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Abstract 

Characterization data for printers is obtained by printing a test 

chart on the intended production substrate. In practice it is common 

for a different substrate to that used to obtain the characterization 

data to be used in proofing and in production, and this requires 

either reprinting and re-measuring the test chart or estimating new 

characterization data. Methods to do this exist for colorimetric 

characterization data, but with the increasing use of spectral data 

in the workflow, there is a need for a method that can be applied to 

spectral. reflectances. This paper proposes two different methods  

of adjusting printer spectral color characterization data for  

a change in substrates. In the first part, a Spectral Correction 

Technique was applied to spectral reflectance data obtained from 

different printers to predict a spectral color characterization data 

for an additional substrate. In the second part, the reference 

printing condition was used to adjust spectral color 

characterization data. The results were evaluated, and it was found 

that a good prediction is achieved with the use of machine learning. 

Introduction  
In the printing industry, a wide variety of substrates and their 

families have led to looking for alternative options for predicting 

color response in every substrate since the characterization process 

is time and resource-consuming. A number of sources have already 

investigated this problem, and some approaches have been widely 

adopted [1], [2]. Some characterization methods are based on 

spectral data [4], [5], [6], [7], [8]. Printer characterization methods 

may be solely numeric or may be based on the physical description 

of the printing process [1], [2], [10].  

Beer’s law and Neugebauer equations are classic examples  

of physically-based color prediction models; while others are based 

on an empirical approach [3], [9], using a relatively large number of 

color samples to which mathematical fitting techniques are applied. 

There is no straightforward solution to solving multi-substrate 

characterization problems ˗ all the methods referred to above can be 

improved to get a more accurate characterization prediction. It is 

essential to obtain a reliable correction method that will be visually 

acceptable without additional measurements. 

Two methods of spectral reflectance 
prediction 

This work proposes and evaluates two printer spectral 

characterization adjustment methods for different substrates without 

additional printing and measuring. These are the Spectral Correction 

Technique and a Reference Printer-based method using machine 

learning. The latter method originated from [12] with a focus on 

prediction with data analysis.  

Method 1: The Spectral Correction Technique 
A correction method was developed [11] to adjust measured 

colorimetric data for differences in the backing material, and 

subsequently used to predict the measurements of a new substrate 

from reference printing conditions or to adjust printer 

characterization when the substrate colorimetry changed, primarily 

due to variation in the amount of optical brightening. Here we apply 

this approach in the spectral rather than colorimetric domain:  

𝑅𝑝𝑟(𝜆) = (𝑅𝑟𝑒𝑓(𝜆) × (1 + 𝐶(𝜆))) − (𝑅𝑚𝑖𝑛 × 𝐶(𝜆)) (1) 

𝐶(𝜆) =
𝑅𝑊𝑝𝑟(𝜆)−𝑅𝑊𝑟𝑒𝑓(𝜆)

𝑅𝑊𝑟𝑒𝑓(𝜆)−𝑅𝑚𝑖𝑛(𝜆)
 (2) 

Where: 

𝜆 : [380,780] nm. 

𝑅𝑝𝑟(𝜆) :  The predicted spectral reflectance. 

𝑅𝑟𝑒𝑓(𝜆) : The reference spectral reflectance. 

𝑅𝑚𝑖𝑛(𝜆): The spectral reflectance of the patch where the inks 

are printed on top of each other with 100% coverage. 

𝑅𝑊𝑝𝑟(𝜆): The predicted spectral reflectance of white patch. 

𝑅𝑊𝑟𝑒𝑓(𝜆): The reference spectral reflectance of white patch. 

Method 2: Reference printing conditions 
The idea for using reference conditions for adjusting printer 

characterization was taken from [14], where the predicted result is 

obtained as a vector difference between transforms P1 and P2 for 

differences in media and printer respectively (Figure 1).  

 

 
Figure 1. Transforms using reference printing condition. 

A reference printer condition P0 is defined by a set of 

colorimetric data and represents either by a model of this data or by 

a physical printer and media. The transforms T1 and T2 represent the 
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transforms from this reference combination to a printer (printing 

condition P1 printed with same substrate and different printer) and 

substrate (printing condition P2, printed using the same printer and 

different substrate). The actual color transform T3 is computed as 

the sum of the two vectors in CIELAB color space, but this will not 

apply in the same way in the spectral domain.  

In the spectral domain, we assume that the difference between 

the spectral reflectance of the pair of substrates represents the 

difference in absorption between the two substrates. Therefore, that 

difference helps predict the ink printed on the substrates, indicating 

the chosen substrate’s characterization.  

𝑓(𝑃1𝑆1, 𝑃2𝑆1, …  𝑃𝑛𝑆𝑚) = 𝑅𝑛𝑚(𝜆) − 𝑅𝑛𝑟𝑒𝑓
(𝜆) (3) 

Where: 

𝜆: [380,780] nm. 

𝑛: is number of printers. 

𝑚: is number of substrates. 

𝑅𝑛𝑚(𝜆):  The predicted spectral reflectance for n-th printer and 

m-th substrate. 

𝑅𝑛𝑟𝑒𝑓
(𝜆): The reference spectral reflectance of n-th printer. 

Experimental 
We used banner material and self-adhesive vinyl, papers, and 

three HP Latex printers with the same ink type in the evaluation. 

We printed a 1485 patch test chart for every printer-media 

combination and measured it using M1 and M2 measurement 

conditions by Barbieri QB spectrophotometer.  

To implement the Spectral Correction Technique, we used 

substrate pairs with similar b* to minimize the effect of different 

fluorescence levels in CIELAB color space for tristimulus 

correction. Then, we performed all the computations in the spectral 

domain and converted them to the colorimetric values to apply the 

color difference formula. 

To implement the reference printing condition method, we 

used two approaches: a neural network with Keras and a 

multivariate polynomial regression. 

For both methods, we organized the data differently with 

common preprocessing steps:   

• The data were grouped based on the same reference 

printer. Then, for every data point of the group, we 

subtracted the spectral reflectance of the reference 

printer before prediction and added it after. Spectral 

reflectances were constrained to the range 0 - 1. 

• We used printers and substrates as input variables 

and categorized them as a one-hot numeric array. 

One-hot encoding (OHE) step creates binary 

columns for the printer and substrate categories and 

returns a sparse matrix.  

• The training dataset contained ten different 

combinations of substrate and printers with 41 

wavelength intervals in the spectral domain. The test 

set includes four different combinations of printer 

and substrate and three references.  

In the multivariate polynomial regression, we trained the model 

for every patch of printer-substrate combination and optimized it 

using cross-validation. As a result, we obtained 16335 different 

models with 42 polynomial coefficients for each model for all 

substrate and printer combinations in the training set using 

multivariate polynomial regression.  

Considering that every printer, substrate, color patch, and 

wavelength of spectral reflectance are characteristics of our dataset, 

we treated those parameters as unique features for creating a neural 

network model. These models correlate those features to predict 

spectral reflectances. Then, we combined elements differently to get 

the desired output.  

In the first case, we used printers, substrates, and color patch 

ID as input data to the neural network model to predict 41 

wavelength values of spectral reflectance for every 1485 color 

samples.  

In the second case, the data was organized in the same way as 

the polynomial regression: printers and substrates were used as input 

and spectral reflectance for all color samples with 60885 columns as 

output.  

In the third considered case, knowing the printers, substrates, 

and wavelength intervals, we were trying to predict 1485 color 

samples for every wavelength and combination of printer and 

substrate. Then, finally, we made a model that correlates all possible 

parameters like printer, substrate, wavelength, and the sample ID to 

predict the spectral reflectance.   

We tested different references for every scenario and evaluated 

their impact on the result. 

Results 

Method 1: The Spectral Correction Technique 

The result shows in Table 1 that this technique works well for 

correcting spectral reflectances when the color of substrates 

changes. The correction works well for substrates with a maximum 

color difference of 12 ΔE2000. After correction, we see that small 

color differences are still present. These residual differences suggest 

that substrates absorb the ink differently. In addition, the print and 

measurement systems add noise to the experiment.  

Table 1: Prediction result with the Spectral Correction Technique 

Printer 
name 

Substrate 
Names 

Grouped 
by pairs 

1485 
color 

patches 

ΔE2000 

Before 
correction 

After 
correction 

HP 
Latex 
360  

Antalis 
paper 

Mean 3.07 0.36 

IGEPA Max 9.82  0.78 

HP 
Latex 
560  

MPI8726 Mean 2.9 0.25 

Antalis 
paper 

Max 12.29 0.63 

HP 
Latex 
3100 

MPI6021 Mean 4.06 0.19 

MPI1104 Max 11.48 0.88 
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Method 2: Reference printing conditions 
We predicted spectral reflectances using reference printers and 

the multivariate polynomial model, and the neural network model. 

The results are shown in Table 2 and Table 3.  

For a given data set, the multivariate polynomial model showed 

slightly better results. With the help of an optimization algorithm, 

we found that the most accurate prediction is with a second order 

polynomial. However, we saw that the IGEPA substrate was not 

predicted accurately in every iteration using different references. 

Running the multivariate polynomial regression for a dataset 

measured without UV filter slightly improved the overall prediction 

result and significantly improved the prediction for the IGEPA 

substrate. Thus, using this approach the IGEPA substrate was no 

longer ab outlier within the M2 measurement conditions dataset.    

For all predicted spectral reflectance, we saw a similar 

tendency in which colors were predicted less accurately. As a result, 

most of the patches with color difference ΔE2000 >1 are less 

chromatic tertiary colors and have CIELAB L* lightness in the 

range 70-80. Thus, we can conclude that light near-neutral colors 

have more variable results, or possibly that printers have less 

repeatability in low contones due to the variability in the ink drop 

size. Using the M2 data set (measured with UV-blocking filter) 

improves the prediction, although the same trend of poorly predicted 

lower chromatic light patches persists. 

Table 2: Prediction result with polynomial regression 

Printer / 
Substrate 

ΔE2000 for 1485 patches 

Mean  Max 

HP 
Latex 360 

MPI1104 1.13 5.14 

MNSO600 1.06 5.07 

HP 
Latex 560 

MPI8726 1.08 4.05 

 
HP 
Latex 3100  

IGEPA 2.71 11.94 

Antalis 
paper 

1.68 7.66 

In comparison, the ANN model implemented with Keras gave 

relatively good predictions based on reference conditions with a 

higher number of outliers. Table 3 shows the implementation results 

of ANN models, where the dataset was structured differently. In 

Result 1, the dataset was organized the same way as in the case of 

the multivariate polynomial regression model: printer and substrates 

are inputs variables, 60885 columns of spectral reflectance as output 

variables. In addition, we experimented with changing the number 

of layers, activation, and optimization functions. Among the 

optimization we tried were Adam [16], Adamax, SGD, and 

RMSprop [17] [18], and we found out that RMSprop gave the most 

accurate results. We tried the rectified linear (Relu), the exponential 

linear (Elu), hyperbolic tangent (Tanh), and exponential for the 

activation function. In the end, we discovered that Tanh in the first 

layer and Relu in 2nd layer gave the best result in the prediction. 

Apart from the input and output neuron layers, we added one 

additional hidden layer for the model to look for the optimum 

weights for every parameter. However, adding more layers did not 

lead to better results, although it increased the training time 

considerably.  

We kept the number of neurons in the first layer equal to the 

input dimension 1494 and the number in the last layer the same as 

output dimensions: 41 was an intuitive choice that was found to 

work well.   

Since we didn't have many samples for creating the ANN 

model, we manually ran k-fold cross-validation on the full dataset 

to find optimal parameters for the ANN model. Then, we validated 

it using the training set.  

Table 3 shows Result 2 when the neural network model 

predicts 41 spectral reflectance numbers with a subtracted reference 

printer based on a given printer, substrate, and color sample ID. 

Unlike Result 1, Result 2 includes a sample ID as an independent 

feature. This data structure keeps the wavelength sampling together, 

so generic settings for the process of optimization and cross-

validation can still be applied. 

Figure 2. Predicted and original spectral reflectances for L560 MPI6021 

Looking closely at all spectral reflectances predicted poorly 

with the ANN model, we saw a similar tendency as in the case with 

the multivariate polynomial model. Again, colors close to neutral 

CIE Lab axis with 75-85 L* gave the most inaccurate spectral 

reflectance prediction on a larger scale. 

Table 3: Prediction result with Keras neural network  

Printer / 
Substrate 

ΔE2000 for 1485 patches 

Result 1 Result 2 

Mean Max Mean Max 
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HP 
Latex 
360 

MNSO600 1.31 18.34 1.3 13.11 

HP 
Latex 
560 

MPI6021 1.66 15.90 1.58 15.10 

MPI8726 1.58 14.44 1.35 9.63 

IGEPA 2.08 25.85 2.5 28.67 

HP 
Latex 
3100 

Antalis 
paper 

1.48 19.11 2.29 18.82 

In the experimental part, we implemented two other options for 

structuring the data for analysis. One of the options was to predict 

1485 color samples for every wavelength interval and combination 

of printer and substrate. As a result, we faced difficulties keeping all 

41 points of spectral reflectance for every color as a single array. 

Another option was considering printers, substrates, wavelengths 

nanometers, and color sample ID as input variables (unique features) 

and the value of spectral reflectance as output predicted variable.  

But we faced the same issues of manual preprocessing, when all 

wavelength nanometers per printer, substrate, and color patch need 

to be kept together in one of the sets for training, validation, and 

testing. These extra preprocessing and post-processing steps 

introduce a high risk of training-serving skew when the dataset is 

not segregated correctly beforehand. 

We manually chose the different references and tested them for 

both machine learning models with reference conditions and their 

impact on the results obtained. And we found that certain reference 

conditions led to a better prediction result. For example, we found 

that a high level of optical brightening agents (OBAs) for reference 

printers gave rise to a less accurate prediction. We also tried to 

implement models without references or one fixed reference, and we 

obtained a significantly less accurate result. 

Conclusion 
We evaluated two methods for estimating spectral 

characterization data with a change in substrate. The spectral 

correction technique was found to give a more accurate result in 

comparison with the reference printer method.  

However, spectral correction works in pairs using a single 

reference. Despite this, the technique is simple, easy to use, and 

quickly implemented for a relatively small dataset. Furthermore, 

unlike the reference printer method, the Spectral Correction 

Technique does not predict spectral reflectances from scratch. 

Instead, it corrects the spectral reflectances based on the spectral 

reflectance of white of another substrate, which makes reflectances 

closer to each other.  

When implementing the reference printer method, we tried to 

predict the ink on the substrate by introducing the references and 

subtracting them from the spectral reflectances.  This approach 

represents the differences in absorption between two substrates, and 

multivariate polynomial models and the ANN models could predict 

the absorption between substrates well.  Nevertheless, the 

multivariate polynomial regression model gave a more accurate 

spectral reflectance prediction for a given dataset since it most 

accurately describes a small dataset. Thus, for the current dataset, 

characterization with instruments of deep learning would not be  

a solution. 

However, the multivariate polynomial model becomes  

a computationally costly process for more complex datasets to add 

more features into the equation like Sample ID. Therefore, in the 

case of working with a very large amount of data, the neural network 

expects to get a more accurate prediction than a polynomial 

regression.  

Also, we suggest further improvement of the result to adding 

more data in training set for the colors within CIELAB L* 70-85.  

For further analysis, we propose creating a reference as  

a separate feature vector or absorption vector in the feature space for 

the work with extensive data. The reference feature vector will be 

computed on the preprocessing stage and treated as input data. In 

this case, it is essential to assign a reference dynamically without 

interfering manually. Furthermore, other features as measurement 

conditions should be added into the feature space and treat the data 

differently depending on if there is UV information in the spectral 

reflectance or not. 
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