately if there is no need to save the image.

If a state badge is identified, our modified utility takes action
as follows:

• If the badge is the same as the one identified in a previous
frame, the function returns.

• If the badge is different as the one identified in a previous
frame, the finite state machine graph is used to determine an
action taken. For the time being, the action (spoken mes-
sage) is printed to standard out.

• If no state badge is identified, this is treated as an invalid
state in the finite state machine, except at the beginning of
the program’s execution. Once a badge is seen, a missing
badge is regarded as an error.

• If a new badge is specifically of the form 4x for some page
x, the function simply falls through to the existing code for
processing and saving a screen shot.

One complication in our implementation was data appear-
ing in a YUV format that was not supported by v4l2grab. This
YUYV format was simple to process, because the utility gives us
direct byte access to the buffer; however, we had to write an addi-
tional YUV conversion function in order for jpegWrite() to be
called.

Identifying state badges
Our initial results showed that different source devices, dis-

playing the same purported colors (yellow 0xffff00 and cyan
0x00ffff) produced significantly different YUV values. This we
attributed in part to the processing imparted by the ElGato capture
card.

Our code use a very simple thresholding method to identify
yellow and cyan pixels: in either case a pixel must have a Y value
exceeding a luminance threshold (in our case 120), and then U and
V values one of which lies below a dark threshold and the other
above a light threshold (chosen in our case as 90 and 120, re-
spectively). This was sufficient to identify cyan and yellow pixels
correctly across multiple devices that we used in our experiment.

Our algorithm proceeds by processing the image frame top
to bottom, and left to right. If a cyan pixel is encountered, the
subsequent interval of cyan pixels is measured in the scan line. If
this interval length is within an interval of 10 to 20 pixels, bars in
subsequent rows are checked for an all-cyan or all-yellow pattern,

including the specific framing pattern at the top and bottom of the
badge.

In our tests, badges were combined on either a white or black
field, with and without text representing a ballot. We encountered
no errors in identifying or decoding state badges, regardless of
their placement in the image. This we attribute both to the con-
fined nature of the digital data, and the nature of the video data
in which the badges are immersed. The badges as we designed
them are far more robust than is necessary to communicate a byte
of information to a device snooping the HDMI signal. It is impor-
tant to note that if these badges are used as a protocol standard,
there is no incentive for a DRE machine to provide an unreadable
badge; this will cause the auditing device to declare an error to
the user.

Figure 3. Prototype of proposed system. A laptop serves as HDMI source

(untrusted voting machine.) Right, an HDMI capture card, feeding a Rasp-

berry Pi 4B auditing device (below left).

Attacks
We describe several possible ways a malicious DRE machine

could circumvent this system. We classify attacks in two cate-
gories:

1. A DRE machine displaying a summary page to the user, and
triggering the recording of a screenshot of a different sum-
mary page.

2. A DRE machine displaying a summary page to the user, and
triggering the the recording of a nonsensical, blank or other-
wise incomplete screenshot.

An attack of the first kind is severe; an attack of the second
kind identifies under audit that the machine has misbehaved, al-
though the voter’s ballot is lost.

An example of the first attack is described in [6]: it is possi-
ble to tamper with a display monitor’s display controller, by up-
dating its controller firmware, in order to direct the monitor to
display pixels that are not in the HDMI signal sent to the monitor.
For example, one can trigger an image to appear in a designated
region on top of the HDMI signal sent by the computer. This
attack is specific to certain displays, requires tampering with a

IS&T International Symposium on Electronic Imaging 2022
Media Watermarking, Security, and Forensics 2022 323-3



device’s firmware, and is somewhat confined in what can be dis-
played; however, the authors demonstrate that a controller can be
fed data to display, and commanded to do so, through pixel values
set in an HDMI signal. This represents a fundamental limitation
on the trustworthiness of a video signal as “ground truth” for what
appears on a display.

Another potential attack is employing a second device, in a
meet-in-the-middle attack. If the cable to a display is unplugged,
and fed to an intermediate device that can manipulate HDMI sig-
nals, this device can act as a surrogate for a hacked display.

Beyond hacked displays, there are potential attacks by which
a DRE machine fools the screen capture directly. A machine can
briefly display a false summary page to the user, and then change
it (”correct” it) after a short interval, after the screen-shot is taken.
This might be blatant behavior that will alert a voter to a problem,
but it represents a risk that must be addressed.

Another attack consists of displaying a blank summary
screen that switches to a summary page after a brief delay, to trick
the auditing device to record a blank screen. Unlike a decoy page,
this may not appear suspicious to a user, rather appearing like a
natural delay in the DRE machine’s operation. However, it would
be an attack of the second kind, that would be discovered upon
auditing. Along these lines, attacks consisting of rapidly alternat-
ing a summary page and a blank screen, or alternating between
images whose average appear as the desired summary page, can
cause the device to record a false image.

To remedy these attacks, we recommend that in practice,
an auditing device in a summary page state compare subsequent
frames of video, declaring an error if a significant change is de-
tected from frame to frame while the state badge is constant.

Discussion and conclusions
This paper outlines a method of auditing a DRE voting ma-

chine by screen-capture of a ballot summary, serving as an alter-
native to a voter-verifiable paper audit trail. This method allows
an independent hardware auditing device, as long as a DRE ma-
chine adheres to a protocol entailing the display of markers to
inform the auditing device of advancing stages in the voting pro-
cess. Aural and visual alerts ensure that the machine is doing so.

One avenue for future work is that of employing screen cap-
ture using a camera positioned over a display, rather than capture
of a video signal to a display. This would rule out attacks that pro-
duce a display distinct from the video signal [6]. However, such
an approach would face significantly greater image processing re-
quirements. In addition, there is a potential for robust watermark-
ing to be used in place of an overt marker image, also with a cost
of computational complexity.

References
[1] Stevan Eidson, Brett Gaines, and Paul Wolf. 30.2: HDMI: High-

Definition Multimedia Interface. SID Symposium Digest of Technical
Papers. Vol. 34. No. 1. (2003).

[2] Ariel Feldman, J. Alex Halderman, and Edward W. Felten. Security
analysis of the Diebold AccuVote-TS voting machine. Usenix Secu-
rity (2006).

[3] Sujata Garera and Aviel D. Rubin, An independent audit framework
for software dependent voting systems. Proceedings of the 14th ACM
conference on Computer and communications security. (2007.)

[4] Ohbuchi, Eisaku, Hiroshi Hanaizumi, and Lim Ah Hock, Barcode

readers using the camera device in mobile phones. 2004 International
Conference on Cyberworlds. IEEE. (2004.)

[5] KU Gökhan, and İN Gökhan. ARgent: A Web Based Augmented
Reality Framework for Dynamic Content Generation. Avrupa Bilim
ve Teknoloji Dergisi: 244-257. (2020.)

[6] Ang Cui, A Monitor Darkly: Reversing and Exploiting Ubiquitous
On-Screen-Display Controllers in Modern Monitors. DEFCON 24,
Aug. 5, 2016.

Author Biography
Scott Craver received his PhD in Electrical Engineering from

Princeton University in 2004, and is an assistant professor of Electri-
cal and Computer engineering at Binghamton University in Binghamton,
NY. Gurinder Bal is a recent graduate of Binghamton University with a
Master’s degree in Electrical and Computer engineering.

323-4
IS&T International Symposium on Electronic Imaging 2022

Media Watermarking, Security, and Forensics 2022




