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Abstract 

The IEEE P2020 Noise standard is built upon methodology 
that is discussed by other photography and camera standards. It 
includes extensions and adjustments to support operating modes 
and conditions that are relevant to automotive cameras. This work 
presents methods and procedures that are covered by the IEEE 
P2020 Noise standard to derive sensor-level and camera-level noise 
image quality factors from dark statistics, photon-transfer and 
signal-to-noise ratio curves, and signal falloff. Example 
implementations and experimental results are shown from work that 
was done with automotive cameras which were activated and tested 
under conditions that are relevant to automotive applications.       

Introduction  
Noise in electronic imaging systems represents the unwanted 

variations in pixel signal values under constant and uniform 
illumination. The total noise of a pixel array or sub-array includes 
temporal and spatial variations. Temporal noise is the fluctuations 
in pixel signal over time or from one frame to the other, and fixed-
pattern noise (FPN) is the spatial variations in mean pixel signal 
across a uniformly illuminated region. Noise quantification is 
crucial for automotive imaging applications because it degrades 
image quality in viewing applications and can misguide object 
detection and identification blocks in machine vision systems. 

Although noise is covered by several photography and camera 
standards, including The European Machine Vision Association 
(EMVA) 1288 standard, Release 4.0 Linear [1] and the International 
Organization for Standardization (ISO) 15739:2013 standard [2], 
existing standards do not fully address operating modes and 
conditions that are relevant to automotive cameras, such as extended 
temperature range, high dynamic range (HDR) scenes, raw image 
data in 16-bit to 32-bit format when cameras are operated in HDR 
modes, and wide field-of-view lenses. For that reason, the IEEE 
P2020 standard for automotive image quality includes a clause that 
is dedicated to noise [3].    

Noise Image Quality Factors 
This section discusses procedures to derive sensor-level image 

quality factors (IQFs) from dark statistics, photon-transfer curve 
(PTC) and signal-to-noise ratio (SNR) curves, and camera-level 
IQFs from signal falloff. All procedures require raw, i.e., linear, 
image data. 

Dark Statistics 
Dark noise properties of automotive cameras are important for 

evaluation of image quality in dim light conditions. Dark signal 
distribution and dark signal non-uniformity (DSNU) are used to 
characterize dark spatial noise, and temporal noise distribution and 
array temporal noise are used to characterize dark temporal noise. 
For data acquisition, a set of K frames should be captured in the dark 
in stable temperature conditions when the camera is activated with 
the same configuration file that is used by the end-user application. 
Mean and temporal variance can then be calculated for each pixel to 

produce mean signal and temporal variance images, as illustrated in 
Figure 1. 

 
Figure 1. Dark statistics requires a set of K dark images that were captured at 
a stable temperature when the camera was activated with the configuration 
file of the end-user application. Mean and temporal variance can be calculated 
for each pixel to produce mean and temporal variance images.  

Mean signal of the pixel in row i and column j, µ(i, j), is 
calculated as follows:   

𝜇(𝑖, 𝑗) = 1𝐾 𝑆(𝑖, 𝑗, 𝑘), (1) 

where k is frame number and S is the pixel signal in digital numbers 
(DNs). Mean signal of the entire array, µ, is calculated as: 

 𝜇 = 1𝐼 × 𝐽 𝜇(𝑖, 𝑗) , (2) 

where I and J are the total number of rows and columns, 
respectively. Fixed-pattern noise, σFPN, which is the DSNU in this 
case since the measurement is done in the dark, is calculated as: 

 σFPN2 = 1𝐼 × 𝐽 [𝜇(𝑖, 𝑗) − 𝜇] . (3) 

Temporal noise of the pixel in row i and column j, σtemp(i, j), is 
calculated as follows: 

 σtemp2 (𝑖, 𝑗) = 1𝐾 − 1 [𝑆(𝑖, 𝑗, 𝑘) − 𝜇(𝑖, 𝑗)] . (4) 

Array temporal noise, σtemp, is calculated as: 

σtemp2 = 1𝐼 × 𝐽 σtemp2 (𝑖, 𝑗) . (5) 
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All the expressions in (1) – (5) and in the next section are 
shown in a simplified format. For example, calculation and 
subtraction of dark signal from the total signal is not included. The 
IEEE P2020 Noise standard [4] includes equations in their full 
format with all calculation steps and calculation of row and column 
noise parameters. Revision 8 of the draft document was available at 
the time of the writing, and the reader is advised to refer to the most 
recent revision.   

Photon-Transfer and SNR Curves 
Like with dark statistics, a set of images that were captured 

under stable temperature conditions and with the configuration file 
of the end user application is needed to construct the PTC and the 
SNR curves of an image sensor. However, this time an image of a 
test target is projected on the image plane during image capture. The 
image of the test target includes N regions, where illuminance or 
irradiance in each region is, ideally, constant and uniform, but light 
level is different in each region, as illustrated in Figure 2.   

 
Figure 2. A set of K image frames that were captured when a test target is 
projected on the image plane is used to construct PTC and SNR curves. The 
test target includes N regions, and illumination in each region, n, in the image 
is constant and uniform, but different. 

Equations (1)–(5) can be applied to each region. Additional 
expression to calculate total noise, σtot, temporal SNR, SNRtemp, and 
total SNR, SNRtot, in region n are shown below. Analysis is based 
on the assumptions that (a) variations in pixel parameters are small, 
and (b) illumination gradients in each region are negligible. 

 𝜎tot2 (𝑛) = 𝜎temp2 (𝑛) + 𝜎FPN2 (𝑛); (6) 

 
 SNRtemp(𝑛) = 𝜇(𝑛)𝜎temp(𝑛) ; (7) 

 
 SNRtot(𝑛) = 𝜇(𝑛)𝜎tot(𝑛). (8) 

Figure 3 presents simulated PTC and SNR curves of an image 
sensor in 3-exposure HDR mode. In this mode, the HDR response 
is achieved by combining frames that are captured with 3 different 
exposure times. The photon-transfer curve is the temporal noise 
versus mean signal curve; the FPN versus mean signal curve is 

included in the same plot. System gain (SG) is the DN to e- factor, 
which is the slope of the PTC curve in shot-noise limited regions 
[5]. The 3-exposure mode has three SG values, one for each 
exposure, where the one that is useful to estimate the effective 
number of charge carriers is the one that is closest to the origin, i.e., 
SG(1). Mean signal level that correlates to the effective full well, 
SEFW, is the signal at the peak of the PTC curve. 

In the SNR plot, SNR1 is the signal level at which signal equals 
total noise and, therefore, SNRtot = 0 dB. Each exposure transition 
involves a sudden reduction in SNR [6]. The plot indicates peak and 
dip SNR values at the beginning and at the end of each transition 
region, respectively. Signal value at Smax is the maximum digital 
number that the sensor can output with the configuration file that is 
used for the measurement.    

 
Figure 3. Simulated photon-transfer curve (top) and SNR curves (bottom) of 
an image sensor in 3-exposure HDR mode. 

Two regions of concern in the SNR curve are SNR in dim 
scenes, where noise is more dominant because the photo signal is 
low, and the dips in the SNR curve. Figure 4 presents example 
images for both regions. Noise artifacts in dim light conditions are 
shown in an image that was captured outdoors at nighttime with an 
automotive camera where the main light source was the headlights 
of the car. Noise artifacts in the transition region are demonstrated 
with an image that was captured outdoors with an automotive 
camera that was activated in a 3-exposure HDR mode. The arrows 
point to regions where mean signal levels of green pixels are around 
the second transition of the SNR curve. Tone mapping and contrast 
had to be adjusted to make the artifacts more visible in the image as 
SNRdip(2) was about 25 dB, which is sufficiently high.  
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Figure 4. Noise artifacts in photos that were captured with automotive 
cameras. The top image was captured at nighttime in dim light conditions. The 
bottom image demonstrates the effect of SNR dip in the second transition 
region of the SNR curve of an image sensor in 3-exposure HDR mode. 

Signal Falloff 
Signal falloff is the low-frequency change in mean signal 

response across the array. It is caused by lens vignetting, angular 
response of camera filters, micro-lens shift, and temperature 
gradients in the pixel array. It is important for any application that 
relies on absolute radiometry, and it may impact computer vision 
training and detection. This metric is proposing a method to quantify 
the falloff by curve fitting, where the residual is used to evaluate the 
fit and good fits can be used to compensate for signal falloff in 
captured images. 

Figure 5 presents 30-frame average signal falloff images of the 
Gr channel, i.e., green pixels in the G-R rows of the Bayer pattern. 
Images were captured with two automotive cameras, with 2.1 and 
2.6 MP image sensors under diffused uniform illumination from a 
broadband source. Camera lenses were different, but both included 
an infrared-cut filter. The images show that signal falloff from the 
center to the edge of the array is steeper in camera #2.  

 
Figure 5. Signal falloff images of the Gr channel of two automotive cameras. 
Images were captured when the cameras were illuminated by diffused uniform 
light of a 6,000K source. The falloff is steeper in camera #2.  

Practical Examples 
This section presents experimental work that was done with 

automotive cameras to implement tests and procedures to extract the 
sensor-level and camera-level noise IQFs that were covered in the 
previous section. 

Dark Statistics  
Two sets of 44 dark images were captured with an automotive 

camera with an older generation 2 MP image sensor when the 
camera was placed in a temperature chamber and the sensor junction 
temperature was 40C in the first set and 80C in the second. The 
camera was activated with high gain and 33 ms exposure time. 
Figure 6 presents dark signal histogram and 1- cumulative 
distribution function (CDF) plots at both temperatures, which show 
that dark signal values and distribution increase with temperature.  

DSNU, as calculated according to (3), is 9.8 DN at 40C and 
74.7 DN at 80C. System gain of the image sensor at the gain that 
was used was 4.2 DN/e- according to the product characterization 
report. This value allowed to calculate DSNU in charge units, which 
resulted in 2.3 e- at 40C and 17.8 e- at 80C.    

Figure 7 presents temporal noise variance histogram and 1-
CDF plots from the same data set. Dark temporal noise is composed 
of dark current shot noise, which increases with temperature, and 
read noise. Read noise includes a thermal component, which 
increases with temperature, and random telegraph signal noise, 
which decreases with temperature. Overall, dark temporal noise 
increases with temperature. Temporal noise, as calculated according 
to (5) and after division by the SG, is 1.4 e- at 40C and 3.6 e- at 80C.  

 
Figure 6. Mean signal histograms (left) and 1-CDF plots (right) at junction 
temperatures of 40C and 80C. 

 
Figure 7. Dark temporal noise variance histograms (left) and 1-CDF plots 
(right) at 40C and 80C.  

Photon-Transfer and SNR Curves 
Figure 8 presents a photo of the setup that was used for the 

measurement. It included a demo camera with a 1 MP automotive 
image sensor and a 36-patch 150 dB Imatest test chart with a 
DarkWorld mask that was placed on an LED light panel. An 
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example with a 36-patch 134 dB Image Engineering test chart is 
shown in the IEEE P2020 Noise standard [4].  

 
Figure 8. An automotive camera is positioned in front of an HDR test chart that 
is placed on an LED light panel in the setup that was used to collect data to 
construct the photon-transfer and SNR curves of the camera.  

There are challenges to this measurement. Glare, which is 
caused by internal reflections inside the camera module, increases 
signal value of all pixels. Lens reflections produce an image of the 
brightest patches of the chart in the image region of the darkest 
patches if the camera is aligned to have the center of the chart 
roughly located at the center of the pixel array, as shown in Figure 
9. Lastly, the user should ensure that there are no reflections of the 
camera in the chart.  

These challenges are manageable, and it is possible to extract 
useful sensor-level noise IQFs from image sets of HDR test charts. 
To minimize glare, all chart areas, excluding the patches, should be 
covered by material that is opaque and matte for the relevant 
spectrum. With the chart that was used here, registration marks at 
the four corners of the chart were covered, as shown in Figure 8.  

   

 
Figure 9. Challenges with HDR test charts. Glare is a result of internal 
reflections inside the camera module. Lens reflections of the brightest patches 
appear in the image region of the darkest patches, making them unusable. 

Image sets may need to be captured with more than one light 
level due to glare. Figure 10 presents two images from two image 
sets that were captured for this work, one when the power of the 
LED panel was set to 100% and one when it was set to 0.4%. When 
the power of the LED panel is 100%, as shown in the top image, the 
most transparent patch is saturated, as needed in order to obtain 
saturation level. However, although the dynamic range (DR) of the 
sensor with the 3-exposure configuration file that was used for the 

measurement was lower than the dynamic range of the chart, it was 
not possible to cover the entire DR of the sensor with this light level 
because, due to glare, signal level of the least transparent patches 
was higher than the dark level of the image sensor. The image set 
that was captured with 0.4% LED power allowed to cover the low 
signal range down to dark.  

 

 
Figure 10. Images from the 100% and 0.4% LED power image sets. Both 
were needed to cover the sensor DR because of glare. The camera was 
rotated by 90° and aligned to have the center of the chart image at some 
distance away from the center of the pixel array to get the reflections of the 
brightest patches of the chart outside the chart image. 

Lens reflections of the brightest patches are unavoidable. But 
to prevent their appearance in the area of the chart image, the camera 
was rotated by 90° and aligned to obtain the center of the chart image 
at some distance away from the center of the pixel array. Each 
square represents a 26×26 pixel-region that was used for analysis. 
Uniformity was evaluated manually in each selected pixel-region. 
Some of the least transmissive patches had to be excluded because 
their signal level was very similar.     

Signal and noise parameters were calculated for each region, 
and results were used to construct PTC and SNR curves, as shown 
in Figure 11.  
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To calculate system gain, SG, one must first find a shot-noise 
limited region in the SNRtemp curve. Shot-noise follows Poisson 
statistics, therefore, in a shot-noise limited region: σ2e- = Se-, where 
Se- and σe- are signal and noise in charge units, respectively. 
Conversion to signal and noise in DN, SDN and σDN, respectively, 
gives the following relationship: σ2DN = SG·SDN. SNRtemp in this 
region is approximately 20·log10(sqrt(SDN/SG)),  and this results in 
a 10 dB/dec slope. Small deviations from this value are expected 
because of typical process variations. However, large deviations 
indicate that shot noise is not the dominant noise, which can be a 
result of noise that is added by a circuit at the periphery [7]. In these 
situations, it is not possible to calculate a reliable SG value.   

 
Figure 11. PTC and SNR curves of the automotive camera with the 1 MP 
sensor that was activated in 3-exposure HDR mode, as constructed using 
data from the two image sets in Figure 10. The arrow in the SNR plot points to 
the signal region where the slope of the SNRtemp curve is 10 dB/dec.  

With the camera that was used in this work, a shot-noise limited 
region was identified in mean signal values between 50 and 1,700 
DN, as shown in the top plot of Figure 12. The same signal range 
was then used to calculate SG from the PTC curve, as shown in the 
next plot of the same figure, and results gave that SG = 0.92 DN/e-. 
SNR1 was extracted from the SNRtot curve by interpolation of data 
points that were just above and just below 0 dB, as shown in the 
third plot. SEFW and Ssat were obtained from the photon-transfer 
curve, as shown in the bottom plot of Figure 12. All numbers in DN 
and charge units are summarized in the Table I.   

 
Figure 12. Extraction of noise IQFs from the curves in Figure 11. 

Table I. Summary of Noise IQFs from PTC and SNR Curves 

IQF Value 
SG 0.92 DN/e- 
SNR1 2.69 DN = 2.86 e- 
SEFW 510,764 DN = 555 ke- 
Ssat 686,424 DN = 746 ke- 

 

Signal Falloff 
Figure 13 presents the setup that was used to capture images 

for the signal falloff test. A diffuser is placed in front of a camera 
that is pointed at a light panel. Noise filtering and removal of local 
high frequency fluctuations due to temporal noise and FPN is 
important for signal falloff measurements as the goal is to describe 
the general shape of the curve. There are challenges in fitting a 
curve. First, the model form can be wrong. With correct model 
forms, an order that is too low has the benefit of lower computational 
power, but also low accuracy. An order that is too high may fit the 
noise in a specific camera, but not general enough to be used with 
all cameras from the same series.  
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Figure 13. The setup to capture signal falloff images. A diffuser is placed in 
front of a demo camera that is pointed at a light panel. 

 
Figure 14. Signal falloff results with 2nd order and 4th order polynomial fit. 

Figure 14 presents an input image, images that were produced 
from 2nd order and 4th order polynomial fits, and corresponding 
absolute error images. The original image is the camera #1 signal 
falloff image of the Gr channel from Figure 5, where temporal noise 
filtering was applied by image averaging. Spatial noise is filtered by 
dividing the image into 20×32 blocks of 16×16 pixels per color 
channel to produce the input image in Figure 14.  

One may observe that signal falloff from the center to the edge 
of the image is sharper in the input image than in the two fit images. 
The absolute residual error images confirm that the error in the 
center is high. Those images also show high error around columns 
25-26 and rows 9-11. This may indicate that there was some 
contamination on the lens or on the package of the sensor during 

image capture. Lastly, with the 4th order fit, the absolute residual 
error is rather high at the corners. This may be acceptable depending 
on the useful image height for the end-user application. If, for 
example, the application only uses 80% image height, high error at 
the corners would not impact performance.   

Conclusion 
The IEEE P2020 Noise standard addresses operating modes 

and conditions that are relevant to automotive cameras. This work 
presented sensor-level noise IQFs that were extracted from dark 
statistics at 40C and 80C, and from photon-transfer and SNR curves 
that were constructed for an automotive camera that was activated 
in 3-exposure HDR mode and tested with a HDR target. This work 
also presented camera-level noise IQFs for the signal falloff metric 
from work that was done with an automotive camera. 
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