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Abstract
Lane detection and modelling is a crucial module in au-

tonomous driving which enables the vehicle to drive within the
ego lane. Typically, CNN based semantic segmentation is used
to segment lane markings and then a post processing algorithm
fits polynomial models for the lanes based on the road geometry.
Recently, direct regression of the lane polynomials were explored
but it is still not a mature solution. In this paper, we propose a
combination of deep learning based semantic segmentation and
a graphical model based lane fitting. We use conditional random
fields (CRFs) to effectively fit lane polynomials in the presence
of noisy segmentation maps. The proposed method provides an
accuracy improvement of 15% relatively to the conventional post
processing baseline.

INTRODUCTION
Over the years, progress in autonomous driving has grown

due to the involvement of deep learning in computer vision. The
introduction of neural networks to solve autonomous driving ve-
hicle issues has expanded the horizons and brought the vehicles to
reality. Autonomous Driving tasks such as perception which in-
volves object detection [1, 2, 3], soiling detection [4, 5, 6], seman-
tic segmentation [7, 8], weather classification [9, 10], depth pre-
diction [11, 12, 13, 14, 15], moving object detection [16], SLAM
[17, 18, 19], fusion [20] and multi-task learning [21, 22, 23] are
challenging due to the highly dynamic and interactive nature of
surrounding objects in the automotive scenarios [24]. However,
lane modelling remains a challenging problem. Lane detection
is a process of detecting lane areas or lane lines by camera or
lidar [25] and then projecting them to localize the position of
the vehicle for future decision making. In recent years, tremen-
dous progress has been made in terms of detection accuracy but
at the cost of heavy pre-processing and high computation for lane
projection. Furthermore, the perception of deep learning being a
’black box’ and the uncertainty on what drives the decision mak-
ing makes it hard for autonomous driving to be approved by many.

In this paper, we propose an hybrid approach to multi-
lane modelling which utilizes a convolutional neural network
(DeepLabv3+) for the initial detection of lanes at a pixel level
and then uses a statistical graphical model (conditional random
fields) to model the lanes to further improve the accuracy of lane
detection. This approach works on top of the CNN predictions
and build a CRF graph based on the associated pixels. The energy
of the graph is then minimized by removing the unwanted nodes
and edges to find the best solution. Final connected nodes are then
used to fit the polynomials to find the multiple lanes in the image.

BACKGROUND
Multi-lane Detection

Multi-lane detection is a process of detecting and project-
ing multiple lanes in the road to assist the autonomous driving
vehicles. Over the years, extensive research has been performed
on the former and the most conventional is to use a CNN to pre-
dict the lane pixels and then perform an extensive post-processing
techniques like feature extraction, edge detection etc. on the CNN
output. Once the post-processing is completed, RANSAC (Ran-
dom sample consensus) is used to fit the lanes[26]. It is known
that RANSAC is an iterative exhaustive search and computation-
ally intensive. Several alternative approaches have been proposed
to overcome the same and some of them are cascaded CNNs [27],
end to end lane position estimation [28] and end to end segmen-
tation methods like GCN [29] and SCNN [30]. Most of the pro-
posed methods emphasize on increasing the complexity CNN ar-
chitectures or using a stand alone network for multi-lane detection
which is neither feasible nor cost-effective in the real world sce-
nario with limited computational resources. Hence we propose a
graphical approach on top of the existing CNN output to increase
the prediction and decrease the complexity of the solution. The
graph based approach is similar to [31].

DeepLabv3+
DeepLabv3+[32] is the improved version of DeepLabv3

[33] by leveraging the advantage of encoder-decoder architecture.
Deeplabv3+ provides various advantages for the semantics seg-
mentation task such as dense prediction using Atrous convolution
[34], memory optimisation using depth-wise separable convolu-
tion [35] and multi-scale processing using Atrous Spatial Pyramid
Pooling (ASPP) module. These important elements are discussed
as follows:

Atrous convolution: Atrous convolution increases the spatial
resolution of feature maps while using deep convolution
neural networks. In Atrous convolution, dilation rate de-
fines a spacing between the adjacent values in the kernel.
Therefore, multi-scale information is captured by control-
ling dilation rate, hence enhancing generalization ability of
the network.

Depth-wise separable convolution: Depthwise separable con-
volution, breaks down a standard convolution operation into
two parts. First it performs depthwise convolution followed
by a pointwise convolution. Precisely, the depthwise convo-
lution performs a spatial convolution on each input channel
separately by creating different kernels for each input chan-
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Figure 1: A graphical representation of chain-structured CRFs
[40].

nel. The output of depthwise convolution is then convoluted
with a 1x1 kernel to obtain a single channel output. There-
fore, the number of 1x1 kernels decides the number of out-
put channels in the depth-wise separable convolution. This
creative approach not only significantly reduces computa-
tion complexity but also improves performance.

Atrous Spatial Pyramid Pooling: Several architectures have
been proposed to extract features at multiple scales [36, 34].
DeepLabv3+ uses Atrous Spatial Pyramid Pooling (ASPP)
with atrous rates of 6,12 and 18 to process the DCNN out-
put.

Network backbone: In this work, we used Resnet-50 [37] as a
backbone. We performed the experiment using a PyTorch
[38] based implementation.

Conditional Random Fields
Conditional random fields (CRFs) are a probabilistic frame-

work for labeling and segmenting sequential data, based on a con-
ditional approach. It is a form of undirected graphical model glob-
ally conditioned on X , the random variable representing observa-
tion sequences and defines a single log-linear distribution over
label sequences for the particular observation sequence [39].

We define G = (V,E) to be an undirected graph such that
there is a node v ∈ V corresponding to each of the random vari-
ables representing an element Yv of Y [40], where Y is the cor-
responding label sequence for the observation sequence X and Yv
is the label of the node v in the graph. If each random variable
Yv obeys the Markov property with respect to G, then (Y,X) is a
conditional random field. A simple graphical representation while
modelling the sequence is shown in Figure 1.

The graphical structure of a conditional random field may be
used to factorize the joint distribution over elements Yv of Y into a
normalized product of strictly positive, real-valued potential func-
tions, derived from the notion of conditional independence [40].
Each potential function operates on a subset of the random vari-
ables represented by vertices in G and as per the conditional inde-
pendence, the absence of an edge between two vertices in G im-
plies that the random variables represented by these vertices are
conditionally independent given all other random variables in the
model. It is the responsibility of the potential functions to ensure
that it is possible to factorize the joint probability such that condi-
tionally independent random variables do not appear in the same
potential function. In order to do so, each potential function is
made to operate on a set of random variables whose correspond-
ing vertices form a maximal clique within G. In Figure 1, each
potential function will operate on pairs of adjacent label variables
Yi and Yi+1.

The probability of a given label sequence y given an obser-

vation sequence x can be written as,

p(y | x,λ ) = 1
Z(x)

exp∑
j

λ jFj(y,x) (1)

Where
1

Z(x) = Normalization Factor
Similarly, the log-likelihood for the CRF can be written as,

L(λ ) = ∑
k

[
log

1
Z(x(k))

+∑
j

λ jFj(y(k),x(k))

]
(2)

The major advantage of CRFs over hidden Markov models
(HMMs) is their conditional nature which relaxes the assumption
of independence required by the latter to ensure tractable infer-
ence. Furthermore, CRFs also avoid the label bias problem which
is a major weakness exhibited by the maximum entropy Markov
models (MEMMs) and other conditional Markov models based on
directed graphical models. CRFs outperform both MEMMs and
HMMs on a number of real-world sequence labeling tasks [40].

PROPOSED APPROACH
The architecture of the proposed solution is shown in Figure

2. First we trained the DeepLabv3+ model using the 3623 train-
ing images of TuSimple data for 80k iterations. The trained model
predicts whether a pixel in a given image is lane or not (see Figure
2 (top left sub-figure)). The predictions from the CNNs are noisy
and cannot be directly used to formulate the CRF graph or model
the lanes similar to [31]. Hence we first perform a low level asso-
ciation to reduce the noise and group the pixels to supermarkings,
in turn reducing the computational cost on the CRF. Supermark-
ing is a collection of closely available lane pixels grouped into a
single large pixel as illustrated in the Figure 2 (bottom left sub-
figure). Each coloured region in the image is a supermarking.

The low level association is performed as two steps i.e pixel
level and supermarking level. At first, the centre of continuous
pixels classified as lane in each row of the image is extracted i.e.
if pixel 1 to 10 in row 1 of the image is classified as lane, then
pixel 5 is taken as one of the lane points in row 1. If there is
another group of pixels from 51 to 60 in row 1 that are classified
as lane then pixel 55 is taken as another lane point present in the
same row and this process is repeated for all the rows in the image.
Then for each extracted lane point i in each row, the distance and
orientation [31] from lane point j in subsequent rows is calculated
as shown below.

distgeo
(
si,s j

)
=| (xt j − xhi)sinθhi −

(
yt j − yhi

)
cosθhi |

+ | (xt j − xhi)sinθti −
(
yt j − yhi

)
cosθti |

(3)

distdir
(
si,s j

)
=| θt j −θhit j |+ | θhi −θhit j | (4)

where distgeo = Geometric distance between the two lane pixels
i, j or supermarkings si,s j

distdir = Angle between the two lane pixels i, j or supermark-
ings si,s j

θ = Angle of the corresponding lane pixel with reference to
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Figure 2: Architecture of the proposed approach

the x or y axis
xh,yh = x and y coordinate of the head of the lane pixel or

supermarking
xt ,yt = x and y coordinate of the tail of the lane pixel or su-

permarking
If two lane points in different rows are within a certain dis-

tance and angle (orientation), then we combine the two points into
one and call them a supermarking. This process is repeated for all
the lane points in the image. Once the supermarkings are created
we compute the angles at the top, bottom and centre for each su-
permarking before performing the second step of the low level
association. In the second step, we perform the same process fol-
lowed in the first step but on a supermarking level. The distance
and orientation of each supermarking with relevance to the rest of
the supermarking is computed. Alongside, we also compute the
probability of association [31] between the two supermarkings as
shown below,

P
(
si j s j

)
=

1
z

exp(−
∣∣θci −θcic j

∣∣2 + ∣∣θc j −θcic j

∣∣2
σ2 ) (5)

We combine the two supermarkings into a superior super-
marking, if

• the distance and orientation between two supermarkings are
within the allowed threshold.

• the starting point of supermarking 1 is greater than the end
point of supermarking 2 and vice versa.

• the probability of association between the supermarkings is
greater than 0.98

Once the low level association is performed, we then create
the CRF graph G = (V,E) based on the supermarking created. In
the CRF graph, the superior supermarkings become the vertex of
the graph and the edges are drawn between such vertices, if they
share a common supermarking (see Figure 2 (center sub-figure)).

In a CRF graph, the energy of the graph is a combination of
the unary and pairwise potential. The unary potential defines the
probability of the occurrence of the vertex (superior supermark-
ing) in the graph and the pairwise potential defines the probability
of a relationship between two vertices connected by an edge in
the graph. The unary and pairwise (clique) potential [31] can be
represented as follows,

Figure 3: Sample Images from TuSimple dataset.

U(lk | sk) =−ln(P(lk | sk)) (6)

φC(lC | sC) =−ln(P(lC | sC)) (7)

where C is the clique set cl(G) in graph G and lk is the label
of the node sk.

The best solution is the graph with the minimal energy. In
order to achieve that, the CRF graph is pruned in such a way that
the edges with low probability scores are removed and only the
cliques with high probability of occurrence are retained (see Fig-
ure 2 (bottom right sub-figure)). The superior supermarkings in
the cliques are then combined to form even larger supermarkings.

The final set of superior supermarkings and the supermark-
ings not involved in the superior supermarkings are then evaluated
based on length, number of pixels and the orientation. If they are
all within the allowed limits, then a high order polynomial is fit-
ted on the pixels of the eligible supermarkings to model the final
lanes in the image.

Thus the best label set L∗ obtained by minimizing the energy
of the graph can be represented as,

L∗ = argmax
L

∑
lk∈L

ln(P(lk|sk))+ ∑
C∈cl(G)

ln(P(lc|sc)) (8)

RESULTS
For the scope of the work, we used TuSimple data. TuSimple

data is extensively used in several lane detection research works
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Model Actual Lanes Predicted Lanes Accuracy FPR FNR
Contour Level Regression 9938 12074 0.714 0.234 0.354

CRF based Regression 9938 10010 0.946 0.106 0.081

Table 1: Quantitative comparison of the proposed approach and the baseline. (FPR is False Positive Rate & FNR is False Negative Rate)

Figure 4: Comparison of CRF based Multi-lane modelling with Contour based Multi-lane Modelling. First Column: Actual Image;
Second Column: Deeplabv3+ Model Prediction; Third Column: Contour Based Lane Modelling; Fourth Column: CRF Based Lane
Modelling.

and gives a much better standard for comparison. The TuSimple
dataset consists of 6,408 road images on US highways captured
using the dashboard camera. The resolution of image is 1280 ×
720. The dataset is composed of 3,626 images for training, 358
for validation, and 2,782 for testing [27]. These test dataset is
captured under different weather conditions. Some sample images
in the dataset are shown in Figure 3.

First a DeepLab V3 model with ResNet-50 [37] encoder is
trained for 64 epochs on the TuSimple training dataset. The im-
ages are resized to 640x360 to maintain an aspect ratio. Model
was trained on Nvidia V100, 16GB dual GPU machine. The
model is trained to classify the lanes at pixel level in a binary
classification fashion. The reported accuracy of this model on the
validation data is 66.32% mIoU.

In the second stage the test set images are processed through
the DeepLab V3 [34] model for pixel level semantic classification
of lanes and then the lane binary images are processed through the
low-level association stage followed by the graphical model stage
to extract the multi-lane labels. No morphological or handcrafted
filters are used to enhance the results.

A traditional contour based model is chosen as baseline for
comparison with the graphical model based approach. The tradi-
tional pipeline involves smoothing of binary labels from DeepLab
V3 model followed by contour extraction. These individual con-
tours then processed iterative through a second order lane polyno-
mial fitting.

The quantitative results are presented in the Table 1. The
three evaluation metrics accuracy, False Positive Rate (FPR) and

False Negative Rates (FNR) are generated by the scripts provided
by the authors of TuSimple[27]. Proposed approach has shown
a significant improvement of 10% in accuracy over the baseline
method. The FPR and FNR also reduced significantly. Though
methods like [29] and [30] have shown slightly higher perfor-
mance than the proposed method, they use a dedicated CNN net-
work followed by the standard pixel level classification module
and these two are tightly coupled. Where as the proposed solu-
tion is agnostic to the pixel classification module and it is easily
extendable to other classes like curbs, sidewalks etc.

The qualitative results are shown in Figure 4. Each row of
the image comprises of the actual image, neural network output,
prediction based on contour level regression and prediction based
on CRF based regression. In row 1 and 3, we can clearly see that
the lanes predicted by the proposed approach is precise and has
outperformed the contour based approach significantly.

CONCLUSION
Multi-lane detection is a classical problem that was ad-

dressed in many research works previously. While conventional
lane fitting (RANSAC) algorithms use a pixel-level classifier fol-
lowed by heavy heuristics based post-processing and lane fitting
algorithms, majority of the modern approaches focused on solv-
ing this problem by a dedicated neural networks with complex
task specific computing blocks. In this work, we explored a new
probabilistic strategy as an alternative to this. The proposed ap-
proach combines CNNs with CRFs for polynomial lane model-
ing. Compared to the conventional methods, this removes the
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need for manually designed post-processing and provides mod-
elling of prior information instead of an end-to-end deep learning
solution.
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[10] L. Yahiaoui, M. Uřičář, A. Das, and S. Yogamani, “Let the sun-
shine in: Sun glare detection on automotive surround-view cam-
eras,” Electronic Imaging, vol. 2020, no. 16, pp. 80–1, 2020. 1

[11] V. R. Kumar, S. A. Hiremath, M. Bach, S. Milz, C. Witt, C. Pinard,
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“UnRectDepthNet: Self-Supervised Monocular Depth Estimation
using a Generic Framework for Handling Common Camera Distor-
tion Models,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, 2020. 1

[16] M. Yahiaoui, H. Rashed, L. Mariotti, G. Sistu, I. Clancy,
L. Yahiaoui, and S. Yogamani, “FisheyeMODNet: Moving ob-
ject detection on surround-view cameras for autonomous driving,”
in Proceedings of the Irish Machine Vision and Image Processing
(IMVIP), 2019. 1

[17] L. Gallagher, V. R. Kumar, S. Yogamani, and J. B. McDonald, “A
hybrid sparse-dense monocular slam system for autonomous driv-
ing,” in Proc. of ECMR, pp. 1–8, IEEE, 2021. 1

[18] V. Ravi Kumar, S. Milz, C. Witt, and S. Yogamani, “Near-field depth
estimation using monocular fisheye camera: A semi-supervised
learning approach using sparse LiDAR data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshop, vol. 7, 2018. 1

[19] V. R. Kumar, S. Milz, C. Witt, M. Simon, K. Amende, J. Petzold,
S. Yogamani, and T. Pech, “Monocular fisheye camera depth es-
timation using sparse lidar supervision,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 2853–
2858, 2018. 1

[20] K. El Madawi, H. Rashed, A. El Sallab, O. Nasr, H. Kamel, and
S. Yogamani, “Rgb and lidar fusion based 3d semantic segmentation
for autonomous driving,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pp. 7–12, IEEE, 2019. 1

[21] V. Ravi Kumar, S. Yogamani, H. Rashed, G. Sitsu, C. Witt, I. Leang,
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