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Abstract 

Depth sensing technology has become important in a number of 

consumer, robotics, and automated driving applications. However, 

the depth maps generated by such technologies today still suffer 

from limited resolution, sparse measurements, and noise, and 

require significant post-processing. Deep convolutional neural 

nets can be used to perform denoising, interpolation and 

completion of depth maps. Depth map data often has higher 

dynamic range than common 8-bit image data and may be 

represented as 16-bit values; however, in practical applications 

there is a need to enable efficient low-power deep net inference 

with 8-bit precision.  In this paper, we explore methods to process 

high-dynamic-range depth data using neural net inference engines 

with 8-bit precision. We propose a simple technique that attempts 

to retain signal-to-noise ratio in the post-processed data and can 

be applied in combination with most convolutional network 

models. Our initial results using depth data from a consumer 

camera device show promise, achieving inference results with 8-bit 

precision that have similar quality to floating-point processing. 

Introduction  

Depth sensing technologies, capturing the 3D environment, 

enable a variety of applications in automated/autonomous vehicles, 

robotics, AR/VR, user interfaces, etc. Depth sensing technologies 

include stereo cameras, time-of-flight sensors, structured-light 

systems, as well as lidar. RGB-D cameras combine depth sensing 

with color (RGB) imaging.  

In many cases, depth data captured by 3D sensing technology 

is noisy, low-resolution and/or sparse, and benefits significantly 

from post-processing. Figure 1 shows a few example depth images 

and their corresponding graylevel images captured with a 

commercially available RGB-D camera. Various image processing 

methods can be used to denoise, deblur, and interpolate depth 

maps, in a similar manner to processing regular images.  Depth 

map denoising and depth map completion methods based on deep 

convolutional neural nets (CNNs) have been proposed recently, for 

example [1][2][3]. Methods using deep learning and CNNs are 

capable of a deeper understanding of the entire scene and 

outperform traditional methods, as in other domains.  Datasets for 

training and evaluating learning-based depth map processing 

methods include the KITTI depth completion dataset [3] and the 

NYU-Depth-V2 dataset [4].  

The depth completion problem is defined more concretely in 

Figure 2 (top). In general, the output of the camera includes the 

depth map itself, a confidence map indicating a measure of 

confidence in each depth sample, as well as a regular image. The 

confidence map may represent a continuous value between 0.0 and 

1.0 or may represent a binary occupancy map. We assume the 

availability of a regular color or gray-level image that is spatially 

registered with the depth map. Figure 2 (bottom) illustrates a 

specific example of data captured using a stereo camera, where 

pixels/samples with unavailable or ‘zero-confidence’ depth values 

are visualized as black in the color-coded image, and the registered 

left stereo image is available to the post-processing algorithm. In 

this example, the only output of the post-processing step is an 

improved depth map (shown with the same color coding).  

 

 

 

Figure 1: Examples of depth maps and corresponding gray-level 
images. Depth maps are visualized using a color coding where blue 
corresponds to large depth/distance samples and yellow 
corresponds to small depth/distance samples. Black corresponds to 
samples where a depth/distance value could not be obtained. 

 

Figure 2: Depth map completion problem setup (top). Example 
depth map completion inputs and output (bottom).  

Often, the data captured by depth sensing technologies needs 

to be represented with 10-, 12-, or 16-bits per sample, due to its 
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high dynamic range and precision requirements. For example, 

short-range depth sensor data may be represented in mm units and 

have a range in the order of several tens of meters, while long-

range depth sensor data may be represented in cm units and have a 

range in the order of several hundred meters. 

However, to reduce the computational cost and increase 

processing speed, software and hardware neural net inference 

engines and accelerators often process the data with 8-bit precision 

in practical applications.  Especially for inference engines for so-

called edge applications, reducing precision is critical to reduce 

power, bandwidth and memory requirements. Hence, processing 

depth data with higher bit-precision presents a problem of interest.  

In this paper, we explore methods to process high-dynamic-

range 16-bit depth data using neural net inference engines with 8-

bit precision. The goal of the inference engine is to run post-

processing tasks such as depth completion and denoising, to 

improve the quality of the depth map, while retaining its precision. 

Efficient depth map post-processing 

Although not the focus of this paper, we first describe the 

convolutional neural network used in our work for depth map 

completion. We use a very lightweight fully convolutional 

encoder-decoder network sketched in Figure 3. This network, 

introduced in [6], was designed for highly efficient image 

processing in dedicated hardware. The network is similar in 

architecture to U-Net [5] and contains an encoder that extracts 

features at the original resolution, 4x subsampled resolution, and 

16x subsampled resolution, a decoder that successively rebuilds a 

depth map at the original resolution, and skip-connections at each 

level of resolution that connect encoder and decoder. The network 

supports up to 6 channels input and 6 channels output, each with 8-

bit precision. The number of channels in the network bottleneck (at 

16x scale) is 72. Convolutional blocks use highly efficient 

separable convolution layers, and use an IIR filter instead of the 

traditional FIR convolution filter in the bottleneck. The total 

number of parameters is only about 50,000 (compared to ~8 

million for the standard U-Net).  

We used a TensorFlow implementation of this lightweight 

CNN model to obtain simulation results. The network was trained 

and evaluated using a relatively small depth data set collected by 

our team, for the purpose of experiments. In this data set, we used 

a RealSense depth camera with and without IR illumination. The 

depth map captured without IR illumination serves as the input 

depth map in our experiments, while the depth map captured with 

IR illumination serves as the ground-truth. Example inputs, 

ground-truth, and outputs, using floating point precision 

calculations in TensorFlow, are shown in Figure 4.  

Figure 3: Encoder-decoder CNN used for depth map post-processing, reproduced from [6]. 

: TBD. 

Figure 4: Depth map completion examples. Columns from left to right: input gray-level image; input depth map (captured without IR); 
ground-truth (captured with IR); processed output depth map. Note that our ground-truth data may still have “invalid” samples.  

126-2
IS&T International Symposium on Electronic Imaging 2022

Autonomous Vehicles and Machines 2022



 

 

Depth map completion at limited precision 

In this section, we describe methods to process high-dynamic 

range depth data on an 8-bit neural net inference engine. As 

mentioned, depth data is often represented as 10-, 12-, or 16-bit 

data. The distribution of the depth values over the data set 

collected by our team is shown in Figure 5. The majority of depth 

values are below ~5 m. However, the dynamic range varies 

strongly from image to image, depending on the scene. In our 

experiments, we will assume each depth map is represented as a 

16-bit precision image, even if the dynamic range of the depth 

samples might require only 10- or 12-bit precision.  

 

 

Figure 5: Distribution of depth values over our data set. The range of 
the horizontal axis in the plot is [0, 16384] and the unit of depth 
values is mm (hence up to 16.4 m). 

We have explored several methods for post-processing of 16-

bit data using an inference engine that is constrained to 8-bit inputs 

and outputs. In all our experiments, we include a pre-normalization 

of the input data in each depth map due to the strongly varying 

range in different scenes. Namely, the depth values are normalized  

based on the 98th percentile of the histogram of depth values in an 

individual image.  

The baseline method is to simply uniformly quantize the 16-

bit depth maps (after normalization) to 8-bit values, or in other 

words, use the MSB of each 2-byte value.  

The first method that attempts to retain more than 8-bit 

precision is to simply break each 16-bit input depth value into its 

MSB and LSB parts and feed each to a separate channel of the 

network. We refer to this method as direct channel split. This 

approach might be counter-intuitive since the LSB depth map 

shows ‘wrap-around’ effects at level-set boundaries between 

magnitude ranges of 256 (8 bits). However, the network appears to 

be able to represent and preserve such images, while 

interpolating/extrapolating to areas in the map without valid data.  

The second method is to utilize a tone mapping operator on 

the input depth image and subsequently quantize the depth values 

prior to feeding the values to the inference network. Subsequently, 

an inverse tone mapping operator is applied to the network output 

depth values. This is equivalent to non-uniform quantization. In 

addition, we propose to utilize multiple channels, where multiple 

tone mapping operators are tuned to different ranges of the depth 

values, and the network output channels are recombined to 

generate the final post-processed result. We refer to this method as 

multi-channel tone mapping, and the approach is similar to well-

known techniques applied to high dynamic range gray-level/color 

image data for capture, representation, and communication 

purposes (e.g. multi-exposure HDR image capture) [7].  

The multi-channel tone mapping approach is illustrated in 

Figure 6. The CNN has up to 6 input channels available, due to its 

implementation as hardware accelerator. In this example, 4 input 

channels are used to represent multiple ranges of the input dynamic 

range, each with 8 bits. Correspondingly, 4 output channels 

represent processed depth maps in multiple ranges. A channel 

combination step is applied after inverse tone-mapping. The 

combination operator, in our case, consists of simple addition.  

We use simple gamma functions for tone mapping the depth 

values, as shown in Figure 7. The goal is to be able to represent 

large depth values with sufficient accuracy while sacrificing 

precision, but at the same time represent small depth values more 

precisely. The gamma function is a convenient and simple way to 

achieve this. By using multiple gamma functions, some channels 

can be used to represent the short-range depth values more 

precisely, while other channels can be used to represent mid or 

high-range depth values more precisely.  

Finally, we make the gamma values for each channel 

trainable in conjunction with training the post-processing CNN 

itself. The gamma tone mapping is implemented as a 1-parameter 

trainable layer in TensorFlow. These layers are attached to the 

CNN model during end-to-end training, so that the optimal 

parameters are determined automatically by minimizing the loss 

function. In our experiments, we find that such end-to-end training 

of the gamma function parameters indeed converges to parameter 

values that would be expected, i.e. compressive tone curves prior 

to quantization and CNN processing, as illustrated in Figure 7.  
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Figure 6: Multi-channel tone mapping for post-processing high dynamic range depth maps.  
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Figure 7: Example gamma functions for depth tone mapping; 
forward mappings (compression) at top, and reverse mappings 
(expansion) at bottom.  

Experiments  

Experimental Setup 

We performed experiments using data obtained from a 

consumer depth sensing camera based on stereo imaging, namely 

RealSense cameras, which provides 16-bit depth data as well as a 

registered gray-level image. Small datasets were collected for 

training and evaluation of the post-processing network. As 

mentioned, depth maps captured with IR illumination serve as 

ground-truth, while depth maps captured without IR illumination 

serve as the input depth map in our experiments. Depth maps 

captured without IR illumination contain more “missing” samples, 

i.e. samples where stereo disparity could not be calculated with 

sufficient confidence. The loss function for training the depth 

completion CNN is defined as the relative MSE between output 

and ground-truth, computed over samples that are valid in the 

ground-truth depth map. We used a small data set of 182 images 

captured by our team, split into 162 training and 20 test images for 

experiments.  

All results were obtained with our TensorFlow software 

implementation. The effects of the different quantization methods 

are compared to direct floating-point processing. The bit precision 

limitations of the hardware accelerator were simulated by applying 

quantization to the data in the appropriate places in the TensorFlow 

model code. 

Experimental Results 

Quantitative results over the evaluation test set are shown in 

Table 1. The Mean Absolute Error (MAE) and Peak Signal-to-

Noise Ratio (PSNR) between the depth map and its ground-truth 

were used as objective metrics. Both the MAE and PSNR are 

computed only over samples that are valid in the ground-truth 

image, averaged over the images in the test set. The table shows 

that a significant reduction in MAE (and improvement in PSNR) is 

achieved using post-processing (all rows except the first), relative 

to the unprocessed input (first row). The second row shows the 

MAE and PSNR obtained with the network using floating point 

processing, as a reference for experiments with quantization.  The 

third row shows that direct quantization to 8-bit precision (by 

scaling values and taking the MSB) leads to a significant loss of 

quality relative to floating point processing. The fourth row shows 

the result of the direct channel split method, which is close to the 

result with floating point processing. The fifth row shows the result 

obtained with the proposed tone mapping in a single channel. The 

bottom row shows the result obtained with the proposed multi-

channel technique, using four channels with each using a tone 

mapping operator prior to 8-bit quantization. The proposed 

methods achieve the best MAE and PSNR results, even exceeding 

floating-point processing. This suggests there is some benefit to 

using multi-channel processing and tone mapping of the input 

depth map in itself, even if 8-bit quantization wasn’t required.  

 

 

Method  MAE PSNR (dB) 

Input depth map (no post-

processing) 
695.24 33.07 

Single channel floating point (no 

quantization) 
438.62 37.41 

Single channel with 8-bit 

quantization 
456.84 36.96 

Direct channel split into MSB and 

LSB 
438.99 37.49 

Single channel with tone map 

operator + 8-bit quantization 
431.00 37.63 

Four channels with tone map 

operators + 8-bit quantization 
425.53 37.60 

Table 1: MAE and PSNR over depth maps in the test set (relative to 
corresponding ground-truth depth maps).  

Figure 8 shows visual results using the proposed quantization 

methods. In each case, the grayscale image is shown at top left. 

The output of the network using floating point inference is shown 

at the top right.  The bottom images show the output of the 

network when using the proposed tone mapping technique and 

using multiple 8-bit quantized input and output channels, where the 

bottom left  image shows the result using single channel and the 

bottom right image shows the result using four channels. Some 

contouring artifacts due to quantization can be observed in the 

bottom left image, whereas these are not visible in the bottom 

right.  
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Figure 8: Example depth map processing results. In each example 
the gray-level input is at top left; floating-point processing output at 
top right; single-channel processing with trained tone mapping and 
8-bit quantization at bottom left; four-channel processing with trained 
tone mappings and 8-bit quantization at bottom right.  

Conclusions 

In this paper, we discuss methods for efficient depth map 

post-processing using using a neural net accelerator with reduced 

bit precision. The proposed methods build upon depth map 

processing methods using deep convolutional neural nets.  We 

describe simple techniques that support processing of depth maps 

with high bit precision on CNN inference engines constrained to 

8-bit input and output data.  We proposed the use of trainable tone 

mapping functions and multiple input/output channels as input to 

the CNN, and recombining the results at the output of the CNN. 

Our initial results indicate that the quality of the processed depth 

maps using these techniques can equal or even improve upon the 

quality of output using floating point processing, even when the 

data is quantized and processed at 8-bit precision in each channel 

of the CNN.  

In our experiments, we used a very lightweight encoder-

decoder CNN model. However, the proposed quantization 

techniques are largely agnostic to the CNN model architecture 

itself and can be applied to a variety of models, providing that the 

number of model input and output channels is sufficient.  These 

processing techniques are simple and can likely be implemented by 

a variety of inference engines.  Hence, the proposed techniques 

achieve low-power and efficient inference on depth maps in 

practical applications.  
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