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Abstract

Adding features to the surface of a part creates opportunities
to serialize the part with an identifier, and/or to provide enhanced
measurements of the surface geometry, provided that the features
can be detected. Scale-space filtering is a common tool used with
both pixel and voxel representations of objects for such purposes.
One challenge associated with extending this class of successful
algorithms to detect features on images of 3D surfaces in 2D im-
agery is that the filtering is performed in the plane of the camera
sensor, which may not be conveniently related to the orientation
of the target object’s surface. If the object is represented with
3D voxel data, creating a similar effect can also require a similar
relationship between the plane of the local surface and the orien-
tations of the voxels relative to the target object. Thus, a mesh-
based approach is desirable. Furthermore, whereas many feature
detection schemes target scale-invariant features, a desired out-
come is the ability to localize features intentionally created with
deformations at a given scale, that is, scale-specific artifacts. This
paper proposes a technique for adding features of a known size to
a 3D mesh representing an object, then adopting the ability to
compute per-scale differences to the local mesh surface geome-
try to match a known feature of a known scale. We introduce
a tunable two-scale depth measurement scheme to quantify the
displacement of a vertex from the local surface, which can be a
strong indicator of features. We print and scan 3D models with
fiducial features appearing across the surface to demonstrate the
fidelity and accuracy of the proposed feature detection scheme.

Introduction

Technologies for 3D printing parts are becoming increas-
ingly common in both consumer and industrial applications.
When parts are designed, modeled, printed, and inspected
(scanned), 3D representations of the parts, such as voxels and
meshes, serve many useful purposes. In particular, the ability to
detect features from these 3D representations can enhance many
tasks such as surface matching [1], shape retrieval, viewpoint se-
lection [2], motion capture, animation synthesis, and registration
of the scanned mesh with a CAD design.

While some feature detection algorithms are highly perfor-
mant on 2D data, such as the Harris corner detector [3] and the
scale-invariant feature detector [4], creating extensions to our 3D
data is not trivial. It is straightforward to apply filtering operations
if the parts are represented using voxels, but in some cases quality
voxelation requires uniform sampling. For some types of mesh
designs, this requirement may not be satisfied. First, the length of
the edges in the mesh can be arbitrary. Second, the local topology
in 3D meshes is relatively unconstrained, that is, a vertex can have
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an arbitrary number of neighboring vertices. While it is possible
to convert meshes to voxels and vice versa, this conversion may
result in a loss of precision. Still, this approach has been applied
such as in [5], where an extension of the SIFT detector to voxels
is proposed. The first step in their scheme is to voxelize the in-
put mesh. While filtering voxelized meshes can show promising
results, it can also present computational as well as performance
drawbacks. High resolution voxelization is expensive in terms of
both time and memory, and furthermore makes the subsequent
processes, such as scale-space filtering, less efficient. In addition,
the response of scale-space filtering in voxels can be weak, that
is, resulting in spurious detection and missing some key points.

As mentioned above, the main challenges of mesh-based de-
tection approaches are due to the irregularities of the mesh, some
of which can be addressed in a variety of ways. One is to approxi-
mate the the surface using local imagery around a given vertex. In
[6], for instance, ring structures are defined in the mesh to find the
neighborhood of a vertex around which a local plane is fit. After
translation and rotation, the centroid of the neighborhood is set to
the origin and the normal of the plane is along the z-axis. Then,
the local mesh can be interpreted as a depth image over this local
(XY-)plane. Other approaches involve creating scale-space repre-
sentations of the mesh via decimation [7] and smoothing [1, 8, 9].
In [1], the smoothing is done directly in the geodesic scale space
without resorting to surface mapping or parameterization proce-
dures to handle the irregularity of the mesh.

Most of the above works focus on detecting existing features
of the 3D representations, while few focus on the importance
and use-case of detecting intentionally created features. Inten-
tional features are small structures of potentially any shape that
are added to the surface of a part. For example, intentional fea-
tures can be arranged on the surface to carry some information,
or they can be randomly spread for enhancing the further mea-
surements of the surface geometry. Intentional features do form a
special case of surface features, but a practical challenge associ-
ated with using them is that they often must not interfere with the
intended functionality of the part. Furthermore, they may appear
at the same scale as existing part features. Hence, general feature
detection algorithms can detect the intentional features to some
degree, but may result in localization degradation and spurious
detections compared to an algorithm designed specifically for this
purpose.

In this paper, we present a scheme designed to localize inten-
tional features at a given scale. A key property of this approach is
the notion of local planarity, as discussed in [6], where local 3D
meshes are reduced to 2D imagery with little computation com-
pared to the processing applied in the geodesic space. In our own
approach, instead of addressing surface mapping by translation
and rotation of the vertices in the local patch, we calculate a depth
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value directly for each vertex by selecting two patches around the
vertex representing different scales. The sizes of the patches are
related to the given scale of the intentional features. Depth values
assigned to each vertex form a scalar function over the mesh, and
the structure of this function serves as a strong indicator of the
intentional features; the features can be detected as local extrema
that satisfy constraints applied by several additional filters.

This paper is organized as follows. Section 2 summarizes
previous work involving intentional features. Section 3 presents
a description of our detection method. Section 4 presents the ex-
perimental results, and Section 5 concludes the paper.

Intentional Features

In 3D objects, intentional features often serves as fiducial
markers. A common example includes use on PCBs [13, 14].
While the question of what constitutes a robust design for fidu-
cials to be detected from 2D images has been studied [15], our
problem differs in that the printing process is truly monotone, and
the feature must be created as a deformation of a surface. Given
a position on the part, we can deform the local patch around it
to create an intentional feature. The shape and size of the de-
formation can be arbitrary, but we have two goals: to minimize
the distortion of the geometry of the part, and to maximize the
number of the intentional features that can be detected after print-
ing. The first goal requires regular and symmetrical shape and a
size as small as possible. The second requires the exact opposite
characteristics; and it depends on the printing device and detec-
tion algorithm. It is difficult to evaluate the two goals analytically,
so we decided to print different intentional features on planks to
select a reasonable shape and size. We selected two shapes: semi-
sphere and chisel. The size of the feature varies from 0.5mm to
2mm. The planks were printed by the HP 3D fusion printer. Fig-
ure 1 presents the CAD mesh of an example plank with different
intentional structures. Visual inspection of the test sets suggest
the semi-sphere features provides better printing quality and are
more perceivable than the chisel feature at the same scale. The
semi-sphere features of Imm diameter are clearly printed. The
features smaller than these may be degraded after printing and
may be hardly perceivable.

Figure 1. An example plank with different intentional structures.

One application of intentional features are for encoding data.
These have been used to mark circuit components [16], and in a

to augment LiDAR measurements [17]. Our previous work [10]
proposed a scheme that uses a 2D grid-like point pattern to en-
code a message, as is shown in Figure 2, which we have extended
for rendering onto 3D surfaces [11]. The encoding scheme deter-
mines the surface positions at which the deformations are placed.
Figure 3 shows a sphere, a cylinder, and a tile with a quasi-random
surface. The intentional feature patterns encoded with messages
are added to their surfaces. The grid-like patterns are distorted by
the curved surfaces after mapping in the imagery, which presents
a significant challenge to the image-based decoding process. In
particular, it is necessary to detect these intentional features in the
imagery, i.e., a 2D feature localization algorithm is needed. We
adapted the SIFT algorithm for the intentional features to serve
this purpose; for details relating to data encoding and feature
alignment see [11]. The process of creating, rendering and later
on interpreting these intentional features is referred to as surface
coding.

Figure 2. An example of a portion of a 2D data-bearing point pattern.

Figure 3. 3D printed parts with surface coding

Another application of the intentional features is to enhance

recent application, have been applied as physical scene markers the measurement and analysis of the geometry of a targeted region
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Figure 4. Original (left), modified (center) and scanned (right) meshes. The features in the scanned mesh are less cleanly rendered than in the digital original,

but are still easily detectable with the proposed approach.

of a manufactured part [18], or in some cases placement within a
scene [17]. While these applications involved fiducials character-
ized by variations in signal intensity, focus herein is on modifica-
tions of (monotone) surface designs. We can, for example, add
intentional features to the surface of a part, especially if the part
lacks enough native descriptive features to help register surface
measurements. An extreme example involves toroidal parts, also
referred to as donuts. No native features can be detected on the
ideal torus due to the symmetry, i.e., it is possible to character-
ize the surface, but it is difficult to tie such measurements to any
local (absolute) locations on the surface. Adding intentional fea-
tures creates asymmetries that help mitigate this issue, not only
with respect local geometric measurement, but also for registra-
tion between a 3D CAD design and a scan of the part. In Figure 4,
the original, modified, and scanned meshes of a torus are shown.
Some intentional features are added at the random positions on
the surface, while others represent a part ID via surface coding.
Interpreting these features correctly hinges on the ability to accu-
rately detect and localize them.

Detection Method

The feature localization scheme is presented in the context
of a system that creates parts with intentionally determined scales.
A key aspect is that the feature size and specifications (geometry,
direction with respect to the surrounding surface, etc.) are con-
trollable. Given a design for a part and the desired feature specifi-
cations, a modified part is created with surface augmentations at a
particular scale. This use case is representative of arrangements in
which the designer of a 3D part specifies the overall geometry of a
part, but admits a degree of flexibility for including labels and/or
other adjustments to assist production. Once that part is printed
and scanned, the feature detection scheme is used to estimate the
same feature locations from measurements of the physical render-
ing of the part. Note that the detection scheme can also be applied
to a modified mesh.

The detection method is described using a graph that is used
to model a part mesh. Given a mesh M containing a set of vertices
V and a set of faces F, we can model this part with a graph G,
as each node represents a vertex and each face constructs three
edges in G. For subsequent processing, it is helpful to consider the
separation between nodes in terms of both graph characteristics
and distance in three-dimensional space. Accordingly, the edge
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distance between two nodes, denoted by dg (v, v2), is the minimal
number of edges between them. The Euclidean distance between
two nodes in 3D space is denoted by d5(v1,v2). A local region of
the mesh around a vertex v can be defined as all the vertices within
some distances of a given distance of v, such as a neighborhood
of all points v’ such that dg (v,v') < N, where N is a non-negative
integer. These vertices are denoted by a set S(v,N). An example
is shown below in Figure 5.

Figure 5. The vertex v is shown as the red point. A set S(v,7) is shown as
the blue points and red point together.

To find the intentional features on the smooth surface, we as-
sign a depth value f(v) to each vertex. The depth value quantifies
the displacement of a vertex from the local surface. To be more
specific, it is the perpendicular distance from a vertex to the local
best fit plane. For a vertex v, we find its first neighborhood as a
set of vertices S(v, Ny ). The value of Ny is pre-determined by the
scale of the intentional features. Then we find all the mesh faces
{F;} associated with the vertices S(v, Ny — 1). Let the centroid of
each face be given by C(F;) and the area of each face be denoted
by A(F;). We calculate the centroid of the neighborhood region
using

_ LAFR)C(R)
KRG v

an area-weighted average of the per-face centroids of all faces
within the region.

Next, we find the nearby vertices in a smaller region S(v, Ny
than the first one, i.e., for which Ny < Ny, and calculate an area-

weighted centroid ¢, via the same approach. In our experiments,
simply setting Ny = 1 provides good performance. The depth
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Figure 6. System diagram of the feature localization process. Note that structures such as KD-trees can be used to compute estimated locations with improved

efficiency.

value of v is given by
f)=n" (e —eL)w(v), @

where w(v) denotes a normalization weight selected based on the
mechanism for establishing a local neighborhood. If the neigh-
borhoods are established based on edge-distances, for instance,
w(v) is set to be inversely proportional to the square root of the
total sampled area to handle the non-uniform meshes, i.e.,

1

wy) = —— 3
v VEZAF) ®
Without this normalization, the local depth value at smoothly
curved surface regions without features could be rated as higher
than that at a feature position. For an approximately uniform
mesh, the normalization can be simplified to w(v) = 1. In such
a mesh, the above method will compute an effective bandpass
filter over the surface depth. If the mesh does not satisfy this
property, however, other means must be used to control the (phys-
ical) span of the sets S(v,Ng). In particular, one can enforce the
constraint that u € S(v,Ny) implies that the distance dy(v,u) is
bounded above by some threshold. A convenient practical thresh-

old is calculated as twice the radius of intentional features.

Once a set of feature depths has been generated, we post-
process the candidate vertices using three tests. First, we pre-
filter the candidates according to their depth values with a con-
stant threshold 7y, i.e., by only retaining vertices v such that
f(v) > T,ps. The threshold can be determined by the size of the
features as designed. Second, among the remaining vertices, we
find and retain the local extrema of f(v). That is, for each can-
didate feature position v, we find all other candidate feature posi-
tions v/ in S(v,Ny) for some Ny, and if

_ M s “

max{f(N} =
this candidate is discarded. Finally, the candidate features that are
too close to each other are merged to be a single position, that
is, if candidate feature positions v; and v, satisfy dg(vy,vz) <
Tiame, they are effectively assigned to the same feature cluster.
For candidate feature positions within each cluster, we calculate
their averaged position as the final detected feature position.

A system-level diagram summarizing this approach is given
in Figure 6. A key step in the estimation scheme involves breaking
up the entire mesh surface into local neighbourhoods, as described
above. Graph structures yield one convenience in doing so, i.e.,

2234

the ability to disambiguate different faces of object components
that are near each other. As a result, we will not accidentally use
vertices associated with nearby neighboring structures (such as,
for instance, adjacent fins on a CPU cooling device) to determine
local planes.

Experimental Results

The whole experiment follows the three steps below:

1 We created 3D part models with surface fiducial structures;
locations were stored as the ground truth.

2 Fiducial structure positions were detected from the CAD
mesh and compared with the ground truth.

3 The models were 3D printed, scanned, and compared again
to the ground truth.

The first two steps are trivial while the last step needs ex-
tra alignment. After printing and scanning, the whole model may
be displaced, rotated and distorted. The non-linear distortion can
hardly be recovered; but we can estimate the translation and ro-
tation, and then build the correspondence between the detection
result and the ground truth. We investigated two methods. First,
we directly applied the non-rigid CPD [12] method to register the
detected positions of intentional features with the ground truth
positions. However, the CPD method cannot reliably estimate the
transformation for parts with symmetrical shapes. For example,
the CPD iteration terminated too early for the torus part even if we
used strict termination conditions. We assume the optimization is
trapped in the local minimum surrounded by a plateau.

One alternative is to extend our grid alignment algorithm
[10] to the 3D case and even the non-grid case. The original al-
gorithm can only align a set of 2D points with a grid structure
existing in it. While our target point set is in the 3D space, and no
grid structures are guaranteed to exist. We successfully extended
the grid alignment algorithm to 3D, but a grid structure was still
required. For the convenience of the experiments, we selected a
patch on each part that is used for surface coding. In Figure 4,
a square patch can be clearly seen. After we detected the inten-
tional features, we first aligned the patch with the 3D grid align-
ment algorithm. Then, translation and rotation could be estimated
based on the aligned points compared to the stored ground truth
positions in the patch. Finally, we transformed the whole set of
ground truth positions with the estimated translation and rotation.
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CAD meshes

For the sake of saving storage, the CAD meshes are usually
non-uniform. The sub-mesh of the smooth region or region with
a small curvature has a lower resolution than others. The irregu-
larity may hamper the detection. However, the CAD meshes are
ideal representations of the parts. The intentional features are not
degraded by printing and scanning.

We compared our approach with LDSIFT [8], where a sim-
ilar local depth concept is proposed, on the CAD meshes of the
torus. The result of our method was nearly perfect. All the in-
tentional features are detected and the detected positions are gen-
erally located at the center of each feature, as shown in Figure 7.
The LDSIFT missed only a few intentional features, but it also
detected several spurious features. Moreover, the positioning of
each detection was also worse.

W

w ¥

Figure 7. Close-up view of detected features using the proposed approach
(green) vs. LDSIFT [8] (red), which results in degraded localization and spu-
rious detections.

Real Prints

We printed and scanned some toroidal parts. The matching
rate and the rate of missed detection were calculated based on
the meshes derived from scanned parts. our method found 88%
or more of the surface features, whereas LDSIFT matched fewer
than 40%, and was either too aggressive in the wrong regions, or
too conservative overall. We also calculated the displacement be-
tween the position of the true detection and its transformed ground
truth position based on the alignment scheme mentioned above.
A histogram of the displacement of one mesh is shown in Fig-
ure 8. The average displacement was 0.175mm as the radius of
intentional structure is 0.4mm. Taking into account the distor-
tion introduced by printing and scanning, the displacement purely
caused by detection would be even less.

Since the feature detection performance is strong on non-
flat regions of the surface, it yields an opportunity to embed data
based on feature placement. Eight different messages were em-
bedded in arrangements of features on toroidal surfaces using the
coding method described in [10], and in each tested case, after
printing, scanning and applying the proposed approach, the mes-
sage embedded with the features was recoverable.
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