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Abstract

An extension of automotive imaging from the visible (VIS) to
the near infrared (NIR) spectrum is promising for driving automa-
tion applications because the technology is readily available and
offers potential benefits in low visibility conditions, in low light
conditions with active illumination, and by collection of comple-
mentary data. We propose the evaluation of VIS-NIR imaging in
simulation using an extended version of our camera simulation
and optimization framework. Our extended framework generates
realistic spectral irradiance data of synthetic scenes in the VIS
and NIR spectral range and includes physically based camera
models with characteristic increased NIR sensitivity of VIS-NIR
CMOS imagers, modified automotive VIS-NIR color filter arrays

and adapted image processing. We evaluate the reproduction of

potential benefits of VIS-NIR imaging in our simulated camera
images using exemplary night time and daylight traffic scenes,
and discuss further extensions for creation of a well-balanced
VIS-NIR dataset for quantitative evaluation.

Introduction

A large variety of driver assistance and partial driving au-
tomation functions are available in series production vehicles to-
day, and first systems for conditional and high driving automa-
tion are presented and brought into production. Yet, to reach the
highest level of automation [1] defined as full driving automa-
tion, there are still various challenges ahead. Many of the techni-
cal challenges can be categorized as either complexity challenges
(e.g. navigation in dense urban environments with many traffic
participants) or as operational design domain (ODD) limits (e.g.
conditions at night time or with low visibility due to rain, fog,
etc.). To enable full automation, the imaging system of the ve-
hicle consisting of cameras and a computer vision (CV) system
must be capable of replacing the visual system of a human driver
in any of these scenarios and conditions [2].

One degree of freedom to increase the performance of the
imaging system is to extend the range of the electromagnetic spec-
trum that it senses. An extension from the visible (VIS) to the
near infrared (NIR) spectrum is a promising candidate technol-
ogy because silicon-based pixels are inherently sensitive to NIR
radiation and CMOS imagers with NIR-sensitive color channels
are already in use e.g. in surveillance cameras. There are three po-
tential benefits that a combined VIS-NIR imaging system offers
for driving automation applications:

» Higher wavelength radiation can be less subject to attenua-
tion and scattering in fog, rain, snowfall, smog and other low
visibility conditions. These effects are difficult to model and
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predict and are outside the scope of this work. [3] presents
an experimental evaluation of several spectral bands for au-
tomotive detection tasks in low visibility conditions.

* At night time and in other low-light conditions, active illu-
mination with higher output power in the NIR spectrum can
be used to achieve higher illumination ranges because NIR
eye safety limits are higher than those for VIS light sources.
We provide details on eye safety limits in the framework
section.

* The additional NIR color channel allows the collection of
scene information that is complementary to the VIS infor-
mation because some materials reflect NIR light different to
VIS light. The additional information can resolve metamers
and make the CV more reliable. An example is shown in

Fig. 1.
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Figure 1.  Spectral reflectance measurements of wet asphalt and a black
textile. The materials exhibit a very similar reflectance in the VIS spectrum,
but a good contrast in the NIR spectrum. This property can be used to make
detection of pedestrians more reliable with VIS-NIR imaging.

It remains to be researched how these potential benefits can be
best applied to solve complexity and ODD limit challenges in
driving automation.

An early implementation of NIR imaging for pedestrian de-
tection with a focus on night time conditions can be found in [4].
The authors use a monochrome CCD imager, standard vehicle
headlights (at the time of publication) and classic CV algorithms.
An implementation of a VIS-NIR imaging system for automotive
applications is presented in [S]. The proposed solution is based
on a modified RGB imager with an additional panchromatic, i.e.
clear pixel. The authors construct separate VIS (RGB) and NIR
images from the raw sensor data and subsequently enhance the
RGB image for human observers by a fusion of VIS and NIR
luminances. [6] describes a physically based camera simulation



system that is suitable for extension to VIS-NIR imaging. The
authors motivate the use of synthetic spectral data as physically
accurate input to automotive injection hardware-in-the-loop sys-
tems, and an extension of this spectral pipeline to the VIS-NIR
range for pedestrian detection applications.

Similarly, we present an extension of our camera simulation
and optimization framework for simulation of VIS-NIR imaging
systems. However, we focus on extending synthetic scenes to re-
produce specific VIS-NIR imaging properties, and on modeling a
VIS-NIR camera as an extension of a state-of-the-art automotive
camera. We include details on the extended database for synthetic
scene generation and on the extended camera models. We explore
potentials of automotive VIS-NIR imaging systems in daylight
and night time conditions using exemplary scenes and discuss the
necessary steps to construct a well-balanced VIS-NIR dataset for
quantitative evaluation of VIS-NIR imaging.

Framework

We extend our framework to enable the simulation and opti-
mization of VIS-NIR imaging systems. Our framework targets
end-to-end optimization of the imaging system using synthetic
traffic scenes, physically based camera models, and a benchmark
CV system [2]. An overview of the framework’s building blocks
with extensions for VIS-NIR imaging is depicted in Fig. 2. The
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Figure 2. Framework overview: Extensions for VIS-NIR imaging are marked
in red. The original framework is presented in [2].

following extension are required for VIS-NIR imaging:

» To generate realistic spectral irradiance data in the wave-
length range from 400 nm to 1100 nm, synthetic scenes must
use hyperspectral material models and spectral radiance dis-
tributions of light sources that are defined at least across the
same spectrum. Wavelength sampling of the rendering core
must be configured to the same spectral range.

* VIS-NIR camera models must include sensor models with
state-of-the-art increased NIR sensitivity and adapted color
filter arrays (CFAs) for distinction of VIS and NIR signals.

» The image processing of VIS-NIR camera models must be
adapted to the imager’s color channels, i.e. implement a
generalized demosaicing algorithm and custom color chan-
nel transformations to process VIS and NIR signals.

* Finally, image pre-processing steps must be implemented
that convert VIS and NIR signals to an image format that
can be used by an adapted benchmark CV system.

Synthetic scene generation

We collect a library of hyperspectral material models that
we can use for a large part of the content of our ISET3d [7, 8]
based synthetic automotive traffic scenes. The material models
are based on reflectance measurements in the VIS-NIR range,

using a spectroradiometer and a Polytetrafluoroethylene (PTFE)-
based white reference target equivalent to the measurements pre-
sented in [9]. However, we do not resolve the angular reflectance
distribution of the materials. Instead, we use spectral reflectances
measured at an arbitrary angle for parameterization of existing
material models in PBRT [10, 11] using the models’ diffuse re-
flection parameters. This greatly simplifies material reflectance
measurements and material models. The simplification comes at
the cost of limited material photorealism, but we consider this a
reasonable trade-of for our application of evaluating fundamen-
tal benefits of imaging systems in different spectral bands. Our
hyperspectral material library contains:

* Asphalt, concrete, and cobble surfaces
* car paint (66 shades)

* Bark and leafage

¢ Textiles and skin

* General materials, e.g. tire rubber

A limitation for the use of hyperspectral material models are RGB
textures that are used e.g. for building facades and road surfaces
with road markings in ISET3d scenes. These textures mimic ge-
ometric features and can hence not be replaced by uniform mate-
rials without loss of scene details. We keep the original textures
of building facades but replace the road surface textures by hyper-
spectral material models to achieve realistic contrast of objects
against the road. Road markings are not relevant for our object
detection benchmark CV.

For realistic light interaction with our hyperspectral material
models we model the spectral radiance distributions of two main
light sources: For night time scenes, we construct spectral radi-
ance curves for ego vehicle headlights based on eye safety limits
in the VIS and NIR spectra. As starting point we use an equal en-
ergy radiator in the spectrum from 400 nm to 1100 nm. We then
define a threshold wavelength that marks the separation between
VIS and NIR illumination, and scale the radiance in both spectra
to reach the applicable eye safety limits defined in the appendix
of EN 62471 [12]. Solutions of this spectral radiance model are
depicted in Fig. 3.
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Figure 3. Solutions of our headlight spectral radiance model based on eye
safety limits [12]. Depending on the threshold wavelength, NIR illumination
can have a spectral radiance limit that is more than 3x the limit of VIS illumi-
nation while reducing the spectral radiance limit of VIS illumination less than
20% compared to the equal energy radiator. We assume a 10s exposure
and a 40 °wide light source.
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For daylight scenes the primary light source is natural illu-
mination. ISET3d uses PBRT’s infinite light source model with
RGB sky maps to model this source. We construct a solar radiance
scale factor based on the ASTM G-173-03 reference spectrum at
global tilt [13]. To account for the 3 bin radiance sampling and
scaling by the RGB sky map within the VIS spectrum, we set the
radiance scale factor in the spectrum from 400 nm to 700 nm to
its mean value in this spectral range. Fig. 4 shows the resulting
radiance spectrum across the VIS-NIR spectrum. An alternative
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Figure 4.  Solar radiance model based on the ASTM G-173-03 reference
spectrum at global tilt [13]. We adapt the reference spectrum to account for
the use of RGB sky maps for natural illumination modeling, but preserve the
realistic spectral radiance curve in the NIR spectrum.

would be to use an analytic sky mdel with support of the VIS-NIR
spectral range, as described for the VIS range in [6].

Sensor models

To model the characteristics of state-of-the-art VIS-NIR im-
agers, we modify the quantum efficiency (QE) data of an auto-
motive imager to reproduce the increased NIR sensitivity that can
be found in existing CMOS VIS-NIR imagers. As reference for
similar VIS-NIR QE data see [S]. We use the unmodified im-
ager QE with RYYCy and RCCB CFAs as well as a global IR
cut filter as reference for automotive VIS-only imaging. For the
modified VIS-NIR imager we construct adapted CFAs by replac-
ing one of the Y respectively C channels by a modified filter that
is sensitive either in only the VIS (Yv, Cv) or the NIR (Yn, Cn)
spectrum. Our new CFAs are hence named RYYvCy, RYYnCy,
RCCvB, and RCCnB. As examples, the reference RYYCy and
new RYYnCy pixel QEs are shown in Figs. 5 and 6. Higher
NIR QE can be achieved in future VIS-NIR imagers e.g. using
specialized pixel geometries [14] and upper wavelength limits be-
yond the silicon bandgap become possible on silicon imagers with
plasmonic photodetectors as presented e.g. in [15]. For simula-
tion of the exemplary scenes shown in the results section, we run
the imager models in single dynamic range (SDR) mode.

Image processing and interface to CV

As first step of our image processing model we implement a
generalized demosaicing algorithm based on fast curvature based
interpolation [16] of each color plane. Subsequently we imple-
ment simple color channel transformations to generate VIS-NIR
RGB and separate NIR monochrome output images. In literature,
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Figure 5. QEs of all pixels and IR cut filter transmittance for RYYCy imager
model. Data anonymized by QE smoothing and normalization.
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Figure 6. QEs of all pixels for RYYnCy imager model. Data anonymized by
QE smoothing and normalization

many proposals exist for VIS-NIR color correction and image fu-
sion that are optimized for human vision, e.g. [5, 17, 18]. Which
color corrections and VIS-NIR image formats are best suited for
CV input data remains future work. The final step of our image
processing model is a dynamic range compression.

Results

Using our extended framework we generate VIS-NIR spec-
tral irradiance data of exemplary synthetic traffic scenes and pro-
cess these with our reference VIS-only, as well as new VIS-NIR
camera models. We use these exemplary scenes to evaluate the
reproduction of the expected benefits of VIS-NIR imaging.

Results for a night time scene are shown in Fig. 7. The
RYYnCy VIS-NIR RGB image does not exhibit a higher range
of active illumination than the reference RYYCy VIS-only RGB
image even though the ego vehicle headlights emit a NIR spectral
radiance at a level of more than 2x the level of the VIS spectral
radiance. Moreover, a reduced sensitivity to natural illumination
by the night sky can be seen in the periphery of the image.

Results for a daylight scene are shown in Fig. 8. The
RYYnCy NIR image shows the increased contrast of pedestrians
against the environment when compared to the reference RYYCy
RGB image, due to the high NIR reflectance of some textiles. The
rest of the scene content is reproduced similarly in both images.



(a) RYYCy - RGB
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Simulated camera images of an exemplary night time scene.
The spectral radiance model with NIR illumination threshold wavelength of
700 nm was used for the ego vehicle headlights.

Figure 7.

Discussion

Our results for night time scenes do not confirm the expected
benefit of VIS-NIR imaging that higher active illumination ranges
can be achieved. The similar ranges of VIS and VIS-NIR cameras
can be explained by the still lower QE of the imager in the NIR
spectrum compared to the VIS spectrum, which compensates the
higher NIR radiance of active illumination. The reduced sensitiv-
ity of the VIS-NIR camera to night sky natural illumination can be
explained by the missing second Y channel in the CFA but should
be validated using more sophisticated color correction methods.

Our results for daylight scenes do confirm the expected ben-
efit of complementary information for metamerism resolution in
the example of pedestrians’ clothing. The similar reproduction of
other scene content in VIS and NIR spectral bands also indicates
that an adaptation of existing CV systems to NIR image input is
feasible.

To better understand the performance of VIS-NIR imaging in
night time scenes, more models of artificial light sources should
be added to the database. For example, street lights, illuminated
buildings and the head- and taillights of other traffic participants
should be taken into account. Narrow-band light sources in VIS
and/or NIR spectrum should be modeled as alternative ego vehicle
headlights, which will allow higher peak spectral radiance com-
pared to our wide-band spectral radiance model shown in Fig. 3.
Different angular radiance distributions should also be modeled
for ego vehicle headlights. A variety of color correction meth-
ods and output image formats should be implemented to optimize
utilization of the VIS-NIR information by the CV system. These
extensions can help to construct a well-balanced dataset and a va-
riety of VIS-NIR camera models for a quantitative evaluation of
VIS-NIR imaging potentials for driving automation.
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Figure 8. Simulated camera images of an exemplary daylight scene with
highlight on a pedestrian.

Conclusion

We extend our camera simulation and optimization frame-
work to enable simulation of VIS-NIR imaging systems. We
present details on our extensions of synthetic scene generation,
sensor models and image processing models that are required for
physically based VIS-NIR camera simulation. We evaluate which
properties and potential benefits of VIS-NIR imaging we can re-
produce in exemplary simulated camera images using our models,
and discuss further extensions for compilation of a well-balanced
VIS-NIR dataset.

In future work we want to perform a quantitative evaluation
of VIS-NIR imaging using a dataset of our synthetic scenes as
input, and output metrics of our benchmark CV system as perfor-
mance indicators. Additionally, we want to add physically based
models of low visibility conditions to include the third potential
benefit of VIS-NIR imaging in our simulations.
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