

Open-Source Deep Learning Inference Libraries for Autonomous

Driving systems

Kumar Desappan, Anand Pathak, Pramod Swami, Mihir Mody, Yuan Zhao*, Paula Carrillo*, Praveen Eppa and Jianzhong Xu*

Embedded Processors Business, Texas Instruments (India and *USA)

Abstract

Automated driving functions, like highway driving and parking

assist, are increasingly getting deployed in high-end cars with the

goal of realizing self-driving car using Deep learning (DL)

techniques like convolution neural network (CNN), Transformers

etc. Traditionally custom software provided by silicon vendors are

used to deploy these DL algorithms on devices. This custom

software is optimal for given hardware, but supports limited

features, resulting in-flexible for evaluating various deep learning

model architectures tradeoffs by means of rapid prototyping. This

paper proposes usage of various open-source deep learning

inference frameworks to quickly deploy any model architecture

without any performance/latency impact. The proposed solution

consists of automatic Graph Partitioning, Post-Training

Quantization and Optimal Tensor Management. The proposed

solution has been implemented with three open-source inference

frameworks namely Tensorflow-Lite, TVM/Neo-AI-DLR and ONNX

Runtime running on Linux OS. The proposed solution using open-

source frameworks provides ease of use and improved coverage for

network types due to fall back for unsupported features from custom

software provided by silicon venders.

Introduction
The Automated driving (AD) systems implement highway

driving and value parking functions at multiple automation levels

(L2-L5) [1-2]. The figure 1 shows the functional block diagram to

achieve these functions. The key blocks for automated driving are

namely Perception, Localization, Fusion, Driving Policy, Motion

Planning and Control. The multi-modality perception (Camera,

radar and Lidar) is used to gather environment information around

car [3]. ‘Fusion’ module is used to give most reliable environment

using Bayesian filtering among all modalities [4]. The ‘localization’

module is used to find exact position of vehicle in real world co-

ordinates using High definition-HD Maps and perception data. The

resulting environment model is used by ‘Driving Policy’ module to

take decision e.g. stay in lane, lane change, yield, merge etc. The

decision of Driving policy module is translated in actual car

movement with ‘Motion planning’ module accounting kinematics

and passenger’s comfort. Lastly, typical ‘control’ module is used to

track actual trajectory with respect to reference by controlling

actuators.

As shown in figure 1, many of these modules are built with

Deep Learning (DL) based approaches either completely or

partially. With the pervasive used of DL, realization of autonomous

systems includes one or more purpose-built processors for DL

acceleration along with general purpose processors like Cortex

ARM. As these DL engines (Hardware accelerators or DSPs) are

purpose built, the silicon vender would provide custom software

APIs to deploy DL model on these engines. DL algorithms in ADAS

or Autonomous driving system are used for various kind of

modalities (Camera, RADAR, LiDAR) and algorithms

(Perceptions, Planning, Fusion), so a wide range of DL model

architectures needs to be deployed/evaluated on these DL engines.

These purpose-built HW engines would come with fixed set of

functionally (DL Layer/Operator types) and software support. With

rapidly evolving DL model architectures, development of these

Automated Driving Systems would need to evaluate new models

which may not be supported by exiting DL offering.

Figure 1. Computation blocks of Autonomous driving system.

Deep Learning Model Development Workflow
The Figure 2 describes the typical workflow in DL algorithms

deployment. User would be training the DL models on CPU/GPUs

using open-source frameworks like Tensorflow/Pytorch etc.

Deployment of trained model on embedded system involves two

steps. As a first step these models would be complied for a given

target device with the use of offline PC tools provided by the DL

engine provider. In the second step, artifacts generated in the

compilation are used to run the DL inference on the target device in

real-time. These traditional DL offerings lack in below vectors to

address the of Automated Driving Systems.

• Ease of use to quickly deploy model on device

• Flexibility/Scalability to support wide range of DL model

architectures

Recently multiple open-source DL inference frameworks

(Tensorflow Lite, ONNX runtime, TVM, NEO-AI-DLR etc.) [5-8]

have been developed to improve the ease of DL model deployment.

These inference frameworks are primarily optimized for generic

CPU cores like Cortex-A ARM. Some of these frameworks also

provide options/APIs to accelerate/offload the inference using DL

engines (HWA/DSP). Tensorflow Lite provides Delegate API to

accelerate/offload supported operators of the model as a subgraph to

DL HWA / DSP. Similarly, ONNX runtime provides Execution

Provider API to achieve the same purpose.

IS&T International Symposium on Electronic Imaging 2022
Autonomous Vehicles and Machines 2022 118-1

https://doi.org/10.2352/EI.2022.34.16.AVM-118
© 2022, Society for Imaging Science and Technology

Figure 2. DL Workflow with open-source inference frameworks.

This requires to address the below challenges to fully embrace

the open-source frameworks on resource constrained (Power,

Latency, Cost etc.) target device. (1) Latency/ Inferences Per

Second: Time required to run inference on these open-source DL

inference frame gets impacted. Input and output tensor copy

required between the ARM and the DL engine. Graph

transformation and operator fusion offered by custom interfaces are

NOT supported. (2) Accuracy - DL engines are mostly developed

with fixed point (8-Bit) computation for cost efficient

implementation. We would be calibrating floating point models

when they need to be deployed DL engines. Enabling calibration of

models for fixed point computation using open-source DL inference

is the important challenge to be addressed.

Open-source Inference Frameworks
The traditional DL SW solution would enable model

deployment when complete DL model (all layers) are supported by

DL engine. If there are any layers in the DL model which are not

supported by DL engine, then the user would NOT be able to deploy

the model without silicon vendor’s support. Figure 3 describes the

DL SW offering modules and user interfaces for Tensorflow lite

inference library. Deployment of these models are supported by

Tensorflow lite runtime with the use of delegate API. Below are the

major components of our proposed solution which make the

deployment of user model on given DL HWA possible.

• Allow Listing - Graph Partitioning

• Post Training Quantization (PTQ)

• Optimal Memory and Tensor Management

The following sections explain the details of these major

components. Similar methods are used in ONNX runtime

(Execution Provider) and TVM Runtimes (Bring Your Own

Codegen) to enable acceleration using DL engines.

The figure 4 describes the programming model of proposed

solution for model deployment on the device. As described in the

figure, it is a two-step process. The first step which is model

compilation is performed on host PC using python APIs. This

process identifies the operators those can be offloaded and optimizes

them as sub graphs for given DL HWA/DSP. The compilation step

also handles the calibration of model for fixed point computation

with reduced bit-depth. The second step is the model inference in

which the optimized model artifacts created during compilation step

are used to perform the inference using DL HWA/DSP on target

device. This inference step can be optionally simulated on host PC

as well for validation or software in loop test.

Figure 3. Inference acceleration by offloading to DL HWA

Figure 4. Tensorflow Lite based Programming model

Allow Listing - Graph Partitioning
This is the first module that interacts with open-source

inference library. All the operators in the given model are queried

against support for the same in DL HWA. Based on the supported

list of operators, the entire model is partitioned into multiple sub

graphs; the subgraphs with supported nodes executed on DL HWA

and remaining subgraphs executed on ARM Cortex cores. The

allow-list is prepared to have the graph partitioning such that over

all execution of the model is optimal.

DL models can have a few operators which are not

independently supported by the DL HWA but can be fused to form

a supported operator (e.g. reshape-transpose-reshape layer

combination can be fused to a single shuffle channel layer). Such

potential layer combinations are identified at the time of allow-

listing and delegated to DL HWA to be fused as part of custom

model compilation. This implementation poses challenge due to the

fact that, at a time, only one node is available to the allow-listing

API and requires maintaining an active history of combination

checks to search for layer combinations. This solution has been

optimally implemented as part of our offering.

Object detection (OD) models are a very widely used class of

models in autonomous driving applications. These models consist

of a backbone part followed by post processing part. For several

networks, the post processing (PP) part consists of a large number

118-2
IS&T International Symposium on Electronic Imaging 2022

Autonomous Vehicles and Machines 2022

of operators which may not be supported by the DL HWA. This

results in a large number of subgraphs formed which are not

supported by DL HWA which is not optimal for

latency/performance. We solve this issue with the use of a meta

architecture format understandable by our model compilation tool

to capture the required post processing information based on model

type (e.g. SSD, Retina Net, Yolo, etc.) and implement it as a custom

post processing layer supported on DL HWA. This requires

allowing all the post processing layers to be delegated to DL HWA

where they are then replaced by customized supported layer as part

of model compilation. This is done by identifying the backbone part

of the model using a backwards DFS on the model with the

convolution heads of OD network as roots for DFS. The nodes not

a part of backbone (which constitute post processing) are marked

allowed by the allow-listing API without any further condition

check. This solution results in significant performance improvement

for OD models over existing open-source DL offerings. Supported

Models can be found from

https://github.com/TexasInstruments/edgeai-modelzoo and

https://github.com/TexasInstruments/edgeai-yolov5

Post Training Quantization
The model compilation and inference being part of the same

eco-system poses a challenge for calibration. (1) Calibration for

quantization [9][10] cannot be done during importing of network

nodes (as is the current implementation in custom DL inference SW

cannot directly call existing Calibration APIs) since inputs are not

available in the initialization phase of runtime. (2) Needs multiple

images for calibration, interpreter invoke is called for individual

images, so all images required for calibration are not available at the

same time.

The Figure 5 describes proposed solution for this PTQ calibration.

(1) For each of the first ‘N’ images (‘N’ – number of frames used

for calibration), the floating-point mode of a reference DL inference

SW is invoked, and inputs of all subgraphs are saved in file system.

Floating point mode 32-bit float mode reference DL inference SW

is used here, so no calibration needed. At the invoke of Nth frame,

the saved floating-point inputs of all the N frames needed for

calibration are available. (2) Then the DL calibration is performed

using the 8/16 bit (number of bits provided by the user based on

his/her inference requirement) fixed point mode of DL. (3) As a final

step, calibrated network is saved to the file system to run the

inference of all the remaining images. These 3 steps done as part of

Subgraph Initialization. For frame ‘N+1’ onwards, read input image

and perform inference using the saved calibrated subgraph

(Subgraph inference).

Figure 5. PTQ calibration flow

Memory and Tensor Management
The input and output tensor of the DL models are usually

allocated in the user’s space memory of the Linux system. This

memory space would not be accessible in DL HWA. We have

enabled APIs for allocating the input and output tensor buffer in

shared heap memories. This avoids one round trip of buffers to the

external memory and thus reduces overall memory bandwidth /

power requirements. During vision-based DL model training the

input image is normalized and resultant float input tensor is used as

input for model. The float tensor would need 4 bytes (32-bit) for

each element compared to 1 byte of the element from camera sensor

output which is unsigned 8-bit integer. We propose to update model

offline to change this input to 8-bit integer and push the required

normalization parameters as part of the model. This figure 6 shows

the example of such original model with float input and an updated

model with 8-bit integer. The operators inside the dotted box are

additional operators. This model is functionally exactly same as

original but would require less memory bandwidth compared

original. The additional operators also would be merged into the

following convolution layer to reduce overall DL inference latency.

Figure 6. Float to uint8 conversion of Input tensor

Results/Discussion

Table I below shows latency in milliseconds(ms) for a few

well-known DL models when executed on our offering. ARM only

latency values are reported with 2 threads used for execution. Our

heterogeneous solution is seen to provide up to 50 to 150x

improvement over ARM only solution for open-source frameworks.

IS&T International Symposium on Electronic Imaging 2022
Autonomous Vehicles and Machines 2022 118-3

https://github.com/TexasInstruments/edgeai-modelzoo

Table I: Inference latency improvement

Model name ARM
only (ms)

ARM+DSP
(ms)

Improvemen
t ratio

mobilenet_v1 89 1.45 61

inceptionnetv1 118 2.31 51

deeplabv3_mnv2 1079 10.22 105

ssd_mobilenet_v1 442 2.71 163

Table II provides comparison on a variety of factors to

demonstrate the wide coverage and interface options provided by

our solution based on open source frameworks when compared with

custom API.

Table II: Custom and Open-source Framework Comparison

Features Custom API TVM, Tensorflow-Lite
and ONNX runtimes

Programing

interface

C/C++ Python, C/C++

Number of

layer types

~30 All the (150+)

TFLite/ONNX operators

Number of

networks

50+ 300+

Model

formats

Caffe, ONNX,

Tensorflow

MXNet, ONNX,

Pytorch, Tensorflow,

Caffe2, Keras, etc.

Model

Architecture

Classification,

Object detection

Segmentation

Can run any model that

Open-source inference

libraries can support

As explained in section on “Allow Listing-Graph Partitioning”,

our solution to implement post processing of object detection

networks on DL HWA with the use of meta architecture is able to

provide a large performance improvement. Table III shows latency

in ms for (i) Optimized solution - OD backbone executed on DL

HWA and post processing on ARM core (ii) Further optimized

solution – OD backbone and post processing both executed on DL

HWA. Results show we are able to extract about 10-15 times

additional improvement in performance using the meta-architecture

based solution.

Table III: Latency improvement for object detection models

Model name Backbone
in DSP
and PP in
ARM

End to
End Model
in DSP

Improveme
nt ratio

Mobilenet V2 +
SSD

59 4.8
12.3

Retinanet +
RegnetX

352 19.5
18.1

Yolov3 + RegnetX 118 12.1 9.75

Conclusion
The paper proposed solution using open-source frameworks,

that enabled ease of use and improved coverage for network types

using fall back for unsupported features from the custom software.

The proposed solution implemented heterogeneous execution on

ARM based Linux platform and DL accelerators using open-source

inference frameworks - TVM/NEI-AI-DLR, ONNX Runtime and

Tensorflow-lite runtime. The proposed solution provides optimal

performance and latency without compromising latency. The

proposed solution consists automatic splitting model into multiple

subgraphs automatically, post-training quantization and Optimal

Tensor Management. All tools and examples of this implementation

are made available on opensource repository from Texas

Instruments.

References
[1] Mody, Mihir, Jason Jones, Kedar Chitnis, Rajat Sagar, Gregory Shurtz,

Yashwant Dutt, Manoj Koul, M. G. Biju, and Aish Dubey.

"Understanding vehicle e/e architecture topologies for automated

driving: System partitioning and tradeoff parameters." Electronic

Imaging 2018, no. 17 (2018): 358-1

[2] SAE J3016, “Taxonomy and Definitions for terms related to on-road

automated motor vehicles”

[3] Mihir Mody, Niraj Nandan, Shashank Dabral, Hetul Sanghvi, et.al,

“Image Signal Processing for Front Camera based Automated Driver

Assistance System”, IEEE International Conference on Consumer

Electronics, (ICCE) , Berlin, 2015

[4] Shyam Jagannathan, Mihir Mody, Jason Jones, Pramod Swami and

Deepak Poddar, “Multi-sensor fusion for Automated Driving:

Selecting Model and Optimizing on Embedded Platform”, AVM track,

Electronic Imaging, 2018

[5] Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin et al. "Tensorflow: A system for

large-scale machine learning." In 12th {USENIX} symposium on

operating systems design and implementation ({OSDI} 16), pp. 265-

283. 2016.

[6] ONNX Runtime - https://onnxruntime.ai/docs/execution-providers/

[7] T. Chen et al., “TVM: An automated end-to-end optimizing compiler

for deep learning,” in Proc. 13th USENIX Symp. Oper. Syst. Design

Implement. (OSDI), Carlsbad, CA, USA, 2018, pp. 578–594.

[8] Neo-AI DLR - https://github.com/neo-ai/neo-ai-dlr

[9] K. Desappan, M. Mody, M. Mathew, P. Swami and P. Eppa, "CNN

Inference: Dynamic and Predictive Quantization," 2018 IEEE 8th

118-4
IS&T International Symposium on Electronic Imaging 2022

Autonomous Vehicles and Machines 2022

https://github.com/neo-ai/neo-ai-dlr

International Conference on Consumer Electronics - Berlin (ICCE-

Berlin), 2018, pp. 1-4.

[10] M. Mody, D. Kumar, P. Swami, M. Mathew and S. Nagori, "Low cost

and power CNN/deep learning solution for automated driving," 2018

19th International Symposium on Quality Electronic Design (ISQED),

2018, pp. 432-436.

Author Biography

Kumar Desappan is Senior Member of Technical Staff (SMTS) at Texas

Instruments (TI) Incorporated. His domains of interest are Machine/Deep

learning, image processing and computer vision algorithms with a focus on

software solution for edge devices. He received Bachelor of Engineering

(BE) from Anna University - Chennai in 2005

Anand Pathak is a software engineer at Texas Instruments (TI) Incorporated.

His domains of interest are Machine/Deep learning, image processing and

computer vision algorithms. He received Bachelor of Technology (B.Tech.)

and Master of Technology (M.Tech.) degrees in Electrical Engineering from

Indian Institute of Technology (IIT), Bombay in 2018

Pramod Swami is Senior Principal Engineer (SMTS) and responsible for

software product solution for TI’s (Texas Instrument) processor business in

field of imaging and analytics. His domains of interest are digital signal

processing, computer vision, deep learning and Video coding. He received

his bachelor’s degree in electronics and communication engineering from

Malviya National Institute of Technology, Jaipur in 2001

Mihir Mody is SoC Architect lead (DMTS) responsible for roadmap and chip

definition for Sitara MCU business in Texas Instrument (TI). His domains of
interest are real time control, image processing, computer vision, deep

learning and Video coding. He received his master’s in electrical

engineering from Indian Institute of Science (IISc) in 2000

Yuan Zhao is Member of Group Technical Staff (MGTS) at Texas

Instruments (TI). His domains of interest are compilers, high performance
computing, programming models with ease of use, and lately compilers for

machine learning. He received PhD in Computer Science from Rice

University in 2006

Paula Carrillo is a software developer at Texas Instruments, Inc (TI). Her

domains of interest are in digital signal processing, machine learning and
codecs. She received her Master of Science in Electrical Engineering from

Florida Atlantic University in 2008

Praveen Eppa graduated with Bachelor of Technology (B. Tech.) in

Electronics and Communications Engineering from Jawaharlal Nehru
Technological University, Hyderabad in 2008. He joined Texas Instruments

TI as contractor and is currently working as part of TI Deep Learning
Library (TIDL) team in Embedded Processors group

Jianzhong Xu is a Software Applications Engineer at Texas Instruments (TI).

His domains of interest are digital signal processing, high performance

computing and machine learning. He received his Master of Science in

Electrical Engineering from University of Maryland in 1997

IS&T International Symposium on Electronic Imaging 2022
Autonomous Vehicles and Machines 2022 118-5

