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Abstract 

Automated driving functions, like highway driving and parking 

assist, are increasingly getting deployed in high-end cars with the 

goal of realizing self-driving car using Deep learning (DL) 

techniques like convolution neural network (CNN), Transformers 

etc. Traditionally custom software provided by silicon vendors are 

used to deploy these DL algorithms on devices. This custom 

software is optimal for given hardware, but supports limited 

features, resulting in-flexible for evaluating various deep learning 

model architectures tradeoffs by means of rapid prototyping. This 

paper proposes usage of various open-source deep learning 

inference frameworks to quickly deploy any model architecture 

without any performance/latency impact. The proposed solution 

consists of automatic Graph Partitioning, Post-Training 

Quantization and Optimal Tensor Management. The proposed 

solution has been implemented with three open-source inference 

frameworks namely Tensorflow-Lite, TVM/Neo-AI-DLR and ONNX 

Runtime running on Linux OS. The proposed solution using open-

source frameworks provides ease of use and improved coverage for 

network types due to fall back for unsupported features from custom 

software provided by silicon venders.  

Introduction  
The Automated driving (AD) systems implement highway 

driving and value parking functions at multiple automation levels 

(L2-L5) [1-2]. The figure 1 shows the functional block diagram to 

achieve these functions.  The key blocks for automated driving are 

namely Perception, Localization, Fusion, Driving Policy, Motion 

Planning and Control. The multi-modality perception (Camera, 

radar and Lidar) is used to gather environment information around 

car [3].  ‘Fusion’ module is used to give most reliable environment 

using Bayesian filtering among all modalities [4]. The ‘localization’ 

module is used to find exact position of vehicle in real world co-

ordinates using High definition-HD Maps and perception data. The 

resulting environment model is used by ‘Driving Policy’ module to 

take decision e.g. stay in lane, lane change, yield, merge etc.  The 

decision of Driving policy module is translated in actual car 

movement with ‘Motion planning’ module accounting kinematics 

and passenger’s comfort.  Lastly, typical ‘control’ module is used to 

track actual trajectory with respect to reference by controlling 

actuators. 

As shown in figure 1, many of these modules are built with 

Deep Learning (DL) based approaches either completely or 

partially. With the pervasive used of DL, realization of autonomous 

systems includes one or more purpose-built processors for DL 

acceleration along with general purpose processors like Cortex 

ARM.  As these DL engines (Hardware accelerators or DSPs) are 

purpose built, the silicon vender would provide custom software 

APIs to deploy DL model on these engines. DL algorithms in ADAS 

or Autonomous driving system are used for various kind of 

modalities (Camera, RADAR, LiDAR) and algorithms 

(Perceptions, Planning, Fusion), so a wide range of DL model 

architectures needs to be deployed/evaluated on these DL engines. 

These purpose-built HW engines would come with fixed set of 

functionally (DL Layer/Operator types) and software support. With 

rapidly evolving DL model architectures, development of these 

Automated Driving Systems would need to evaluate new models 

which may not be supported by exiting DL offering.

 

Figure 1. Computation blocks of Autonomous driving system.  

Deep Learning Model Development Workflow 
The Figure 2 describes the typical workflow in DL algorithms 

deployment. User would be training the DL models on CPU/GPUs 

using open-source frameworks like Tensorflow/Pytorch etc. 

Deployment of trained model on embedded system involves two 

steps. As a first step these models would be complied for a given 

target device with the use of offline PC tools provided by the DL 

engine provider. In the second step, artifacts generated in the 

compilation are used to run the DL inference on the target device in 

real-time. These traditional DL offerings lack in below vectors to 

address the of Automated Driving Systems. 

• Ease of use to quickly deploy model on device 

• Flexibility/Scalability to support wide range of DL model 

architectures 

Recently multiple open-source DL inference frameworks 

(Tensorflow Lite, ONNX runtime, TVM, NEO-AI-DLR etc.) [5-8] 

have been developed to improve the ease of DL model deployment. 

These inference frameworks are primarily optimized for generic 

CPU cores like Cortex-A ARM. Some of these frameworks also 

provide options/APIs to accelerate/offload the inference using DL 

engines (HWA/DSP). Tensorflow Lite provides Delegate API to 

accelerate/offload supported operators of the model as a subgraph to 

DL HWA / DSP. Similarly, ONNX runtime provides Execution 

Provider API to achieve the same purpose. 
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Figure 2. DL Workflow with open-source inference frameworks. 

This requires to address the below challenges to fully embrace 

the open-source frameworks on resource constrained (Power, 

Latency, Cost etc.) target device. (1) Latency/ Inferences Per 

Second: Time required to run inference on these open-source DL 

inference frame gets impacted. Input and output tensor copy 

required between the ARM and the DL engine. Graph 

transformation and operator fusion offered by custom interfaces are 

NOT supported. (2) Accuracy - DL engines are mostly developed 

with fixed point (8-Bit) computation for cost efficient 

implementation. We would be calibrating floating point models 

when they need to be deployed DL engines. Enabling calibration of 

models for fixed point computation using open-source DL inference 

is the important challenge to be addressed. 

Open-source Inference Frameworks  
The traditional DL SW solution would enable model 

deployment when complete DL model (all layers) are supported by 

DL engine. If there are any layers in the DL model which are not 

supported by DL engine, then the user would NOT be able to deploy 

the model without silicon vendor’s support. Figure 3 describes the 

DL SW offering modules and user interfaces for Tensorflow lite 

inference library.  Deployment of these models are supported by 

Tensorflow lite runtime with the use of delegate API. Below are the 

major components of our proposed solution which make the 

deployment of user model on given DL HWA possible. 

• Allow Listing - Graph Partitioning 

• Post Training Quantization (PTQ) 

• Optimal Memory and Tensor Management 

The following sections explain the details of these major 

components. Similar methods are used in ONNX runtime 

(Execution Provider) and TVM Runtimes (Bring Your Own 

Codegen) to enable acceleration using DL engines.  

The figure 4 describes the programming model of proposed 

solution for model deployment on the device. As described in the 

figure, it is a two-step process. The first step which is model 

compilation is performed on host PC using python APIs. This 

process identifies the operators those can be offloaded and optimizes 

them as sub graphs for given DL HWA/DSP. The compilation step 

also handles the calibration of model for fixed point computation 

with reduced bit-depth. The second step is the model inference in 

which the optimized model artifacts created during compilation step 

are used to perform the inference using DL HWA/DSP on target 

device. This inference step can be optionally simulated on host PC 

as well for validation or software in loop test.  

 

Figure 3. Inference acceleration by offloading to DL HWA 

 

Figure 4. Tensorflow Lite based Programming model 

Allow Listing - Graph Partitioning 
This is the first module that interacts with open-source 

inference library. All the operators in the given model are queried 

against support for the same in DL HWA. Based on the supported 

list of operators, the entire model is partitioned into multiple sub 

graphs; the subgraphs with supported nodes executed on DL HWA 

and remaining subgraphs executed on ARM Cortex cores. The 

allow-list is prepared to have the graph partitioning such that over 

all execution of the model is optimal.  

DL models can have a few operators which are not 

independently supported by the DL HWA but can be fused to form 

a supported operator (e.g. reshape-transpose-reshape layer 

combination can be fused to a single shuffle channel layer). Such 

potential layer combinations are identified at the time of allow-

listing and delegated to DL HWA to be fused as part of custom 

model compilation. This implementation poses challenge due to the 

fact that, at a time, only one node is available to the allow-listing 

API and requires maintaining an active history of combination 

checks to search for layer combinations. This solution has been 

optimally implemented as part of our offering. 

Object detection (OD) models are a very widely used class of 

models in autonomous driving applications. These models consist 

of a backbone part followed by post processing part. For several 

networks, the post processing (PP) part consists of a large number 
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of operators which may not be supported by the DL HWA. This 

results in a large number of subgraphs formed which are not 

supported by DL HWA which is not optimal for 

latency/performance. We solve this issue with the use of a meta 

architecture format understandable by our model compilation tool 

to capture the required post processing information based on model 

type (e.g. SSD, Retina Net, Yolo, etc.) and implement it as a custom 

post processing layer supported on DL HWA. This requires 

allowing all the post processing layers to be delegated to DL HWA 

where they are then replaced by customized supported layer as part 

of model compilation. This is done by identifying the backbone part 

of the model using a backwards DFS on the model with the 

convolution heads of OD network as roots for DFS. The nodes not 

a part of backbone (which constitute post processing) are marked 

allowed by the allow-listing API without any further condition 

check. This solution results in significant performance improvement 

for OD models over existing open-source DL offerings. Supported 

Models can be found from 

https://github.com/TexasInstruments/edgeai-modelzoo and 

https://github.com/TexasInstruments/edgeai-yolov5 

Post Training Quantization 
The model compilation and inference being part of the same 

eco-system poses a challenge for calibration. (1) Calibration for 

quantization [9][10] cannot be done during importing of network 

nodes (as is the current implementation in custom DL inference SW 

cannot directly call existing Calibration APIs) since inputs are not 

available in the initialization phase of runtime. (2) Needs multiple 

images for calibration, interpreter invoke is called for individual 

images, so all images required for calibration are not available at the 

same time.  

The Figure 5 describes proposed solution for this PTQ calibration. 

(1) For each of the first ‘N’ images (‘N’ – number of frames used 

for calibration), the floating-point mode of a reference DL inference 

SW is invoked, and inputs of all subgraphs are saved in file system. 

Floating point mode 32-bit float mode reference DL inference SW 

is used here, so no calibration needed. At the invoke of Nth frame, 

the saved floating-point inputs of all the N frames needed for 

calibration are available. (2) Then the DL calibration is performed 

using the 8/16 bit (number of bits provided by the user based on 

his/her inference requirement) fixed point mode of DL. (3) As a final 

step, calibrated network is saved to the file system to run the 

inference of all the remaining images. These 3 steps done as part of 

Subgraph Initialization. For frame ‘N+1’ onwards, read input image 

and perform inference using the saved calibrated subgraph 

(Subgraph inference). 

 

Figure 5. PTQ calibration flow 

Memory and Tensor Management  
The input and output tensor of the DL models are usually 

allocated in the user’s space memory of the Linux system. This 

memory space would not be accessible in DL HWA. We have 

enabled APIs for allocating the input and output tensor buffer in 

shared heap memories. This avoids one round trip of buffers to the 

external memory and thus reduces overall memory bandwidth / 

power requirements. During vision-based DL model training the 

input image is normalized and resultant float input tensor is used as 

input for model. The float tensor would need 4 bytes (32-bit) for 

each element compared to 1 byte of the element from camera sensor 

output which is unsigned 8-bit integer.  We propose to update model 

offline to change this input to 8-bit integer and push the required 

normalization parameters as part of the model. This figure 6 shows 

the example of such original model with float input and an updated 

model with 8-bit integer. The operators inside the dotted box are 

additional operators. This model is functionally exactly same as 

original but would require less memory bandwidth compared 

original. The additional operators also would be merged into the 

following convolution layer to reduce overall DL inference latency.   

 

Figure 6. Float to uint8 conversion of Input tensor 

Results/Discussion 
 

Table I below shows latency in milliseconds(ms) for a few 

well-known DL models when executed on our offering. ARM only 

latency values are reported with 2 threads used for execution. Our 

heterogeneous solution is seen to provide up to 50 to 150x 

improvement over ARM only solution for open-source frameworks.
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Table I: Inference latency improvement 

Model name ARM 
only (ms)  

ARM+DSP 
(ms) 

Improvemen
t ratio  

mobilenet_v1 89 1.45 61 

inceptionnetv1 118 2.31 51 

deeplabv3_mnv2 1079 10.22 105 

ssd_mobilenet_v1                         442 2.71 163 

 

Table II provides comparison on a variety of factors to 

demonstrate the wide coverage and interface options provided by 

our solution based on open source frameworks when compared with 

custom API. 

Table II: Custom and Open-source Framework Comparison 

Features Custom API TVM, Tensorflow-Lite 
and ONNX runtimes 

Programing 

interface 

C/C++ Python, C/C++ 

Number of 

layer types 

~30 All the (150+) 

TFLite/ONNX operators 

Number of 

networks 

50+ 300+ 

Model 

formats 

Caffe, ONNX, 

Tensorflow 

MXNet, ONNX, 

Pytorch, Tensorflow, 

Caffe2, Keras, etc. 

Model 

Architecture 

Classification, 

Object detection 

Segmentation 

Can run any model that 

Open-source inference 

libraries can support  

 

As explained in section on “Allow Listing-Graph Partitioning”, 

our solution to implement post processing of object detection 

networks on DL HWA with the use of meta architecture is able to 

provide a large performance improvement. Table III shows latency 

in ms for (i) Optimized solution - OD backbone executed on DL 

HWA and post processing on ARM core (ii) Further optimized 

solution – OD backbone and post processing both executed on DL 

HWA. Results show we are able to extract about 10-15 times 

additional improvement in performance using the meta-architecture 

based solution. 

 

 

 

Table III: Latency improvement for object detection models 

Model name Backbone 
in DSP 
and PP in 
ARM  

End to 
End Model 
in DSP 

Improveme
nt ratio  

Mobilenet V2 + 
SSD  

59 4.8 
12.3 

Retinanet + 
RegnetX 

352 19.5 
18.1 

Yolov3 + RegnetX 118 12.1 9.75 

Conclusion 
The paper proposed solution using open-source frameworks, 

that enabled ease of use and improved coverage for network types 

using fall back for unsupported features from the custom software. 

The proposed solution implemented heterogeneous execution on 

ARM based Linux platform and DL accelerators using open-source 

inference frameworks - TVM/NEI-AI-DLR, ONNX Runtime and 

Tensorflow-lite runtime. The proposed solution provides optimal 

performance and latency without compromising latency. The 

proposed solution consists automatic splitting model into multiple 

subgraphs automatically, post-training quantization and Optimal 

Tensor Management. All tools and examples of this implementation 

are made available on opensource repository from Texas 

Instruments. 
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