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Abstract
In recent years, localization systems have gained signifi-

cance in the indoor environment due to an increase in demand
in various applications. WLAN fingerprinting-based indoor lo-
calization has gained popularity due to its stable performance
and widely available infrastructure. The traditional fingerprint-
ing approaches utilize received signal strength (RSS) and recently,
the Channel state information (CSI) as location signatures. CSI
is considered to lump all the multipath components. This paper
presents the performance study of CSI- and RSS- fingerprinting
in two different multipath landscapes: static and dynamic. We
utilized artificial neural network (ANN) and compare the local-
ization error of each scenario with RSS- based fingerprinting.

Introduction
With the rising requirement and use of location-based ser-

vices, precise positioning in indoor and outdoor environments has
become critical need. The global positioning system (GPS) con-
tinues to feature prominently in the outside environment, with
high localization accuracy in most cases. However, its perfor-
mance would suffer significantly in certain circumstances, such
as metropolitan locations with tall buildings, steep terrain, and in-
side settings [1]. Due to this, indoor positioning services (IPS)
have gained popularity. Most of the IPS systems use trilateration,
triangulation, and fingerprinting-based methods [2].

Time of arrival (TOA) is a popular trilateration technique.
Using TOA receiver’s location can be estimated by calculating
the packet travel time between the access point (AP) and the re-
ceiver, then the packet travel time is multiplied by the speed of
light, which yields receiver location. However, calculating the
travel time usually requires synchronization between AP and re-
ceivers [3]. Moreover, the method requires at least three APs for
exact localization [4]. Triangulation technique like the angle of
arrival(AOA) is a widely accepted technique in IPS. In AOA, the
principle of measuring angular directions from an AP is placed
at a known location to the angle at which the signal meets the
receiver. The angle is measured by computing the phase of the
receiving radio signals. However, directional antennas are re-
quired to measure precise angles [5], and the need for compu-
tationally expensive processing algorithms is more [6]. AOA es-
timation is highly constrained by the number of receiving anten-
nas, their sizes, and line-of-sight propagation effects. Overall,
original AOA techniques are not common for indoor positioning,
but there were reports on hybrid AOA and fingerprinting tech-
niques [6]. The accuracy of TOA and AOA methods gets affected
significantly due to the multipath components since these meth-
ods require a direct line of sight between AP, and the receiver [7].
Unlike fingerprinting methods, TOA and AOA methods require

knowledge of the AP’s location [8].
Compared to the earlier methods, fingerprinting method has

become a suitable candidate for indoor localization because of its
high accuracy. In fingerprinting, we primarily collect and prepro-
cess data in the selected area. Then the fingerprinting approach
needs to establish a a database of location-dependent radio fre-
quency (RF) measurements called fingerprints as they are quite
unique for each location. fingerprint database by training the pre-
processed data with a suitable neural network in the training stage
(also known as the offline stage). Finally, in the online positioning
stage, the testing data is compared with the training data stored
in the database. The target positions are estimated by some lo-
calization algorithms covered in [9]. Most of the present and
previous works have applied the fingerprinting approach for in-
door localization based on either the RSS or CSI [10] [11]. How-
ever, the performance of RSS-based techniques is not robust due
to low number of access points, fading and shadowing in indoor
cluttered environments despite of a potential attaining meter-level
accuracy in basic contexts [12]. On the contrary, CSI channel
estimate data provide more robust multipath measurement com-
ponents, which help to achieve 1 meter accuracy even with one
access point [9] [13] in complicated environments such as narrow
hallways.

So far as the online stage of location estimation is concerned,
the aforementioned fingerprinting-based IPS have been utilizing
different fingerprint matching methods, including deterministic
methods such as k-nearest neighbors, probabilistic methods, and
machine learning advanced neural networks such as convolutional
neural networks (CNN) [14]. Therefore, the predicted location is
as accurate as the data utilized for training the networks. Hence,
the accuracy and reliability of CSI-based IPS also depend on the
choice of CSI characteristics that include either amplitude [9],
phase [15], or a combination of amplitude, phase, and derived
features [16] based on statistics such as kurtosis [17]. Of all
the research efforts towards the realization of a robust WLAN
fingerprinting-based IPS, most of them have conducted database
creation in controlled environments such as a dedicated although
cluttered indoor laboratory area without any human movement or
human movement activity during the collection process. Such ex-
perimental environments actively shield noise and hence do not
reflect the real-world setting. Since CSI measurements have high
sensitivity, in order to meet with the demands that arise from the
varying location signatures between the offline and online stages
of the fingerprinting process, the influence of multipath compo-
nents and noise, we present a detailed study towards the realiza-
tion of a robust WLAN IPS in a natural indoor environment. The
main contribution of this paper is as follows:

1. Testing the robustness of the RSS- and CSI- based indoor
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localization in different multipath components testing en-
vironments and comparing CSI with RSS performance in
terms of mean error.

2. Impact of hidden layers(HLs) sizes for the ANN model on
CSI and RSS-based indoor localization.
The rest of this paper is organized as follows. The exper-

iment setting section covers the experimental environment for
multipath scenarios data collection. The preliminaries and meth-
ods section presents data preprocessing methodology, the neural
network model trained on the fingerprinting data and its configu-
ration details. The results section describes the performance and
sensitivity analysis evaluating the impact of various parameters
on localization performance. Finally, the conclusions section pro-
vides some concluding remarks and future directions.

Experimental Setup
In order to study the performance of CSI based indoor local-

ization we explore two scenarios. The first scenario is a receiver
localization in static multipath landscape as shown in Figure 1,
while the second scenario assumes dynamic multipath landscape.
CSI and RSS data are collected in both scenarios. Only the place-
ment and orientation of the SDR-based CSI detector is moved to
collect data at different locations where the AP is fixed. As a re-
sult, the surroundings stayed relatively unchanged throughout the
trial, with the exception of the relative orientations between the
AP and the CSI detecting equipment.

Figure 1: Hallway Layout for the Data Collection

The experiment is conducted at the hallway in the applied en-
gineering and technology(AET) building at University of Texas at
San Antonio. The total area of the experimental setup is 7× 4.5
meters, with 96 reference points(RPs) for the training and 39 test-
ing points(TPs) for the online testing. The beacon frame collected
at the receiver is one sample, that consists of an RSS measure-
ment, and complex-valued based CSI measurements correspond-
ing to 52 subcarriers. For each RP and TP, we collect 1000 and
500 samples, respectively. We use a NI-USRP 2932 and collected
a total of 96,000 samples for RPs, and 19,500 samples for TPs.

Preliminaries and Methods
Data preprocessing

This section presents a preprocessing methodology applied
to the raw CSI data. Figure 2 represents the CSI amplitude mea-
surements collected at RP-2 (see Figure 1) under static and dy-
namic landscape multipath scenarios. The difference in the loca-
tion signatures is clearly observed in both the scenarios. To prove

Figure 2: CSI plots of RP-2 at different multipath scenarios

Figure 3: Feature distribution of CSI amplitudes

the effectiveness of CSI amplitudes as location signatures, and in-
put features to the neural network model for location estimation
in the online stage, we construct corresponding covariance matrix
Ĥ from the CSI amplitudes. The covariance matrix is represented
as follows:

Ĥ =

cov(H1,H1) . . . cov(H1,HK)
...

. . .
cov(HK ,H1) . . . cov(HK ,HK)

 (1)

372-2
IS&T International Symposium on Electronic Imaging 2022

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2022



where cov(Hi,H j) is the covariance between Hi and H j, and
H is the normalized version of the variable H. The peak normal-
ization (dividing by the maximum subcarrier amplitude) is ap-
plied to each subcarrier amplitude.

We then calculate the maximum eigenvalues of the covari-
ance matrix as the features from the CSI amplitude data. The
results in three tuples corresponding to the three maximum eigen
values α1, α2, and α3 as below:

α = max(eigen(Ĥ)) (2)

For the α eigen values, the location signatures are more likely
to be static, validating the case of fixed multipath scenario. On
the contrary, the higher eigen values indicate that there is move-
ment in the environment with either people intruding in the exper-
imental environment or noise intrusion. To test the validity of the
CSI amplitude features, Figure 3 shows the distribution of ampli-
tude features αi for the measurements at about 12 reference points
(RPs) spread over the environment in both static and dynamic sce-
narios. Figure 3 shows the effect of movement and intrusion. The
eigen values are more spread out in case of dynamic landscape as
opposed to static case with some outlier values (Figure 3). It is
observed from the distribution figures that the amplitude features
are sensitive to the environment and therefore, the CSI amplitudes
are the chosen features as input to the neural network.

Neural Network
In this paper, the neural network is trained to classify inputs,

which are CSI measurements. The target classes are the radio-
map locations. The size of the input layer depends on the dimen-
sions of CSI data which is 52. The size of the output layer is based
on the number of classes or locations i.e. 96. As shown in Figure.
4 the input dimensions correspond to the sub carriers(SCs) (per
samples per location), i.e., 52× 1. Initially, the inputs are com-
puted and passed as weights and biases assigned to the neurons
of the first hidden layer. A chosen entropy loss function is used
to minimize the gradient. For all the hidden layers, we picked the
hyperbolic tangent sigmoid tansig as the activation function. This
function computes a layer’s outputs from its net inputs and returns
a value between -1 and 1 for each piece of net input. With tansig,
having a stronger gradient and resultant positive and negative out-
puts make it easier to optimize. Scaled conjugate gradient (SCG)
training algorithm is used to train the ANN.

Figure 4: Two Layer Artificial Neural Network

This backpropagation approach searches in a direction that
yields typically quicker convergence (conjugate direction) than
the steepest descent path, while maintaining error reduction in all
preceding phases. During each iteration, a single gradient descent
step is taken that updates the weights and biases of each hidden
and output block. The input (RSS or CSI) data is randomly di-
vided into training, validation, and testing subsets by the model.
To map the output weights to the estimated locations, the output

layer uses a softmax function. As a result, each output neuron cor-
responds to an RP, and the final weights represent the anticipated
probabilities and based on the probabilities each location will be
classified, the proposed model of the neural network is shown in
Figure. 5. In the proposed model the training and testing data is
collected in different scenarios of the experimental environment
i.e with static and dynamic multipath landscapes.

Figure 5: Block Diagram of ANN based CSI classification

Results
This section presents the performance analysis of

fingerprinting-based CSI and RSS with static and dynamic
multipath landscapes. To that end, we performed the comparative
analysis in different multipath scenarios, and the impact of
hidden layer sizes. The performance metrics were reported in
meters for mean error and standard deviation.

Comparative performance in different multipath
scenarios

Figure 6: RSS vs CSI CDF plot of different multipath scenarios

Firstly, we conducted experiments in different multipath sce-
narios as mentioned above but in the same physical area with no
movement representing static and a real-world setting without any
movement constraints representing dynamic multipath landscape.
The training and testing data are collected independently to ex-
amine the overall performance of RSS- and CSI-based indoor lo-
calization. We used ANN for training and testing with two, three,
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and four hidden layers initially. We observed that four hidden
layer configuration with neuron sizes of {500,450,300,50}, re-
spectively, delivers optimal performance. We have trained and
tested the ANN with four possible combinations of datasets col-
lected in different multipath scenarios, as shown in Table 1. The
CDF plots of RSS and CSI in different multipath scenarios are
shown in Figure. 6.

Table 1: Multipath scenarios comparison

Train/Test
Dataset

RSS
Mean

RSS Std.
dev

CSI
Mean

CSI
Std.
dev

Dynamic/Dynamic 2.28 0.97 1.29 1.16
Static/Static 2.02 1.11 0.93 0.98
Static/Dynamic 2.43 1.09 1.55 1.31
Dynamic/Static 2.26 0.99 1.53 1.17

CSI clearly performs better than RSS as hypothesized.
Moreover, as shown in Table 1, in each scenario, CSI performed
well compared to RSS by 1 meter mean error. Whereas, in the
second scenario, the training and testing dataset collected in a
static multipath landscape, CSI not only performed well with a
mean error of 0.93 meters, but it also outperformed RSS by 1.07
meters.

Impact of hidden layer size
In this section, we evaluate the impact of hidden layers (HLs)

sizes for the ANN model. As observed in Table 1, the best per-
forming scenario is of the static training and static testing dataset
combination. Thus, we test with 2, 3, and 4 HLs by changing the
neuron sizes as shown in Table 3. It is difficult to determine a

Table 2: Impact of various Hidden layers

Hidden Layer
Size

RSS
Mean

RSS Std.
dev

CSI
Mean

CSI
Std.
dev

300-150 2.42 1.11 1.33 0.90
300-150-100 2.22 1.11 1.17 1.16
300-150-100-
50

2.03 1.11 1.07 0.99

500-450-300 2.02 1.11 1.00 1.00
500-450-300-
50

2.01 1.11 0.93 0.98

suitable network topology from several inputs and outputs. The
fact is that a fair number of hidden layers can reduce training time
with high accuracy. Many approaches are defined to standardize
the number of hidden layers required for a neural network, but the
approximation depends on the type of database each time [18].For
the proposed dataset we can clearly observe an improvement in
performance in Table 3 with an increase in HLs.

Conclusion
In this paper, we presented the performance study of CSI

based and RSS based fingerprinting in static, and dynamic mul-

tipath landscapes. We observed in both the scenarios that CSI
outperformed the RSS based indoor localization. An impact of
HLs performed by varying HLs size to the ANN model for the
CSI and RSS based fingerprinting further indicated the robustness
of a deep learning model trained with CSI location signatures.
Furthermore, it is observed that with increase in the number of
HLs, the mean error and the standard deviation increase linearly
with both CSI and RSS. Overall, CSI performed better over RSS.
For future work, we may consider utilizing CSI phase alongside
amplitude data characteristics from fingerprinting as opposed to
only a single CSI signal characteristic. Additionally, we intend
to extend the current work by adapting advanced neural network
models for further fine-grained indoor localization under different
multipath landscapes.
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