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Abstract
Self-supervised learning has been an active area of research

in the past few years. Contrastive learning is a type of self-
supervised learning method that has achieved a significant perfor-
mance improvement on image classification task. However, there
has been no work done in its application to fisheye images for
autonomous driving. In this paper, we propose FisheyePixPro,
which is an adaption of pixel level contrastive learning method
PixPro [1] for fisheye images. This is the first attempt to pre-
train a contrastive learning based model, directly on fisheye im-
ages in a self-supervised approach. We evaluate the performance
of learned representations on the WoodScape dataset using seg-
mentation task. Our FisheyePixPro model achieves a 65.78 mIoU
score, a significant improvement over the PixPro model. This in-
dicates that pre-training a model on fisheye images have a better
performance on a downstream task.

INTRODUCTION
Recent advancements in deep learning have acted as a cata-

lyst for achieving human-level performance in various computer
vision tasks. Availability of large datasets, development of novel
architectures and access to faster GPUs are the key factors in the
success of deep learning. One of the main challenges in training
a deep neural network in a supervised way is the requirement for
a large amount of labelled data, which is costly to generate. Self-
supervised learning methods focus on learning a generic visual
representation from a large amount of unlabelled images, allevi-
ating the requirement for an annotated dataset. Self-supervised
learning can be divided into two major categories: 1) Pretext task
and 2) contrastive learning.

In pretext task methods, the labels are generated by defin-
ing a pseudo task, with the intuition that the network should learn
generic features while solving a pretext task. Examples of such
pretext tasks are context prediction [2], image colourisation [3],
jigsaw puzzle [4], and rotation prediction [5]. The transfer learn-
ing performance of these tasks was limited as the network was
unable to learn robust feature representations while solving pre-
text tasks [6].

Contrastive learning means learning by comparing the input
samples. The objective of contrastive learning is to maximise the
agreement between ”similar” inputs or ”positive pairs” and also
maximise the distance between ”dissimilar” inputs or ”negative
pairs” in the embedding space. Two views from a single image
can be considered as positive pairs, while two views from dif-
ferent images can be considered as negative pairs. Contrastive
learning methods are based on a principle of instance discrimi-

Figure 1: Sample images from KITTI-360 dataset.

nation [7], where each image is considered as a single class, and
the aim is to distinguish each class from other classes. In order
to classify two different views from the same image as a single
class, the need for data augmentation arises. Hence data augmen-
tation proves one of the critical aspect of contrastive learning. Nu-
merous methods [8, 9, 10, 11, 12] have shown promising results
on downstream tasks of image classification on the ImageNet-1K
dataset using a ResNet-50 backbone which was pre-trained using
a contrastive learning framework. However, to the best of our
knowledge, no work has been done in leveraging fisheye images
to pretrain a model using contrastive learning methods.

Traditional deep learning models offer little performance
benefits when applied directly to fisheye photos (e.g. fig 1) due
to the large radial distortion in fisheye images. Still fisheye cam-
eras are one of the major components of computer vision sys-
tems in autonomous driving cars because only four fisheye cam-
eras are necessary to provide a full 360◦ coverage around the ve-
hicle. Therefore, it has become popular in near field sensing at
low speed [13, 14]. Several experiments have been conducted to
enhance the performance of CNN on fisheye dataset by investi-
gating the impact of adversarial attacks[15] on a multi-task visual
perception network [16]. The domain of autonomous driving in-
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Figure 2: Self-supervised FisheyePixPro training framework for pretraining the PixPro [1] model using fisheye images.

volves object detection [17, 18, 19], soiling detection [20, 21, 22],
semantic segmentation [23], weather classification [24, 25], dy-
namic object detection [26], depth prediction [27, 28, 29, 30, 31],
fusion [32], key-point detection and description [33] and multi-
task learning [34, 35, 36]. It also poses many challenges due to
the highly dynamic and interactive nature of surrounding objects
in the automotive scenarios [37].

Pretext task-based models have lower performance com-
pared to contrastive learning frameworks [10]. As a result, we
chose to adopt a contrastive learning framework. However, con-
trastive learning-based methods such as a Simple framework for
Contrastive Learning of visual Representations (SimCLR) re-
quires a very large batch size to maintain the ratio of negative
pairs. The Momentum Contrast (MoCo) method [12] addresses
this issue by using a momentum encoder and maintaining a queue
from previously generated samples that can be utilised as negative
pairs. These approaches use the notion of instance discrimina-
tion, with the network being pre-trained on the ImageNet dataset.
ImageNet dataset typically consist of a single item in a particu-
lar image. Thus, two different views from a single image may
have some features from the main object in the image. There-
fore, instance discrimination methods can be applied to ImageNet
dataset. Whereas, fisheye pictures collected for self-driving car
purposes are fundamentally different from the ImageNet dataset.
These images consist of multiple objects like a bus, car, bike,
road, humans, traffic signs etc. in a single image. Due to this,
instance discrimination methods like MoCo and SimCLR are not
a suitable choice for pretraining models with fisheye images for
autonomous driving.

PixPro [1] method is based on pixel level contrastive learn-
ing. In this method, each pixel in a given image is considered
as a single class and the objective is to differentiate each pixel
from other pixels within the same image. The main advantage of
using PixPro is that it does not require a large batch size similar
to SimCLR. The negatives are selected based on the features ob-
tained from different pixels from the same image. Additionally,
the pixel propagation module provides a smoothing effect that re-
moves noise and allows propagation of the features with similar
pixels.

In this work, we propose a novel training method
FisheyePixPro, which is the first attempt to train a contrastive
learning based model, directly on fisheye images in a self-
supervised approach. We use PixPro [1] as a base for pretraining
on fisheye images. Fisheye images have geometrical distortion
and it leads to drop in the performance when ImageNet pretrained

model is directly applied on fisheye images. We demonstrated that
FisheyePixPro pretrained representations obtained higher score
on segmentation task than standard PixPro model.

METHODS
Datasets

We used a subset of the KITTI-360 [38] dataset and a Va-
leo internal fisheye image dataset for pretraining. The KITTI-360
is a large scale 3D video dataset with 300k images and 3D laser
point clouds. The dataset was collected with the help of a station
wagon using two fisheye cameras along each side covering 360◦

view. Sample fisheye images from KITTI-360 dataset are shown
in Figure 1. To remove duplicate images, total of 50k images were
sampled for pretraining. In addition, we used an internal fisheye
dataset from Valeo. These fisheye images are obtained under same
conditions as WoodScape [39] and it consists of around 50k unla-
belled fisheye images. Therefore, total of 100k images were used
for pretraining.

In addition to this, we evaluated the performance on the
WoodScape dataset using segmentation task. WoodScape dataset
consists of total 10k images with annotations for nine classes.
These classes are road, lanes, curbs, person, rider, vehicle, bicy-
cle, motorcycle and traffic sign. From total 10k images only 8215
images are publicly available. Therefore, we randomly choose
7200 images for training a deeplabv3+ model on segmentation
task using ResNet-50 encoder and evaluated performance on re-
maining images as test set.

FisheyePixPro Pretraining for segmentation
PixPro is based on two properties of an image: spatial sen-

sitivity and spatial smoothing. Spatial sensitivity is defined as an
ability to differentiate between adjacent pixels. This property is
useful in delineation of boundary areas. On the other hand, spatial
smoothing operation involves removal of noise or high frequency
signals from an image. These two properties are core compo-
nents of pretext task. The features from the corresponding pixels
of the two views taken from the randomly cropped image are en-
couraged to be consistent. This pixel level pretext task focuses
on learning representation from two different views of the same
image by minimising the distance between two pixel level repre-
sentations using cosine similarity loss.

The model architecture is shown in figure 2. It is a siamese
architecture with two input branches to process different views
from the same input image under different data augmentations.
One branch consists of ResNet-50 encoder with projection head
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and pixel propagation module. Whereas, the other branch con-
sists of only momentum encoder with projection head. A random
crop is extracted from given image, then it is resized to 224x224
pixels. Different data augmentations such as random horizontal
flip, colour jitter, grayscale, gaussian blur and solarization oper-
ation are applied to the input image. An encoder and momen-
tum encoder is used to calculate features from these two extracted
patches. The spatial resolution of features map reduces to 7x7.
Then each pixel in feature map is mapped to original image space
and the distance between every pair of pixels in the two feature
maps is calculated according to equation 1

A(i, j) =

{
1 if dist(i,j) ≤ τ

0 if dist(i,j) > τ
(1)

If the distance between two pixels from different views is
less than the threshold τ then those two are considered as positive
pairs and if the distance between two pixels from different views
is greater than τ then it is considered as negative pairs. Typical
value of τ is 0.7.

Pixel propagation module is applied to only one branch of
the network after regular encoder. The purpose of this module is
to provide smooth representation using self attention mechanism,
according to Equation 2.

yi = ∑
j∈Ω

(max(cos(xi,x j),0))γ .g(x j) (2)

where, cosine function is used to calculate the distance be-
tween pair of pixels and γ is control parameter for similarity func-
tion. The default value of γ is set to 2. Function denoted as g(·),
is a transformation function which composed of batch normalisa-
tion and a ReLU layer. Finally, the loss is calculated by equation
3, where y is feature of a pixel from pixel propagation module and
x is feature of a pixel from momentum encoder module.

loss =−cos(yi,x′j)− cos(y j,x′i) (3)

To pretrain FisheyePixPro, the network was first initialised
with PixPro weights as the weights are already available; then
further pretrain on fisheye images.

DeepLabv3+
DeepLabv3+[40] incorporates encoder-decoder architecture

and is an upgraded version of DeepLabv3 [41]. Deeplabv3+ of-
fers a number of benefits for semantic segmentation tasks, includ-
ing dense prediction with Atrous convolution [42], memory opti-
misation with depth-wise separable convolution [43] and multi-
scale processing using Atrous Spatial Pyramid Pooling(ASPP)
module. The following are some key points in the DeepLabv3+
architecture:

Atrous convolution: Atrous convolution also called as dilated
convolution, it allow us to increase the spatial resolution of
feature maps. The dilation rate in Atrous convolution deter-
mines the distance between consecutive values in the kernel.
As a result, multi-scale information is acquired by regulat-
ing the dilation rate, boosting the network’s generalisation
capacity.

ImageNet PixPro FisheyePixPro
Pretraining Supervised Self-supervised Self-supervised

Class IoU Acc IoU Acc IoU Acc
void 97.23 98.59 97.13 98.29 97.27 98.51
road 93.76 96.12 93.64 96.51 93.91 96.32
lanes 71.46 83.45 69.92 82.47 70.00 83.26
curbs 53.30 81.25 50.05 84.81 52.54 83.05

person 55.29 79.88 52.25 77.02 55.63 78.64
rider 54.92 76.46 52.03 73.84 53.90 76.75

vehicle 88.28 93.11 87.91 92.86 88.56 93.64
bicycle 48.35 72.85 46.45 72.45 48.47 71.81

motorcycle 60.14 80.25 56.74 70.46 59.04 77.14
traffic sign 39.26 65.22 35.76 58.06 38.45 61.26

Table 1: Class-wise IoU score and accuracy on validation dataset.
FisheyePixPro pretraining performs better than PixPro pretraining
in a self-supervised setting.

Depth-wise separable convolution: Depth-wise separable con-
volution operation splits a regular convolution into two com-
ponents as depth-wise convolution followed by a point-wise
convolution. The depth-wise convolution conducts a spatial
convolution for each input channel individually, whereas the
point-wise convolution is used to combine the depth-wise
convolution’s output. This innovative solution not only sig-
nificantly reduces calculation complexity but also enhances
performance.

Atrous Spatial Pyramid Pooling: The size of the same object
varies according to its position in front of the camera. To
deal with different sizes of the same object, several stud-
ies have been proposed to extract features at multiple scales
[44] [42]. DeepLabv3+ uses Atrous Spatial Pyramid Pool-
ing (ASPP) with different atrous rates of 6,12 and 18 to pro-
cess the convolution neural network output.

Network backbone: In this work, we follow [1, 12, 10] and use
ResNet-50 [45] backbone for pretraining.

EXPERIMENTS
We investigated whether pretraining a FisheyePixPro model

leads to better representation learning than a regular PixPro
model. To evaluate this hypothesis, we adopt state-of-the-art
Deeplabv3+ model with ResNet-50 backbone on WoodScape
dataset. These experiments were carried out using a PyTorch
[46] based implementation. For PixPro model, the ResNet-50
encoder is initialised with the weights provided by [1] and Im-
ageNet model uses weights from ImageNet pretrained weights.
All training images were resized to 640x480 pixels. These models
were trained for 100k iterations using Nvidia V100, 16GB GPU
with batch size of 6. We used SGD optimiser with initial learning
rate=0.01, momentum=0.9, weight decay=0.0005. We adopted
poly learning rate scheduling scheme with power=0.9, minimum
learning rate=0.0001. To overcome the problem of class imbal-
ance, we also used weighted categorical cross-entropy.

Table 1 shows the detail view of class-wise IoU score for
PixPro, FisheyePixPro and ImageNet pretrained model on the
WoodScape dataset for segmentation task. It can be seen that
our FisheyePixPro model outperforms PixPro model on fisheye
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Figure 3: Qualitative results on downstream task of segmentation on WoodScape dataset. Rows represent fisheye images, ground truth,
results from ImageNet supervised pretrained model (baseline), PixPro and our FisheyePixPro respectively. The PixPro and FisheyePix-
Pro models were trained using unlabelled dataset. While ImageNet pretrained model was trained on 1.2M images with corresponding
classification labels.

dataset, whereas it achieves comparable performance with super-
vised ImageNet pretrained model. Kindly note that supervised
ImageNet pretrained model was pretrained on ImageNet dataset
which requires 1.2M images with its classification label. How-
ever, FisheyePixPro model was pretrained without using labels.

We have also provided the visual results on validation set in
fig 3. Table 2 compares the mean intersection over union (mIou)
score and average accuracy on WoodScape segmentation task for
our FisheyePixPro, PixPro and ImageNet pretrained model. Our
FisheyePixPro method achieves significantly higher mIoU score
as compared to normal PixPro. On the other hand, supervised
ImageNet pretrained model achieves the highest score. This re-

Pretraining mIoU aAcc
ImageNet Supervised 66.2 97.20

PixPro Self-supervised 64.19 97.06
FisheyePixPro Self-supervised 65.78 97.21

Table 2: Comparing proposed FisheyePixPro pretraining with
PixPro and supervised pretraining on ImageNet dataset. The re-
sults are evaluated on WoodScape dataset for semantic segmenta-
tion.
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sults demonstrates that our FisheyePixPro pretrained model helps
to learn better representations as compared to PixPro model.

CONCLUSION
In this work, we build a successful pretraining framework us-

ing pixel level pretext task of contrastive learning for fisheye im-
ages. We demonstrated that our FisheyePixPro method achieved
better feature representation and transfer performance using fish-
eye images for dense prediction. According to our knowledge,
this is the first attempt to pretrain a contrastive learning based
model directly on fisheye images. Our findings show that there is
potential to define a pixel level pretext task for fisheye images that
can alleviate the effect of non-linear distortion and learn generic
visual representations.
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