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Abstract. In recent years, deep neural networks (DNNs) have
accomplished impressive success in various applications, including
autonomous driving perception tasks. However, current deep
neural networks are easily deceived by adversarial attacks. This
vulnerability raises significant concerns, particularly in safety-critical
applications. As a result, research into attacking and defending
DNNs has gained much coverage. In this work, detailed adversarial
attacks are applied on a diverse multi-task visual perception deep
network across distance estimation, semantic segmentation, motion
detection, and object detection. The experiments consider both
white and black box attacks for targeted and un-targeted cases,
while attacking a task and inspecting the effect on all others,
in addition to inspecting the effect of applying a simple defense
method. We conclude this paper by comparing and discussing
the experimental results, proposing insights and future work. The
visualizations of the attacks are available at https://youtu.be/6AixN9
0budY. c© 2021 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.6.060408]

1. INTRODUCTION
Autonomous Vehicles are expected to significantly reduce
accidents [1], where visual perception systems [2–8] are at
the core of these vehicles. Despite the notable achievements
of DNNs in visual perception, we can easily deceive the
networks by adversarial examples that are imperceptible to
the human eye but cause the network to fail. Adversarial
examples are usually created by deliberately employing
imperceptibly small perturbations to the benign inputs
resulting in incorrectmodel outputs. This small perturbation
is progressively amplified by a deep network and usually
yields inaccurate predictions. Generally speaking, attacks can
be a white box or black box depending on the adversary’s
knowledge (the agent who creates an adversarial example).
White box attacks presume full knowledge of the targeted
model’s design, parameters, and, in some cases, training data.
Gradients can thus be calculated efficiently in white box

Received Sept. 8, 2021; accepted for publication Nov. 9, 2021; published
online Dec. 3, 2021. Associate Editor: Francisco Imai.
1062-3701/2021/65(6)/060408/9/$25.00

attacks using the back-propagation algorithm. In contrast,
in Black box attacks, the adversary is unaware of the
model parameters and has no access to the gradients.
Furthermore, attacks can be targeted or un-targeted based on
the intention of the adversary. Targeted attacks try to deceive
the model into a specific predicted output. In contrast, in the
un-targeted attacks, the predicted output itself is irrelevant,
and the main goal is to deceive the model into any incorrect
output. Fast gradient sign method (FGSM) [9] is an example
of a simple yet effective attack for generating adversarial
instances. FGSM aims to deceive the classification of the
image by adding a small vector obtained by taking the sign of
the gradient of the loss function. Moreover, it was shown that
robust 3D adversarial objects could deceive deep network
classifiers in the physical world [10], despite the combination
of viewpoint shifts, camera noise, and other natural trans-
formations. Deceiving surveillance cameras was introduced
in Ref. [11] where adversarial patches are designed to
attack person detection.DenseAdversaryGeneration (DAG)
algorithm [12] is an example of generating adversarial attacks
for semantic segmentation and object detection tasks. It
was discovered that the perturbations are exchangeable
across different networks, even though they have different
training since they share some intrinsic structure that makes
them susceptible to a common source of perturbations.
In addition to camera sensors, potential vulnerabilities of
LiDAR-based autonomous driving detection systems are
explored in Ref. [13]. Moreover, the 3D-printed adversarial
objects showed effective physical attacks on LiDAR equipped
vehicles, raising concerns about autonomous vehicles’ safety.
Robust Physical Perturbations (RP2) [14] is another example
that generates robust visual adversarial perturbations under
different physical conditions on road sign classifications.

Adversarial robustness [15] and defense methods of
neural networks have been studied to improve these
networks’ resistance to different adversarial attacks. One
method for defense is Adversarial training, where adversarial
examples besides the clean examples are both used to train
themodel. Adversarial training can be seen as a sort of simple
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Figure 1. Adversarial attacks on OmniDet [26] MTL model. Distance, segmentation, motion and detection perception tasks are attacked by white and
black box methods with targeted and un-targeted objectives, resulting in incorrect model predictions.

data augmentation. Despite being simple, but it cannot
cover all the attack cases. In Ref. [16], it is demonstrated
that JPEG compression can undo the small adversarial
perturbations created by the FGSM. However, this method is
not effective for large perturbations. Xu et al. [17] proposed
Feature-squeezing for detecting adversarial examples, in
which themodel is tested on both original input and the input
after being pre-processed by feature squeezers such as spatial
smoothing. If the difference between the outputs exceeds
a certain threshold, we identify the input as an adversarial
example. Defense-GAN [18] is another defence technique
that employs generative adversarial networks (GAN)s [19],
in which it seeks a similar output to a given picture while
ignoring adversarial perturbations. It is shown to be a
feasible defense that relies on the GAN’s expressiveness
and generative power. However, training GANs is still a
challenging task.

Robust attacks and defenses are still challenging tasks
and an active area of research. Most previous works on
adversarial attacks focused on single task scenarios.However,
in real-life situations, multi-task learning is adopted to
solve several tasks at once [20–22]. Accordingly, multi-task

networks are used to leverage the shared knowledge among
tasks, leading to better performance, reduced storage, and
faster inference [23, 24]. Moreover, it is shown that when
models are trained on multiple tasks at once, they become
more robust to adversarial attacks on individual tasks [25].
However, defense remains an open challenge. In this work,
as shown in Figure 1, white and black box attacks are
applied on a multi-task visual perception deep network
across distance estimation, semantic segmentation, motion
detection, and object detection, taking into consideration
both targeted and un-targeted scenarios. For the experiment,
while attacking one of the tasks, the attacking curve is
plotted to inspect the performance across all tasks over the
attacking steps. Additionally, a simple defense method is
used across all experiments. Finally, in addition to visual
samples of perturbations and performance before and after
the attacks, detailed results and comparisons are presented
and discussed.

2. MULTI-TASK ADVERSARIAL ATTACKS
In this section, the target multi-task network is presented in
terms of architecture, data, tasks, and training. The attacks
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Figure 2. Illustration of baseline multi-task architecture comprising of four tasks [26].

are subsequently detailed for each task, including a white and
black box for both targeted and un-targeted cases.

2.1 Baseline Multitask Model
Wederive the baselinemodel from the recent workOmniDet
[26–29], a six-task complete perception model for surround
view fisheye cameras. We focus on the four main perception
tasks and skip visual odometry and the soiling detection
task. We provide a short overview of the baseline model
used and refer to [26] for more details. A high-level
architecture of the model is shown in Figure 2. It comprises
a shared ResNet18 encoder and four decoders for each task.
Motion decoder uses additionally previous encoder feature

in Siamese encoder style. 2D box detection task has the
five important objects, namely pedestrians, vehicles, riders,
traffic sign, and traffic lights. Segmentation task has vehicles,
pedestrians, cyclists, road, lanes, and curbs categories. Motion
task has binary segmentation corresponding to static and
moving i.e. dynamic pixels. Depth task provides scale-aware
distance in 3D space validated by occlusion corrected LiDAR
depth [30, 31]. The model is trained jointly using the
public WoodScape [32] dataset comprising 8K samples and
evaluated on 2K samples.

In this paragraph, we briefly summarize the loss
functions used for training. We construct a self-supervised
monocular structure-from-motion (SfM) system for distance
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Figure 3. Performance comparison of the White box attacks across different tasks. The first row shows the un-targeted attacks, the second row shows the
targeted attacks, and columns represent the tasks.

and pose estimation. The total loss consists of a photometric
term Lr , a smoothness term Ls, that enforces edge-aware
smoothness within the distance map D̂t , a cross-sequence
distance consistency loss Ldc , and feature-metric losses
from [33] where Ldis and Lcvt are computed on It . Final
loss function for distance estimation is weighted average
of all these losses. The segmentation task contains seven
classes on the WoodScape and employs Lovasz-Softmax
[34] loss. Motion segmentation employs two frames and
predicts either a binary moving or static mask and employs

Lovasz-Softmax [34], and Focal [35] loss for managing
class imbalance instead of the cross-entropy loss. For object
detection, we make use of YOLOv3 loss and add IoU loss
using segmentation mask [36, 37].

2.2 Experimental Setup for Attacks
In this section, the details of the experiments are described.
We conduct the experiments across the four visual perception
tasks, on a test set of 100 images i.e. randomly sampled from
the original test set of the target network. We generate the
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Figure 4. Performance comparison of the Black box attacks across different tasks. The first row shows the un-targeted attacks, the second row shows the
targeted attacks, and columns represent the tasks.

Adversarial examples for each image in the test set while
attacking one task at a time.

We make use of the standard FGSM method [9] for the
white box attack. Using the gradients of the network, we
perform an iterative optimization process to add perturbation
in the input image in a direction to harm the original
predictions. For Black box attacks we set up similar protocols
established in the white-box; however, the gradients are not
given but estimated. As a generic black-box optimization
algorithm, we show that Evolution Strategies (ES) can be
adopted as a black-box optimization method for generating

adversarial examples. Precisely, ES algorithm is used to
update the adversarial example over the attacking steps. At
each step, we take the adversarial example vector, i.e. the
image, and generate a population of 25 slightly different
vectors by adding noise sampled from a normal distribution.
Then, we evaluate each of the individuals by feeding it
through the network. Finally, the newly updated vector is
the weighted sum of the population vectors. Each weight
is proportional to the task’s desired performance, and the
process continues till convergence or stops criteria.
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Table I. Summary of attacking and defending results across the test data where A and D columns are for attack and defense respectively.

Task Distance Segmentation Motion Detection
RMSE mIoU mIoU mAP

A D A(%) D(%) A(%) D(%) A(%) D(%)

Distance

wb_untarget 0.126 0.047 −14 −7.3 −3.1 −3.0 −13.4 −25.5
wb_target 0.288 0.031 −40 −7.5 −4.4 −2.7 −38.9 −33.2
bb_untarget 0.036 0.033 −3.0 −6.5 −1.5 −3.7 −4.6 −25.8
bb_target 0.035 0.036 −14.8 −13.4 −3.9 −2.9 −27.1 −37.6

Segmentation

wb_untarget 0.032 0.028 −86.8 −14.2 −5.0 −3.5 −37.6 −30.1
wb_target 0.017 0.027 −32.0 −5.5 −4.0 −2.6 −21.3 −27.5
bb_untarget 0.015 0.031 −26.1 −11.4 −2.3 −4.9 −6.7 −27.3
bb_target 0.020 0.034 −16.1 −9.2 −2.2 −2.5 9.2 −28.8

Motion

wb_untarget 0.018 0.027 −11.1 −7.3 −25.9 −9.2 −18.9 −23.1
wb_target 0.010 0.027 −2.4 −6.0 −14.7 −9.2 −7.1 −30.0
bb_untarget 0.030 0.039 −17.1 −15.8 −24.3 −17.6 −22.2 −38.6
bb_target 0.033 0.040 −24.6 −22.5 −13.9 −11.7 −34.7 −47.9

Detection

wb_untarget 0.012 0.027 −5.1 −5.9 −2.1 −2.5 −39.8 −31.4
wb_target 0.018 0.027 −15.0 −6.2 −3.0 −4.0 −71.9 −30.6
bb_untarget 0.021 0.033 −12.5 −10.4 −4.2 −5.8 −39.4 −35.3
bb_target 0.022 0.034 −11.6 −10.6 −2.7 −3.7 −34.4 −37.9

In the un-targeted case, the aim is to harm the
predictions the most without considering a certain target
prediction: f (xadv) 6= ytrue, however in the targeted case, the
aim is to harm the predictions in a desired specific way
towards a certain target: f (xadv)= ytarget. The attack loss is
based on the task. Mean square error (MSE) is used for the
distance task, while cross-entropy loss is used formotion and
semantic segmentation tasks. For the object detection task,
only object confidence is attacked, and hence cross-entropy
loss is adopted. Regarding un-targeted attacks across all the
tasks, the goal is to maximize the distance between the
original output of the network and the adversarial example’s
output. Accordingly, we add the perturbations to achieve this
simple goal where the output can be anything but the correct
one. This can be formulated as θ = θ + αdJ/dθ where θ is
the image parameters i.e. pixels, J the loss functions and α
is the learning rate. However, for the targeted attacks, the
target output is defined. The aim is to minimize the distance
between the original output and the target output according
to θ = θ −αdJ/dθ .

For each perception task, the targets are as follows:
Targeted Depth attack tries to convert the predicted near
pixels to be predicted as far. The Targeted Segmentation
attack tries to convert the predicted vehicle pixels as void
for randomly 50% of the test set. For the other 50%,
tries to convert the predicted road pixels as void. The
TargetedMotion attack tries to convert the predicted dynamic
object pixels to be predicted as static. Finally, similar
to semantic segmentation, the Targeted Object Detection
attack tries to increase or decrease the predicted confidence

randomly. In addition to attacks, we apply a simple blurring
defense approach across all the attacks. Similar to [16], the
intuition is trying to remove the adversarial perturbations
and restore the original output as much as possible. The
hyperparameters of the attacks are empirically defined based
on a very small validation set of three samples. All white-box
attacks are conducted with learning rate α = 0.00015. In
black-box attacks, the hyperparameters are chosen to balance
the attack effect and the severity of the perturbations,
where the learning rates range from 0.0001 to 0.001, and
µ= 0, σ = 0.05 for ES population generation.

3. RESULTS
In this section, we present and discuss the details of the
results. As expected, white-box attacks, with the gradients
are accessible, were easier to find than the black box
case. White box attacks can generate adversarial examples
with minimal and localized perturbations across all the
tasks. On the other hand, ES black-box attacks have more
significant perturbations and require more hyperparameters
to optimize.

The attacking curves for white and black box attacks
are shown in Figures 3 and 4 respectively. Each plot shows
each perception task’s performance over the 50 attacking
steps where the first step at index 0 represents the actual
performance of the target network without applying any
attack. Each curve shows the mean performance of a task
over the test set, where the shaded area is the mean
± standard deviation. Generally, motion and detection
tasks have a performance with a large standard deviation
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Figure 5. From top to bottom: White box Un-targeted, White box Targeted, Black box Un-targeted, & Black box Targeted Attacks. Within each group
from top to bottom: Original results, adversarial perturbations, & the impacted results.

indicating the test set’s diversity containing easy and hard
examples. Across all curves, it is clear that the performance
is decreasing along with the attacking steps.

Moreover, attacking one task by generating an ad-
versarial example affects the other tasks’ performance in
different ways along the attacking curve. These curves
enable the adversary to decide at which step the adversarial
example is generated according to the required effect on
the target task and the other tasks. As shown in Figs. 3
and 4, in most cases, attacking other tasks has a marginal

negative effect on motion task. The main reason is that the
motion task takes two frames as input, and only one of
them is attacked. Moreover, it is shown that the attacking
distance task affects both segmentation and detection tasks.
Attacking segmentation or detection showed to affect other
tasks. As mentioned, the attack effect depends on the
parameters selected for the attack.Moreover, targeted attacks
try to optimize the adversarial example to produce the
required target prediction. In contrast, the un-targeted attack
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Table II. Input blurring effect on the tasks.

Task Metric Original Blurred Effect (%)

Distance RMSE 0.0 0.026 NA
Segmentation mIoU 0.499 0.477 −4.4
Motion mIoU 0.711 0.693 −2.6
Detection mAP 0.633 0.416 −34.3

continues to apply perturbation to produce as different as
possible predictions.

To understand the effect of applying a defense method
on the attacks, Gaussian blurring with radius = 1 is applied
to the final adversarial examples and then fed into the target
network, and performance is reported. As shown in Table I,
this simple defense method has a positive effect for both
segmentation and motion tasks in most cases compared
to depth and detection tasks. Furthermore, the effect of
blurring on the network’s performance is inspected without
applying any attacks, as shown in Table II. Both detection
and distance tasks are affected the most. This explains why
this defense method is more effective for segmentation and
motion tasks. Figure 5 shows different visual samples of the
attacks organized into four groups. Each group has three
images: the original output, the adversarial perturbations
magnified to 10X, and the impacted results are overplayed on
the adversarial examples. As expected, perturbations for the
white box attacks are much more minor and more localized
than the black box case. Moreover, for the un-targeted
attacks, the performance is harmed without having a specific
goal leading to arbitrary predictions. On the other hand,
for targeted attacks, vehicles or roads are removed for the
semantic segmentation task. We add false objects or remove
true objects for the detection task. Near pixels are converted
as far for the distance task. Finally, we convert dynamic
objects to static for the motion task.

4. CONCLUSION
In this work, various adversarial attacks are applied to a
multi-task target network with shared encoder and different
decoders for autonomous driving visual perception. For each
perception task, white and black box attacks are conducted
for targeted and un-targeted scenarios. Moreover, attacking
curves show the interactions between the attacks on different
tasks. It is shown how attacking a task has an effect not
only on that task but also on the rest. Moreover, by applying
blurring on the adversarial examples as a defense method,
it is found to have a positive effect on segmentation and
motion tasks in contrast to object detection and distance
tasks for the considered target network. In the future, we plan
to conduct physical attacks, test other sensors such as LiDAR,
and attacking multiple tasks jointly. It is obvious that, attacks
and defenses are still challenging tasks and an active area
of research, especially for autonomous driving applications
with multi-task deep networks.
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